
 
ABSTRACT. This paper deals with the Saint-
Venant torsion of elastic cylindrical orthotropic 
solid square cross section. The origin of the cy-
lindrical orthotropy coincides with the center of 
square cross section. By the use of two minimum 
theorems of elasticity upper and lower bounds 
are derived for the torsional rigidity of the con-
sidered cross section. Illustrative example shows 
that the one term approximation leads to relative 
closed bounds for the torsional rigidity. 

ÖSSZEFOGLALÁS: A dolgozat négyzetke-
resztmetszet  hengeresen anizotrop rúd Saint-
Venant csavarási feladatával foglalkozik. A ru-
galmasságtan két minimum tételének felhaszná-
lásával alsó és fels  korlátokat bizonyít a ke-
resztmetszet csavarási merevségére. Példa szem-
lélteti a levezetett összefüggések alkalmazását. 
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1 INTRODUCTION 
While the uniform torsion of homogeneous Car-
tesian anisotropic linearly elastic bars has been 
well documented it is the subject of several stud-
ies from both theoretical and numerical view-
points [1-6] until then relative few articles and 
books deal with the task of uniform torsion prob-
lem of cylindrically anisotropic bars [2,3,4,7-11]. 
The object of this paper is the Saint-Venant tor-
sion of homogenous cylindrical orthotropic solid 
square cross-section. The bar with square cross 
section is an important structural component, the 
investigation of its deformation under the tor-
sional load is the subject of several books of 
linear elasticity [1-4]. 
Figure 1 shows the bar with square cross section 
which is subjected to torsional load. The material 
of the bar is elastic, homogenous and cylindrical 
orthotropic with shear moduli  [2,3,4]. 
 

 
Figure 1 Cylindrical anisotropic bar with torsional load. 

 
The Prandtl stress function formulation in the 
cylindrical coordinate system  leads to the 
following Dirichlet type boundary-value problem 
(Figure 1) for the uniform torsion of the cylindri-
cal orthotropic cross section  

 

 
(1) 

 (2) 
In equations (1) and (2)  are cylindrical coordi-
nates,  is the Prandtl stress function of the 
considered cross section. The cross section of the bar 
is  and the boundary curve of  is denoted by , 
that is, in present problem (Figure 1) 

 (3) 

 (4) 
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The definition of cross-sectional Descartes coordi-
nates  and  are give in the Figure 1. The torsional 
rigidity of the cross section in the framework of Saint-
Venant theory is defined as  

, (5) 

where  is the applied torque,  is the rate of twist 
with respect to the axial coordinate . The shearing 
stresses  and  obtained from equations (6) and 
(7) 

 

, 
(6) 

 
 

(7) 

It is known that the solution of the Saint-Venant 
torsion of orthotropic bar can be obtained as the 
solution of the following variational problem 
according to the principle of minimum of com-
plementary energy. 

 (8) 

where  denotes the statically admis-
sible stress function which satisfies a homogene-
ous boundary condition on the boundary curve 

 
 (9) 

Explicit form of  is 

 
(10) 

In equation (10)  is a continuous 
function of its arguments  and  in  
and it has continuous second order partial deriva-
tives with respect to  and  in  [12,13,14]. In 
paper [15], Ecsedi and Lengyel proved the fol-
lowing lower bound for the torsional rigidity of 
cylindrically orthotropic bar, when  

 (11) 

(12) 

In formula (11)  is an arbitrary func-
tion whose second order partial derivatives with 

respect to  and  are continuous functions in 
. The name of  is kinemati-

cally admissible torsion function [12,13,14,15]. 
The proof of upper bound formula (12) is based 
on the principle of the minimum of potential 
energy [15]. 
 
2 APPROXIMATE SOLUTION FOR THE 
PRANDTL STRESS FUNCTION 
The solution of the variational problem (8) is 
searched as 

 

 

(13) 

It is evident that 

 (14) 

independently of the value of unknown constant 
. The stacionary condition of the compementary 

energy functional (10) under the boundary condi-
tion (14) yields the following result 

From the principle of minimum of complemen-
tary energy it follows that the best approximate 
analytical solution satisfies 

the stationary condition, which gives 

where 

Final form of  can be represented as 

Substitution the expression of  into 
the equation (6) and (7) gives the expressions of 
shearing stresses 

 
(15) 

 (16) 

 (17) 

 (18) 

 

(19) 
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The resultant of shearing stress  is 
as follows 

 
3 LOWER AND UPPER BOUNDS FOR THE 
TORSIONAL RIGIDITY 

It is known that 

 (23) 

the lower bound relation (23) is valid with arbi-
trary statically admissible  stress 
function and equality in bounding formula is 
reached only if  

 [12, 13, 14] In the present problem by a sin-
gle computation, the following lower bound can 
be derived for   

 (24) 

Substitution 

 (25) 

into the expression of the upper bound formula 
(12) gives 

 
(26) 

where 

For isotropic bar when  the fol-
lowing bound can be obtained from formulae 
(24) and (26). 

 
4 NUMERICAL EXAMPLE 

The following data are used in the numerical 
example  

, 
, . 

Figures 2 and 3 show the graphs of the shearing 
stress  as a function of  on the axis  
and on the axis . 
 

 
Figure 2 The plot of shearing stress  as a function 
of  for  
 

 
Figure 3 The plot of shearing stress  as a function 
of  for  

 
In Figure 4 the plot of von Mises stress is pre-
sented for  
 

 
Figure 4 The plot of the graph of von Mises stress for 

 and  
 
The application of the bounding formula of tor-
sional rigidity gives 

 (27) 

Let  be defined as 

 
(20) 

 
(21) 

 

 

(22) 

 (27) 

 (28) 

GÉP, LXXIII. évfolyam, 2022. 253-4. SZÁM



. (28) 

The approximate value of relative error  is as 
follows 

 (29) 

that is  
 
5 CONCLUSIONS 

The Saint-Venant torsion of homogeneous, line-
arly elastic, cylindrical orthotropic solid bar with 
square cross section is analyzed. Approximate 
expressions are given for the shearing stresses. 
Two-side bound are formulated for the torsional 
rigidity. The application of derived formulae is 
illustrated by a numerical example. The obtained 
formulae can be used to check the validity of 
numerical results which are derived by other 
numerical methods such as FEM, finite differ-
ences etc. 
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