NORMÁL ÉS CSÚSZTATÓ FESZÜLTSÉGEK SZÁMÍTÁSA RÉSZLEGESEN KAPCSOLT RÉTEGEZETT KOMPOZIT RUDAKBAN

DETERMINATION OF NORMAL AND SHEARING STRESSES IN COMPOSITE BEAMS WITH WEAK SHEAR CONNECTION

Lengyel Ákos József⁴, Ecsedi István²

ABSTRACT

The main objective of the present paper is the analysis of the stress field in a two-layer composite beam with imperfect shear connection. Some formulae are derived for the normal and shearing stresses. It is assumed that the two layers follow the requirements of the Euler-Bernoulli beam theory and the applied loads act in the plane of symmetry of the composite beam.

1. BEVEZETÉS

Kétrétegű rugalmas anyagú kompozit rúd keresztmetszetét és terhelését az 1. ábra szemlélteti. Az yz sík a rúd szimmetriasíkja, amely egyben az alkalmazott terheléseket és a megtámasztási kényszereket is tartalmazza. A rúd keresztmetszet $A=A_1 \cup A_2$ A_i (i=1,2) résztartományát E_i (i=1,2)rugalmassági modulusú homogén, izotrop anyag tölti ki. Az A1 és A2 keresztmetszeti tartományok közös határgörbéjét ∂A_{12} jelöli, továbbá az A_1 és A_2 keresztmetszetű B1 és B2 rúdkomponensek közös határoló felülete a $\partial A_{12} \times (0,L)$ téglalap. Kiemelendő, hogy jelen tanulmányban az A_1 és A_2 keresztmetszeti tartományok közös határgörbéje az yz síkra szimmetrikus egyenes szakasz (1. ábra). Feltevés szerint normál irányban (y irányban) a B_1 és B_2 rúdkomponensek kapcsolata tökéletes, szakadás csak az axiális (z tengely irányú) elmozdulásban lehetséges a ∂B_{12} felületszakaszon történő áthaladáskor a B_1 rúdkomponensről a B_2 rúdkomponensre (interlayer slip) [2,3,4,5]. Az Oxyz koordinátarendszer O origója a koordinátával z = 0kijelölt keresztmetszet E rugalmassági modulussal súlyozott C súlypontjával esik egybe [6,7], továbbá az A1 és A2 keresztmetszeti tartományok súlypontjait C_1 és C_2 jelöli (1. ábra). Könnyen belátható, hogy

$$c_{1} = \left| \overrightarrow{CC_{1}} \right| = \frac{A_{2}E_{2}}{\left\langle AE \right\rangle} c, \ c_{2} = \left| \overrightarrow{CC_{2}} \right| = \frac{A_{1}E_{1}}{\left\langle AE \right\rangle} c, \qquad (1)$$

$$\langle AE \rangle = A_1 E_1 + A_2 E_2, \ c = \left| \overline{C_1 C_2} \right|.$$
 (2)

Feltevés szerint a B_1 és B_2 rúd komponensek mechanikai viselkedését az Euler-Bernoulli rúdelmélet írja le. Ennek megfelelően, tekintettel a geometriai és terhelési, valamint a megtámasztási viszonyokra a rúd elmozdulásmezője a válaszott *Oxyz* koordinátarendszerben az alábbi alakban adható meg. (1.ábra):

$$\mathbf{u}(x, y, z) = u(x, y, z)\mathbf{e}_{x} + +v(x, y, z)\mathbf{e}_{y} + w(x, y, z)\mathbf{e}_{z},$$
(3)

$$u = 0, v = v(z),$$
 (4)

$$w(x, y, z) = w_i(z) - y \frac{dv}{dz},$$
(5)
 $(x, y) \in A, \quad i = (1, 2), \quad 0 \le z \le L,$

1. ábra. Kétrétegű részlegesen kapcsolt kompozit rúd.

A rugalmas rudakkal kapcsolatos rugalmasságtani egyenletek alkalmazásával azt kapjuk, hogy [1]

$$\varepsilon_x = \varepsilon_y = \gamma_{xz} = \gamma_{yz} = \gamma_{xy} = 0, \tag{6}$$

¹PhD hallgató, Miskolci Egyetem, Mechanikai Tanszék, mechlen@uni-miskolc.hu

²egyetemi tanár, Miskolci Egyetem, Mechanikai Tanszék, mechecs@uni-miskolc.hu

$$\varepsilon_z = \frac{\mathrm{d}w_i}{\mathrm{d}z} - y \frac{\mathrm{d}^2 v}{\mathrm{d}z^2},\tag{7}$$

összhangban az Euler-Bernoulli rúdelmélettel. Az ε_z fajlagos nyúláshoz tartozó σ_z normál feszültségre a

$$\sigma_z = E_i \left(\frac{\mathrm{d}w_i}{\mathrm{d}z} - y \frac{\mathrm{d}^2 v}{\mathrm{d}z^2} \right), \ (x, y, z) \in B_i, \ i = (1, 2)$$
(8)

eredményt tudjuk levezetni. Mivel a rudat keresztirányú yz síkban ható erőrendszer terheli, a rúd teljes keresztmetszetén működő N normálerő értéke zérus, azaz

$$N = N_1 + N_2 = \int_{A_1} \sigma_z dA + \int_{A_1} \sigma_z dA = 0.$$
(9)

A rétegek relatív elcsúszása *s* (interlayer slip) a tengely irányú elmozdulások különbsége a ∂B_{12} belső határoló felület mentén számolva. Nyilván

$$s(z) = w_1(z) - w_2(z).$$
(10)

A nem tökéletesen kapcsolódó rétegek által átvitt *T* kapcsolati nyíróerő, lineáris anyagtörvényt feltételezve, a

$$T = ks \left(\left[T \right] = \frac{\text{er\"o}}{\text{hosszúság}}, \left[k \right] = \frac{\text{er\"o}}{\left(\text{hosszúság} \right)^2} \right)$$
(11)

alakba írható, ahol k a kapcsolat nyírási merevségét jelöli [2,3,6,7].

2. NORMÁL FESZÜLTSÉG SZÁMÍTÁSA

A levezetendő képleteket az s=s(z) szlip és v=v(z) lehajláshoz kapcsolódó alakváltozási jellemzőkkel fogalmazzuk meg. Ennek érdekében a (8) képletből a (9) és (10) egyenletek felhasználásával elimináljuk a $w_1=w_1(z)$ és a $w_2=w_2(z)$ axiális elmozdulás komponensek z szerinti deriváltjait. A (9) és (10) egyenletekből az következik, hogy

$$N_1 + N_2 = E_1 A_1 \frac{dw_1}{dz} + E_2 A_2 \frac{dw_1}{dz} = 0,$$
(12)

$$\frac{\mathrm{d}s}{\mathrm{d}z} = \frac{\mathrm{d}w_1}{\mathrm{d}z} - \frac{\mathrm{d}w_2}{\mathrm{d}z}.$$
(13)

Az (1) és (2) továbbá a (12) és (13) egyenletek kombinálásával jutunk a következő eredményre

$$\frac{\mathrm{d}w_1}{\mathrm{d}z} = \frac{c_1}{c}\frac{\mathrm{d}s}{\mathrm{d}z}, \quad \frac{\mathrm{d}w_2}{\mathrm{d}z} = -\frac{c_2}{c}\frac{\mathrm{d}s}{\mathrm{d}z}.$$
 (14)

A (8) egyenletbe helyettesítve a fenti kifejezéseket megkapjuk a normálfeszültségek képleteit a B_1 és B_2 rúdkomponensekre

$$\sigma_{z}(x, y, z) = E_{1}\left(\frac{c_{1}}{c}\frac{ds}{dz} - y\frac{d^{2}v}{dz^{2}}\right)$$
(15)
$$(x, y, z) \in B_{1},$$

$$\sigma_z(x, y, z) = -E_2 \left(\frac{c_2}{c} \frac{\mathrm{d}s}{\mathrm{d}z} + y \frac{\mathrm{d}^2 v}{\mathrm{d}z^2} \right)$$
(16)
$$(x, y, z) \in B_2,$$

Egyszerű számolással adódik, hogy

<

$$N_{1} = \int_{A_{1}} \sigma_{z} dA = \left\langle AE \right\rangle_{-1} \left(\frac{ds}{dz} - c \frac{d^{2}v}{dz^{2}} \right), \qquad (17)$$
$$M = \int v \sigma_{z} dA =$$

$$M = \int_{A_1} y \sigma_z dA = \int_{A_2} y \sigma_z dA =$$

$$= c \langle AE \rangle_{-1} \frac{ds}{dz} - \{EI\} \frac{d^2 v}{dz^2}.$$
(18)

Itt bevezettük a

$$AE\big\rangle_{-1} = \frac{A_1 E_1 A_2 E_2}{\langle AE \rangle},\tag{19}$$

$$\{EI\} = E_1 \int_{A_1} y^2 dA + E_2 \int_{A_2} y^2 dA$$
(20)

jelöléseket. A (17) és a (18) egyenletek felhasználásával a

$$\lambda = \frac{\mathrm{d}s}{\mathrm{d}z}, \quad \frac{1}{\rho} = -\frac{\mathrm{d}^2 v}{\mathrm{d}z^2} \tag{21}$$

szlip alakváltozást és a rugalmassági modulussal súlyozott középvonal görbületváltozását az $N_1=N_1(z)$ és M=M(z) igénybevételek segítségével az alábbi alakban tudjuk megadni:

$$\frac{\mathrm{d}s}{\mathrm{d}z} = -\frac{c}{\langle EI \rangle} M + \frac{\{EI\}}{\langle AE \rangle_{-1} \langle EI \rangle} N_1, \qquad (22)$$

$$-\frac{\mathrm{d}^2 v}{\mathrm{d}z^2} = \frac{M}{\langle EI \rangle} - \frac{c}{\langle EI \rangle} N_{\mathrm{l}}.$$
 (23)

A (15), (16) és a (22), (23) egyenletek kombinálásával kapjuk a normálfeszültségek képleteit az $N_1=N_1(z)$ és M=M(z) igénybevételekkel kifejezve:

$$\sigma_{z} = \frac{E_{1}}{\langle EI \rangle} \left[-c_{1}M + \frac{\{EI\}}{A_{1}E_{1}}N_{1} + y(M - cN_{1}) \right]$$

$$(x, y, z) \in B_{1},$$
(24)

$$\sigma_{z} = \frac{E_{2}}{\langle EI \rangle} \left[c_{2}M - \frac{\{EI\}}{A_{2}E_{2}}N_{1} + y(M - cN_{1}) \right]$$

$$(x, y, z) \in B_{2}.$$
(25)

A fenti egyenletekben alkalmaztuk az

$$\left\langle EI \right\rangle = \left\{ EI \right\} - c^2 \left\langle AE \right\rangle_{-1} \tag{26}$$

jelölést. Megjegyzendő, hogy {*EI*} a rúdkeresztmetszet hajlítási merevségét jelenti tökéletes (elcsúszásmentes) kapcsolat esetén, mikor is $k=\infty$, továbbá $\langle EI \rangle$ abban az esetben a keresztmetszet hajlítási merevsége, ha a B_1 és a B_2 rúdkomponensek szabadon elcsúszhatnak axiális irányban egymáshoz képest, vagyis k=0. A (15), (16) valamint a (24) és (25) képletekből az következik, hogy a $\sigma_z = \sigma_z(y, z)$ függvény $y = y_{12}$, $0 \le z \le L$ helyen szakadással rendelkezik (1.ábra).

3. CSÚSZTATÓ FESZÜLTSÉG SZÁMÍTÁSA

Az A_1 tartomány pontjaiban ébredő τ_{yz} csúsztató feszültség P_1 , P_2 pontok által meghatározott egyenes szakaszra vonatkozó átlag értékét a

$$\overline{\tau}_{yz}(y,z) = \frac{1}{a(y)} \int_{\overline{PB}} \tau_{yz}(x,y,z,) dx$$
(27)

egyenlet definiálja (2. ábra). A $\overline{\tau}_{yz}$ meghatározásához a

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} = 0$$
(28)

2. ábra. A_1^* tartomány szemléltetése.

mechanikai egyensúlyi egyenletet használjuk [1]. Jelölje A_1^* a $\overline{P_1P_2}$ egyenes szakasz és a ∂A_{01}^* görbe által határolt résztartományát A_1 -nek (2. ábra). A (28)

egyenletből integrálással az alábbi összefüggésre jutunk:

$$\int_{A_{1}^{\prime}} \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} \right) dA + \int_{A_{1}^{\prime}} \frac{\partial \sigma_{z}}{\partial z} dA =$$

$$\int_{\partial A_{1}^{\prime}} \left(\tau_{xz} n_{x} + \tau_{yz} n_{y} \right) ds = -\int_{\overline{P_{1}P_{2}}} \tau_{yz} dx +$$

$$\int_{A_{1}^{\prime}} E_{1} \left(\frac{c_{1}}{c} \frac{d^{2}s}{dz^{2}} - y \frac{d^{3}v}{dz^{3}} \right) dA = 0.$$
(29)

A (29) egyenlet levezetése során alkalmaztuk a Stokestételt, a ∂A_{01}^* görbeszakaszra vonatkozó

$$\frac{\partial \tau_{xz}}{\partial x} n_x + \frac{\partial \tau_{yz}}{\partial y} n_y = 0, \ (x, y) \in \partial A_{01}^*, \ 0 < z < L$$
(30)

feszültségi peremfeltételt (2. ábra), ahol

$$\mathbf{n} = n_x \mathbf{e}_x + n_y \mathbf{e}_y \tag{31}$$

a $\partial A_{01}^* \cup \overline{P_1P_2}$ zárt görbe normális egységvektorát jelöli. Nyilván

$$n_x = 0, \ n_y = -1, \ (x, y) \in P_1 P_2.$$
 (32)

A (29) egyenlet alapján írható, hogy

$$\overline{\tau}_{yz}(y,z) = \frac{E_1 A_1^*}{a(y)} \left[\frac{c_1}{c} \frac{d^2 s}{dz^2} - y_1^* \frac{d^3 v}{dz^3} \right], \quad (33)$$
$$y_{12} < y < e_1.$$

Itt

$$y_1^* = \frac{1}{A_1^*} \int_{A_1^*} y dA.$$
 (34)

Hasonló okoskodással az $y_{12} > y \ge -e_2$ egyenlőtlenséggel kijelölt tartományra a következő képletet tudjuk levezetni a $\overline{\tau}_{yz}(y,z)$ átlagos nyírófeszültségre (3. ábra)

$$\overline{\tau}_{yz}(y,z) = \frac{1}{a(y)} \left\{ \frac{E_1 A_1 c_1 - E_2 A_2^* c_2}{c} \frac{d^2 s}{dz^2} \right.$$

$$\left. \left(-c_1 E_1 A_1 + y_2^* E_2 A_2^* \right) \frac{d^3 v}{dz^3} \right\}, \quad -e_2 \le y \le y_{12}.$$
(35)

A fenti képletben A_2^* az A_2 tartományból az $y=y_{12}$ és $y(-e_2 \le y \le y_{12})$ x tengellyel párhozamos egyenesek által kihasított tartomány területét jelenti (3. ábra) és

$$y_2^* = \frac{1}{A_2^*} \int_{A_2^*} y dA.$$
 (36)

A keresztmetszeti csúsztató feszültségekre levezetett képletek felírhatók a teljes keresztmetszetre vonatkozó V=V(z) nyíróerő és T=T(z) kapcsolati nyíróerő függvényeként.

3. ábra. Az A_2^* tartomány szemléltetése.

A levezetéshez az alábbi összefüggéseket fogjuk használni [6,7]

$$V(z) = \frac{\mathrm{d}M}{\mathrm{d}z}, \ T(z) = \frac{\mathrm{d}N_1}{\mathrm{d}z}.$$
 (37)

A (22), (23), (33), (35) és (37) egyenletek kombinálásával kapjuk a (38) és (39) egyenleteket:

$$\overline{\tau}_{yz}(y,z) = \frac{E_{1}A_{1}^{*}}{a(y)\langle EI \rangle} \left\{ -c_{1}V + \frac{\{EI\}}{A_{1}E_{1}}T + (38) + y_{1}^{*}(V-cT) \right\}, \quad y_{12} < y \le e_{1},$$

$$\overline{\tau}_{yz}(y,z) = \frac{E_{1}A_{1}}{a(y)\langle EI \rangle} \left[-c_{1}V + \frac{\{EI\}}{A_{1}E_{1}}T + c_{1}(V-cT) \right] + \frac{E_{2}A_{2}^{*}}{a(y)\langle EI \rangle} \left[c_{2}V - (39) - \frac{\{EI\}}{A_{2}E_{2}}T + y^{*}(V-cT) \right], \quad -e_{2} < y \le y_{12}.$$

4. PÉLDA. KONCENTRÁLT ERŐVEL TERHELT FIXEN MEGFOGOTT RÚD

A 4. ábra szemlélteti az F nagyságú koncentrált erővel terhelt a z=0 koordinátával kijelölt keresztmetszetnél

befalazott kétrétegű kompozit rudat. A tartó keresztmetszete téglalap. A 4. ábra jelöléseit használva írható, hogy

$$A_1 = h_1 b, \quad A_2 = h_2 b, \tag{40}$$

$$c_1 = \frac{E_2 h_2 (h_1 + h_2)}{2(E_1 h_1 + E_2 h_2)},$$
(41)

$$c_2 = \frac{E_1 h_1 (h_1 + h_2)}{2(E_1 h_1 + E_2 h_2)},$$
(42)

$$y_{12} = c_1 - \frac{h_1}{2}, \tag{43}$$

$$\{EI\} = \frac{b}{12} (E_1 h_1^3 + E_2 h_2^3) + (E_1 c_1^2 h_1 + E_2 c_2^2 h_2)b,$$
(44)

$$\langle EI \rangle = \frac{b}{12} (E_1 h_1^3 + E_2 h_2^3),$$
 (45)

$$\left\langle AE \right\rangle_{-1} = \frac{E_1 h_1 E_2 h_2 b}{E_1 h_1 + E_2 h_2}.$$
 (46)

A későbbiekben még szükség lesz a

$$\Omega = \sqrt{k \frac{\{EI\}}{\langle AE \rangle_{-1} \langle EI \rangle}} \tag{47}$$

képlettel definiált változóra is [6,7]. A numerikus példához az alábbi adatokat használjuk:

 $L = 0.5 \text{ m}, b = 0.03 \text{ m}, h_1 = 0.02 \text{ m}, h_2 = 0.04 \text{ m},$ $E_1 = 2 \cdot 10^{11} \text{ Pa}, E_2 = 10^{10} \text{ Pa}.$

4. ábra. Téglalap keresztmetszetű hajlított és nyírt rúd koncentrált erővel terhelve

Az igénybevételi függvényekre a [6] tanulmány a következő eredményeket vezette le:

$$T(z) = \frac{ckF}{\langle EI \rangle \Omega^2} [\sinh \Omega z \tanh \Omega L +$$
(48)

$$+1 - \cosh \Omega z], \quad 0 \le z \le L,$$

$$M(z) = F(L-z), \quad 0 \le z \le L,$$
 (49)

$$N_1(z) = \frac{ckF}{\langle EI \rangle \Omega^3} [(\cosh \Omega y - 1) \tanh \Omega L -$$
(50)

$$-\sinh \Omega z + \Omega(z - L) + \tanh \Omega L], \ 0 \le z \le L,$$
$$V(z) = F, \ 0 \le z \le L.$$
(51)

5. ábra. A $\overline{\sigma} = \sigma_z / F$ normálfeszültségi változó szemléltetése

Az 5. ábra a z=0 és a z=L/2 koordinátával kijelölt keresztmetszetekben szemlélteti a $\overline{\sigma} = \sigma_z/F$ feszültségi változót a *k* nyírási merevség néhány értékére. A 6. ábra pedig a z=0 és a z=L koordinátákkal kijelölt keresztmetszetekben fellépő $\tilde{\tau} = \overline{\tau}_{yz}/F$ csúsztató feszültségi változó függvényét szemlélteti a *k* nyírási merevség néhány jellegzetes értékére.

6. ábra. A csúsztató feszültségi változó szemléltetése

5. KÖVETKEZTETÉSEK

A tanulmány kétrétegű, nem tökéletesen kapcsolódó kompozit rudak szilárdságtani számításához szükséges képletek levezetésével foglalkozik. A levezetett képletek használatát numerikus példán szemlélteti. A numerikus példában megvizsgáltuk a *k* nyírási merevség hatását a normál és csúsztató feszültségekre. A tanulmányban bizonyított összefüggések közvetlenül használhatók a nem tökéletesen kapcsolódó, rétegezett kompozit rudak szilárdságtani méretezésére.

6. KÖSZÖNETNYILVÁNÍTÁS

A kutató munka a TÁMOP-4.2.2/B-10/1-2010-0008 jelű projekt részeként – az Új Magyarország Fejlesztési Terv keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

7. IRODALOM

- UGURAL A. C., FENSTER S. K.: Advanced Strength and Applied Elasticity. Edward Arnold, London, 1984.
- [2] GIRHAMMAR U. A. and GOPU V. K. A.: Composite beam-columns with interlayer slip – exact analysis. Journal of Structural Engineering. 1993.; 119 (4), 1265-1282.
- [3] GIRHAMMAR U. A., PAN D.: Exact static analysis of partially composite beams and beam-columns. International Journal of Mechanical Sciences. 2007., 49 (2), 239-255.
- [4] GIRHAMMAR U. A., PAN D.: Dynamic analysis of composite members with interlayer slip. Int. Journal of Solids and Structures. 1993., 30, 797-823.
- [5] DALL'ASTA A.: Composite beams with weak shear connection. International Journal of Solids and Structures. 2001., 38, 5605-5624.
- [6] ECSEDI I., BAKSA A.: Static analysis of composite beams with weak shear connection. Applied Mathematical Modelling. 2011., 35, 1739-1750.
- [7] LENGYEL A. J., ECSEDI I.: Analitikus módszer részlegesen kapcsolt, rétegezett kompozit rudak szilárdságtani feladatainak megoldására. Miskolci Egyetem, Multidiszciplináris tudományok, 2. kötet (2012.), 1. szám, 89-102.

