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Global inversion o f well log data

Péter Norbert SZABÓ*

A global optimization method for solving the nonlinear geophysical well-logging inverse 
problem is presented. At first a conventional point by point inversion method using local response 
equations is applied to estimate, separately, the petrophysical parameters (effective porosity, water 
saturation, shale and matrix contents) at different depths. In addition, I introduce the so-called 
interval inversion procedure, which uses all the data in a greater depth-interval in a joint inversion 
process. To test and compare the inversion methods synthetic and field well log data are inverted. 
The results show that the interval inversion algorithm is more powerful and yields more accurate 
petrophysical parameters than the local point by point inversion method. The former results in much 
more accurate and reliable parameter estimation and also gives an estimate for the layer-thicknesses 
as an additional item of geological information that up till now could not have been treated as an 
unknown in geophysical well-logging inversion.
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1. Introduction

The role of geophysical well-logging is to inform us about the geomet­
rical position and petrophysical properties of the rocks traversed in the 
borehole. To determine these parameters modern inversion methods can be 
used with the application of up-to-date informatics. The unknowns of the 
nonlinear inverse problem are characteristic petrophysical values, where a 
few parameters have a constant value in a layer, and several parameters are 
invariable in the zone investigated. The layer-thicknesses might also be 
treated as unknowns, but the conventional point by point inversion tech­
nique, which uses the well log data set separately, cannot handle this prob­
lem. Thus the layer boundary-coordinates can be determined only in a pre­
inversion procedure. In practice, point by point inversion is generally used 
to interpret the measured data. Most point inversion procedures are based 
on linearized optimization methods and give a weighted least squares 
(LSQ) solution. If we have satisfactory a priori information about the
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petrophysical model, they work as a very quick and effective algorithm. 
However, being gradient methods if extensive inversion problems arise 
they can probably assign the solution to a local optimum of the objective 
function. This problem is solved by the global optimization methods that 
search the absolute extremes of the objective function with much higher 
probability than linearized optimization methods. The most preferred glo­
bal optimization procedures are Simulated Annealing and Genetic Algo­
rithms.

2. The forward problem

In formulating the forward problem let us introduce the column vector 
of the petrophysical model parameters at a certain depth-point as

m = {POR, SX 0, SW, VSH, VSD, VLM}T , ^

where POR denotes the effective porosity, SZÓ, SW  denote the water satu­
ration in the invaded and the virgin zone, VSH, VSD, VLM denote the spe­
cific volume of shale, sandstone and limestone. To determine the model pa­
rameters we utilize logs measured in the borehole that record various pa­
rameters of natural and induced physical fields as a function of depth. The 
following transposed vector contains the observed data of a possible com­
bination of well logs at a certain depth

d (ohs) = {SP, GR, PORN, DEN, AT, RMLL, RLLD}T , (2)
where SP [mV] represents the spontaneous potential, GR [API] denotes the 
natural gamma-ray, PORN [p.u. (porosity unit)] denotes the neutron 
porosity, DEN  [gem'3] denotes the bulk density, AT  [psm !] denotes the 
acoustic traveltime, and RMLL, RLLD [ohm nf’] denote the micro- and 
deep laterolog resistivity data. The measured data reflect the immediate vi­
cinity of the borehole. The SP, GR logs are mainly sensitive to the lithology, 
PORN, DEN, AT  logs indicate the porosity, and RMLL, RLLD data are 
primarily influenced by the water saturation. Since the measurement is 
carried out in relatively complicated borehole surroundings we need to 
create a petrophysical model of the formation of interest on the basis of the 
corrected observed data set and the available a priori information. In the 
next step we calculate data by means of the petrophysical parameters of the 
relevant model by certain petrophysical relationships. These latter are
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called response functions and they connect the model parameters with the 
well log data used for solving the direct problem. Through the set of re­
sponse functions there is a connection between the predicted model 
parameter vector and the calculated data vector, viz.

d {cak)= g (m ,ï)  , (3)
where c denotes the vector of textural constants and zone parameters. The 
choice of the response functions depends on the depth and the petrophysi­
cal properties of the formation investigated. (The interpreter can find many 
kinds of detailed empirical equations in handbooks). In forward modelling 
we substitute the initial (and later the estimated) values of the model para­
meters of Eq. (1) into Eq. (3), then the data obtained are compared with the 
observed data set to make a prediction for the petrophysical model by an 
inversion method. Obviously, the set of response equations is nonlinear 
with regard to the model parameters, but we can transpose the direct 
problem relatively quickly to other geophysical problems that have gener­
ally simple structured equations. Thus it is advantageous to solve the in­
verse problem by means of a global optimalization method. 3

3. Inversion algorithms

To solve the nonlinear geophysical well-logging inverse problem a 
point by point inversion method is conventionally used, which utilizes the 
data set of a certain depth-point to determine the petrophysical model para­
meters for the given point. Under the procedure we consider the adjacent 
depth-points to be independent from each other using local response 
equations to calculate the theoretical well log data. Therefore we cannot 
determine the layer-thicknesses by this method. The inverse problem can 
be solved by the minimization of the error between the observed and the 
calculated data having a marginally overdetermined system.

The theoretical data at the depth-point are calculated by means of a 
local set of response equations of Eq. (3). The calculated vector data of the 
yth log can be written in a general form as

d f a‘c) = g  M ,  (4)

where M  denotes the number of model parameters at the point.
Since the number of observed data is slightly more than the number of 

unknown model parameters at the point, the accuracy and the reliability of
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the estimations are relatively limited. For Eqs. (1) and (2) there are 6 
petrophysical parameters against 7 well log data, so it is worth inverting 
data of a greater interval jointly in one inversion procedure. The so-called 
interval inversion algorithm is based on the series expansion of the 
petrophysical parameters, which develops depth-dependent layer charac­
teristic parameters [DOBRÓKA 1995]. With appropriate series expansion 
the relation in Eq. (4) modifies to a response function interpreted in a 
depth-interval. The synthetic data calculated from they'th log at depth z is

where В denotes the unknown discretization coefficients with Q number of 
discretization coefficients required for the development of any model 
parameter, and Zb ..., Z„ represent the layer boundary co-ordinates that can 
be chosen as unknown model parameters. By interval inversion we can de­
termine the В coefficients in order to approximate the petrophysical model 
parameters in Eq. (1) along the whole observed interval.

4. Global optimization method -  Simulated Annealing

Linearized inversion methods are the most used for inversion, because 
for an initial model that is near to the solution they are very quick and 
effective algorithms and are also capable of checking the quality of the 
estimated model parameters. But as they are not absolute minimum 
searching methods, they generally assign the solution to a local optimum of 
the objective function. This problem is solved by the Simulated Annealing 
(SA) method, which performs the global optimization of the objective 
function by random walking in the parameter space. SA was first proposed 
by M etropolis et al. [1953] to model the thermal equilibrium state of 
solids.

In metallurgy the removal of the effect of work-hardened solids is 
realized by a slow cooling process from the temperature of the liquid alloy. 
This process reduces progressively the kinetic energy of a large number of 
atoms with high thermal mobility before crystallization. Theoretically, the 
perfect crystal grating, which has minimal overall atomic energy is pro­
duced by an infinitely slow cooling process. This is analogous to the stabi­
lization in the global optimum of the objective function of a geophysical 
inverse problem. A quicker cooling operation for that causes grating de­

(5)
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fects, where the solid freezes in an imperfect grid with a higher energy 
state. It is similar to the stagnation of the inversion process at a local 
minimum of the objective function (generally known as energy function). 
However, atoms may escape from this higher energy state owing to a 
special annealing process and after that — by means of slow cooling — the 
optimal crystal grating can be achieved. The SA-method uses this 
procedure to search for the global optimum of the energy function.

The MSA-algorithm (SA based on the Metropolis algorithm) modifies 
the components of the relevant model parameter vector in every iteration 
step. The modification of the y'th model parameter can be performed by 
means of

= m {f d)+b
where b denotes an actual perturbation term. This small number can be 
varied between [b, Z>max], where èmax is generally decreased by

after a specified number of iteration steps (0<s<l). During the random 
walk in the parameter space the energy function of the relevant model is 
calculated and compared with the previous one in every iteration step. The 
acceptance probability (P) of the new model depends on the Metropolis 
criterion

P(AE,T) =
, i f  A £ < 0 l 

exp(-AE/T)  , i f  A2i>0j

where T denotes a temperature which must be reduced by 
T(new)=T(old) / In {actual iteration step) during the search to achieve the 
global optimum [GEMAN, GEMAN 1984]. It is clear that if the energy is 
lower in the new step than in the previous one, we always accept the new 
model. Otherwise if the energy of the new model had been increased, there 
would also be a probability of acceptance depending on the value of the en­
ergy needed to escape from the local minimum. If P(AE) > a  is fulfilled 
(where a  is generated with uniform probability from [0 , 1]), then the new 
model parameters are accepted otherwise we reject them. The convergence 
of the inversion is largely influenced by the cooling process applied. We 
must avoid too rapid cooling because the solution can be frozen at a local 
minimum, but neither should there be too slow cooling because of unneces­
sarily increasing the CPU time.
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4.1. Global point by point inversion

Let us define the objective function, i.e. energy function o f the inverse 
problem. If our data are charged with Gaussian noise we can choose opti­
mally to minimize

which is based on the principle of the LSQ-method. The quality of inver­
sion results are characterized separately at every depth-point by the follow­
ing relative model and data distances [DOBRÓKA et al. 1991]

Determination of the reliability of the estimated parameters for global 
optimization methods is different from the event of linearized optimiza­
tion. To get useful information about the statistics of the model parameters 
determined it is nowadays a problem of several orders of magnitude longer 
computational run time. Here I did not deal with this problem, but we are 
working on a new technique to solve it.

( 6)

(7)
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4.2. Global interval inversion

The energy function of the interval inversion problem is the following 
for Gaussian data noise

£2  =
1
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where DP denotes the number of depth points in the processed interval. If 
we also have outliers in the data set it is better to choose the following norm 
for optimization, which is equivalent to the known Least Absolute Devia­
tions (LAD) method

1 D P L
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—> m m . (9)

The inverse problem is now largely overdetermined, therefore we can 
also determine the co-ordinates of the formation boundaries automatically 
by the interval inversion algorithm based on Eq. (5). The petrophysical and 
the geometric parameters of the formations can be obtained by optimizing 
Eq. (8 ). The quality of the inversion results is characterized in the whole 
depth interval processed by the following relative model and data distances
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( 10)

where R denotes the number of layers in the interval involved in the inver­
sion. In the computation, a layer-wise homogeneous model is assumed.

5. Numerical results

In order to test and compare the inversion algorithms based on the 
Simulated Annealing method, noisy synthetic well log data were generated 
as quasi-measured input data. After processing them optimal petrophysical
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parameters were estimated and the diagnostic values of Eqs. (7) and (10) 
were calculated to characterize the algorithms from the point of view of 
accuracy. Furthermore, measured well log data collected in a Hungarian 
borehole were also interpreted in order to prove that the global inversion 
methods can be utilized for real geological structures as well.

5.1. Generation o f  synthetic data sets

To invert noisy synthetic well log data a series of strata that consists of 
four homogeneous sedimentary layers was defined. The petrophysical pa­
rameters of the model are shown in Table I, where H  denotes the layer 
thickness [m], POR denotes the effective porosity [fraction], SXO denotes 
the water saturation in the flushed zone [fraction], SW  denotes the water 
saturation in the virgin zone [fraction], VSH denotes the shale content 
[fraction], VSD denotes the sand content [fraction], and VLM denotes the 
limestone content [fraction].

H  (m) POR SXO SW VSH VSD VLM
8 .0 0.2 1.0 1.0 0.1 0.7 0
5.0 0 1.0 1.0 0.9 0.05 0.05

10.0 0.3 0.8 0.5 0 0.7 0
6 .0 0.1 1.0 1.0 0.5 0.3 0.1

Table I. Four-layered petrophysical m odel 
I. táblázat. Négyréteges kőzetfizikai modell

Synthetic data were calculated for this four-layered model. In Fig. la, 
b synthetic well logs can be seen from Eq. (2) charged with 5 per cent 
Gaussian noise. In addition to the 25 per cent of these data, random noise 
was added to simulate well logs charged with outliers. In Fig. la, b the 
curves with outliers are represented by a grey line in the same diagram.

5.2. Inversion o f synthetic data sets

The petrophysical parameters estimated by point by point inversion 
based on the MSA method were determined by the optimization of Eq. (6 ) 
for fixed layer boundary-coordinates. At this point there were only 7 data 
against 6 model parameters. In Fig. 2, it can be seen that very different 
values of the model parameters were obtained in the same layer because of 
the narrow type of overdeterminatiorf and the noise propagated from the 
data space to the model space. Petrophysical parameters estimated by the
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Fig. la. Synthetic data set charged with 5% Gaussian noise and 5% Gaussian plus random 
noise. GR: natural gamma ray log; AC: acoustic traveltime log;

SP: spontaneous potential log
la . ábra. 5% Gauss zajjal és 5% Gauss + véletlen zajjal terhelt szintetikus karotázs 

szelvények. GR: természetes gamma szelvény; AC: akusztikus terjedési idő szelvény; 
SP: természetes potenciál szelvény
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Fig. lb. Synthetic data set charged with 5% Gaussian noise and 5% Gaussian plus random 
noise. PORN: neutron porosity log; DEN: density log; RMLL: microlaterolog; RLLD: deep

laterolog
lb. ábra. 5% Gauss zajjal és 5% Gauss + véletlen zajjal terhelt szintetikus karotázs 

szelvények. PORN: neutron-porozitás szelvény; DEN: sűrűség-szelvény;
RMLL: mikrolaterolog szelvény; RLLD: mélybehatolású laterolog szelvény
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point by point inversion method are loaded with relatively high uncer­
tainty, which is not a very advantageous feature concerning the estimation 
of the moveable hydrocarbon saturation (SCHM=SXO-SW) in the third bed 
(SCMR=\-SX0 means hydrocarbon saturation that cannot be produced). 
The relative data and parameter distances from Eq. (7) can be found in 
Table II, where ‘o’ means that there are outliers in the data set. The MSA- 
procedure always gave initial model independent and convergent solu­
tions. In comparison with the linearized LSQ-method, which was also 
tested on this model (and gave 10.52 per cent for Ddata, and 5.69 per cent 
for Dmod), it was found that global optimization improves the accuracy of 
the estimated model.

Well log data Inversion Layer- Energy Ddata Dmod
(noise) algorithm thickness function (%) (%)

Synthetic (5%) Separated Fixed e 2 5.65 9.65

Synthetic (5%) Interval Fixed e2 5.03 1.89

Synthetic (5% + o) Interval Fixed e 2 13.41 6.62

Synthetic (5% + o) Interval Fixed E, 7.54 2.75

Synthetic (5%) Interval Unknowns e 2 5.11 2.20

Measured Separated Fixed e 2 4.82 —

Measured Interval Fixed E, 5.98 —

Measured Interval Unknowns E, 6.06 —

Table II. Accuracy of inversion results estimated by MSA inversion methods 
II. táblázat. MSA inverziós módszerrel becsült inverizós eredmények pontossága

Besides constant layer-thicknesses the interval inversion can also be 
found in Table II. For the determined model there were 2030 data against 
24 unknowns in the total inverted depth-interval. Thus over-determination 
was highly increased in comparison with point by point inversion. It can be 
seen in Fig. 2 that interval inversion resulted in much more accurate param­
eter estimation with better stability. Relative data and model distances used 
are formulated by Eq. (10).

With regard to interval inversion it is pointed out that there is a five 
times better result compared with point by point inversion, which implies a 
very accurate and reliable algorithm. On the other hand, the linearized LSQ
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Fig. 2. Point by point and interval inversion results. On the right the estimated 
layer-boundary co-ordintaes are also represented in depth scale 

2. ábra. Mélységpontonkénti és intervallum inverziós eredmények. Ajobb oldali ábra 
mélységskáláján a becsült réteghatár-koordináták szerepelnek

interval inversion method was also tested (giving 2.27 per cent for Dmod) 
and proved less powerful than the global interval inversion procedure. 
Moreover, in practice it is possible that there are outliers in the well-log 
data set. Let us analyse the interval inversion of synthetic data charged with 
outliers. At first let us optimize the energy function (Eq. (8 )) and then apply 
Eq. (9), which is well known for its resistance against outliers. The data 
distance is also defined in Eq. (9). From Table II it can be seen that there are 
adequate results despite the existence of outliers. Thus it can be stated that 
the MSA technique can be made resistant by way of selecting the objective 
function based on Eq. (9).

Let us take layer-thicknesses into account as unknown model 
parameters in the interval inversion process. In Table II, it can be seen that 
the accuracy of model parameter estimation is quite as good as interval in­
version given that there are fixed layer boundary-coordinates. These re­
sults are still four times more accurate than those from point by point inver­
sion. The interval inversion procedure was stable and resulted in very
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accurate parameter estimation for both the layer thicknesses and the 
petrophysical paraméteres. It is also important to mention that the layer 
thicknesses as unknown model parameters converged primarily to their 
expected values. The exact layer-thickness values of the inversion model 
were achieved approximately in the 3000th iteration step, where the total 
number of iteration steps was 200000. They were followed by the petro­
physical model parameters giving a very accurate solution o f the interval 
inversion problem. As a consequence, the MSA interval inversion method 
is able to estimate more accurate hydrocarbon saturation than the linea­
rized point by point inversion method; this feature is highly important in 
petrophysical practice.

6. In-situ results

To invert in-situ well log data 6 logs measured in a Hungarian bore­
hole were chosen. Four unconsolidated sedimentary layers were investi­
gated, where the sand bed in between was a water-bearing formation with a 
relatively high porosity and a little amount of shale. Supposing a simple li­
thology POR, VSD, VSH volumetric petrophysical parameters were 
treated as unknowns for the fixed values of SXO-anà SW. The input data set 
was composed of the corrected values of SP, GR, DEN, RMLL, CNC (com­
pensated neutron), RILD (deep induction) well logs. The data set can be 
seen in Fig. 3a, b, and the results of point by point and interval inversion in 
case of unknown layer-thicknesses are given in Fig. 4.

For point by point inversion there were 3 unknowns against 6 data per 
depth point. Altogether there were data from 195 points. In the case of in­
terval inversion we had to determine 12 volumetric petrophysical 
parameters and a further 3 boundary-coordinates of the formations. 
Table II shows that the fitting in data space is satisfactory and the tendency 
is analogous with that of the inversion of synthetic data. From the point of 
view of forward modelling more accurate parameters can be obtained by 
choosing more appropriate response functions and textural constants. In­
terval inversion can be developed by making a more suitable series expan­
sion, which better describes the vertical changes of the petrophysical para­
meters in the computed interval. Lastly, the interval inversion method has a 
considerable advantage over point by point inversion as it determines 
automatically the layer-thicknesses. The layer boundary-coordinates were
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obtained at 8.1, 13.5 and 16.5 meters (the depth-coordinates were 
transformed as the top of the first layer could be at zero level) as can be seen 
in Fig. 4.

7. Conclusions

It was shown that the global inversion of well log data based on the 
MSA method results in a correct solution that is independent of the initial 
model. However, it is important to emphasize that the convergence of the 
global optimization process is largely influenced by the setting of control 
parameters of the Simulated Annealing algorithm (e.g. initial temperature, 
cooling process) and choosing a proper fitting function to minimize.

A disadvantage is that MSA requires more computer time than 
linearized optimization methods.

It was shown that it is more advantageous to use the interval inversion 
method by determining the layer-thicknesses than point by point inversion. 
It utilizes more information from the observed data and can be improved by

Fig. 3a. Measured well log data inverted. GR: natural gamma ray log;
SP: spontaneous potential log

3a. ábra. Terepi mérési szelvények. GR: természetes gamma szelvény, SP: természetes
potenciál szelvény
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Fig. 3b. Measured well log data inverted. DEN: density log; CNC: compensated neutron 
porosity log; RMLL: microlaterolog; RILD: deep induction log 

3b. ábra. Terepi mérési szelvények. DEN: sűrűség szelvény; CNC: kompenzált 
neutron-porozitás szelvény; RMLL: mikrolaterolog; RILD: mélybehatolású indukciós

szelvény
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Fig. 4. MSA point by point and interval inversion results 
4. ábra. MSA mélységpontonkénti és intervallum inverzió eredmények

choosing more suitable basis functions in the series expansion of petro­
physical model parameters. The vertical changes of porosity, saturation, 
shale and matrix volumes can be derived in one inversion procedure by 
appropriate series expansion. Moreover the interval inversion procedure is 
able to give an estimate for the layer thicknesses. Thus it offers much 
greater promise in terms of yielding more geological information about the 
geological structure investigated in the borehole.
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Mélyfúrási geofizikai adatok globális inverziója

SZABÓ Péter Norbert

A nemlineáris mélyfúrási geofizikai inverz probléma megoldására globális optimalizációs 
módszert mutatunk be. Először lokális válaszegyenleteken alapuló hagyományos mélységpon­
tonkénti (szeparált) inverzióval becsüljük meg a pontbeli kőzetfizikai paraméterek (effektiv 
porozitás, víztelítettség, agyagtartalom, kőzetmátrix fajlagos térfogat) értékeit. Ezután bevezetjük 
az ún. intervallum inverziós eljárást, mely egy nagyobb mélységintervallum adatrendszerét egyet­
len együttes inverziós eljárásban értékeli ki. Az inverziós algoritmusok tesztelése és összehason­
lítása céljából szintetikus és terepi adatrendszereket invertálunk. Az inverziós eredmények 
rámutatnak arra, hogy az intervallum inverzió hatékonysága és a becsült petrofizikai paraméterek 
pontossága nagyobb, mint lokális pontonkénti inverzió esetén. Az intervallum inverziós módszer 
igen stabil és megbízható paraméterbecslés tekintetében, és képes meghatározni a rétegvastag­
ságokat, melyek eddig nem szerepeltek ismeretlenként a hagyományos mélyfúrási geofizikai 
inverzió problémakörében.
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célok, új, összefoglaló jellegű anyagok összeállítása, eladás, nem járulunk hozzá. Az 
egyedi kéréseket kérjük a szerkesztőnek címezni. Nem számolunk fel díjat a kiadványa­
inkban szereplő ábrák, táblázatok, rövid idézetek más tudományos cikkben vagy könyv­
ben való újrafelhasználásáért, de az idézés pontosságát és a forrás megjelölését 
megkívánjuk.






