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IP Data processing results from using TAU-transformation
to determine time-constant spectra

Endre TURAI***

A generalization of the TAU-transform method [introduced by TuRAI 1985] is presented. On
combining the TAU transform method and the tools of inverse problem theory a general algorithm
for determining the time-constant spectrum of polarizability data (deduced from time-domain IP
measurements) is available for the general case of continuous spectra. Some results from
interpreting field data collected over Hungarian waste sites are presented and — based on
time-constant spectra — the main components of the contaminating material are characterized.
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1. Introduction

The induced polarization method is well known as an effective
geophysical method of ore exploration [wAIT 1959; KELLER, FRISCH-
KNECHT 1966; SUMNER 1976] because both the time-domain and fre-
guency-domain IP measurements are capable of detecting even small
amounts of metallic minerals. On the other hand, the metallic content is not
the only factor resulting in polarizability of the medium: filtration- and
membrane effects as well as electrochemical properties can also lead to
similar phenomena. Induced polarization is a very useful geophysical
method also in the detection of environmentally hazardous locations,
particularly for waste sites. o

2. TAU-transformation of time-domain IP curves

By means of time-domain IP data, apparent polarizability curves
(N1a(1)) can be constructed. The strictly monotonically decreasing functions
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can generally be written as an integral transform ofa function w(t) [TURAI
1985]:
@
ne(0= Jw(T)exp(-//X)dT, Q)
0
where t is the time and T is the time-constant.
The function w(r) will be called the spectrum of time-constants of the

IP measurement, which can be normalized as
@

I(t)dx = 1
0

Let us define TAU-transformation as a procedure generating the
spectrum of time-constants from the polarizability curves:

V(X) = TAUNa(t)A 2

The IP effect ofthe rock is displayed by the w(r) function: it represents
all the important information (regarding the medium) contained by the
time-domain IP data.

The two algorithms giving the TAU-transform for this case were
developed by [TURAI 1985] based on a linear system of equations and

Fourier transform.

3. General solution for the TAU-transform

In order to give the TAU-transform (Eq. (2)) for this general case we
use the tools of inverse problem theory. In constructing a general algorithm
to determine the TAU-transform [TURAI, DOBROKA 2001] we write the
spectrum function in the form of a series expansion

Q
Ur)=2Xx a?(1) , C)

g=1

where @9 is the gth base function and Bq is the corresponding expansion
coefficient. As base functions, we use Chebishev polynomials and interval-
wise constant functions in our investigation. By inserting the discretized
spectrum function into Eq. (1) we get
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~ = st = 102ANexp(-")elT “)

where tkis the time point at which the Mi IP data was detected. In the termi-
nology of inverse problem theory Eq. (4) is the (linear) forward modelling
formula for calculating theoretical polarizability data which can be written in
matrix form as

4 =SB.

Introducing the deviation between the measured and calculated data
(5)

we can reduce the TAU-transform problem to a simple inverse problem in
which the unknown expansion coefficients are determined by minimizing a
certain (Z2 norm of the vector given in Eq. (5). This leads to the well-
known normal equation

STSB =STi\.

By solving this linear set of equations, we can calculate the expansion
coefficients and, by means of Eqg. (3), determine the time-constant spec-
trum function (or in other words the TAU-transform problem has been
solved). Depending on the noise contained by the measured data set, it may
be necessary to use a more robust inversion method or to integrate new data
sets into a joint inversion algorithm [DOBROKA et al. 1991]. The
TAU-transform algorithm can easily be formulated also in such a case.

4. Results of time-domain IP measurements using
TAU-transformation

TAU-transformation was applied in a TEMPUS project [No. JEP
1553, TURAI et al. 1992] and it was also tested above seven Hungarian
waste sites (Nyékladhaza— 1997-99; Rackeve— 1997; Kecskemét—
1997; Gy6rocske— 1999, Paszt6—2000, Tokaj—2001 and Balmazujvaros
—2002). One ofthese waste sites (Kecskemét) was an industrial waste site
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and the others were communal waste sites. Here we show some results of IP
data measured above a waste site first near Gy8drocske, second near Paszto,
and third Tokaj.

Schlumberger electrode arrays were used for IP soundings. At each IP
sounding point 16 discrete current electrode spacing points were used, the
array parameters wereMN= 1m, ABmin=3,2 m and ABmax= 100 m, where
MN was the potential electrode spacing and AB was the current electrode
spacing. At each current electrode spacing point the IP apparent
polarizability values were measured at 5 discrete points of decay curves
(Pra(r= 0.1 s), tjla(t —0.2 S), rja(t= 0.4 s), 133 = 0.8 5), and na{t= 15 3)). At
each sounding point and at each current electrode spacing point the w(r,,)
time-constant spectra were calculated using the TAU-transformation
described above. (Here r, denotes the nth discrete value of the time-
constant.)

Let us see the Gy6rocske area first. Taking our field experiences into
account we qualify the main types of polarization mechanisms by the x,
time-constant values [TURAI, DOBROKA 2001]:

filtration polarization r,<0.4s,
membrane polarization 0.2 5<t,<0.85,
electrochemical or redox polarization 0.6 S<r,<1.25,
metallic or electrode polarization 15<t,

Table 1. shows the sources of polarization:

type of polarization source of polarization
filtration polarization — porous soil and rocks with conductive fluid,
membrane polarization — porous soil and rocks with disperse clay and water,
electrochemical polarization — chemical agent with high reactivity for oxidation or
reduction,
metallic polarization — metallic components in porous rocks with conductive fluid.

Table I. Sources of polarization
I. tablazat. A polarizacio forrasai

The main components of contaminating material on a waste site are
connected with the main types of polarization, so we can raise the effect of
higher time-constants (connected with dangerous components — chemical
and metallic) of the waste site and similarly we can reduce the lower
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time-constant effect (connected with non-dangerous components — water
and disperse clay) using a simple weighting procedure:

WAV (T,,)=Tfw(Tn).

The WAV (Weighted Amplitude Value) section shows the region of the
more dangerous components. Figure 1 presents a vertical WAV section. In
terms oftime-constant spectra, our results show that the polarization on the
waste site near Gydrocske is mainly of electrochemical (Fig. 1.1) and
metallic (Fig. 1.2) origin. Where WAVs are high electrochemical and
metallic polarization is to be found.

Gy6rocske, 1999.

10 20 30 40 SO
lateral distances \ meter ]

Fig. 1. Vertical WAV section near Gy6rocske, (vh — WAV is higher than 0.2; h — WAV is
between 0.1 and 0.2; m — WAV is between 0.05 and 0.1; s — WAV is between 0.02 and
0.05; c — WAV is lower than 0.02.)

1 abra. Vertikalis WAV metszet Gydrocske kozelében, (vh — a WAV nagyobb, mint 0.2,
h— a WAVO0.1 és 0.2 kdzotti, m — a WAV0.05 és 0.1 kdzotti, i — a WAV0.02 és 0.05
kozotti, c — a WAV kisebb mint 0.02.)
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Gydrocske, 1999.

lateral distances [ meter J

Fig. 1.1. Area of electrochemical polarization (time-constants are between 0.6 and 1.2 s)
1.1. abra. Az elektrokémiai polarizacio terilete (az id6alland6 0.6 s és 1.2 s kozotti)

Gyé6rocske, 1999.

Fig. 1.2. Area of metallic polarization (time-constants are higher than 1)
1.2. abra. A fémes polarizacié terilete (az idéalland6 nagyobb mint 15s)
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The second waste site that was measured was near Paszt6; a WAV
section from this site is shown in Fig. 2. Only small and medium WAVs are
present near Paszt6. On analysing the type of polarization effect we found
mainly membrane (Fig. 2.1), electrochemical (Fig. 2.2), and metallic (Fig.
2.3) polarization. Figure 3 presents a vertical WAV section over the Tokaj
area. As can be seen, there are only small WAVs thereby indicating some
dangerous regions under the surface. The polarization components are
mainly electrochemical (Fig. 3.1) and metallic (Fig. 3.2).

vh h m S c
Paszté, 2000.
IP1 1P2 IP3 1P4
Y y V .V
-150 -100 0 50

lateral distances [meter ]

Fig. 2. Vertical WAV section near Pasztd. (vh — WAV is higher than 0.2; h — WAV is
between 0.1 and 0.2; m — WAV is between 0.05 and 0.1; s — WAV is between 0.02 and
0.05; ¢ — WAV is lower than 0.02.)

2. abra. Vertikalis WAV metszet Paszt6 kozelében, {vh — a WAV nagyobb, mint 0.2;
h— a WAV 0.1 és 0.2 kozotti; m — a WAV 0.05 és 0.1 kozotti; 5— a WAV 0.02 és 0.05
kozotti; ¢ — a WAV kisebb mint 0.02.)
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Paszto, 2000.
IPI IP2 IP3

lateral distances [ meter ]

Fig. 2.1. Area of membrane polarization (time-constants are between 0.2 and 0.8 s)
2.1. dbra. A membran polarizacié terilete (az id6alland6 0.2 és 0.8 s kozotti)

Paszto, 2000.
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Fig. 2.2. Area of electrochemical polarization (time-constants are between 0.6 and 1.2 s)
2.2. abra. Az elektrokémiai polarizacio terilete (az id6allandé 0.6 és 1.2 s kozotti)

P4
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Paszto, 2000.

lateral distances [meter]

Fig. 2.3. Area of metallic polarization (time-constants are higher than 1 s)
2.3. abra. A fémes polarizacié terilete (az idéallandé nagyobb mint 1)

Tokaj, 2001.
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Fig. 3. Vertical WAV section near Tokaj. (vA— WAV is higher than 0.2; A— WAV is
between 0.1 and 0.2; m — WAV is between 0.05 and 0.1; j — WAV is between 0.02 and
0.05; ¢ — WAV is lower than 0.02)

3. abra. Vertikalis WAV metszet Tokaj kozelében. (vVA— a WAV nagyobb mint 0.2; A— a

WAVO0.1 és 0.2 kozotti; m— a WAVO0.05 és 0.1 kozotti; s — a WAVO0.02 és 0.05 kozotti;
¢ — a WAVKkisebb mint 0.02)
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Tokaj, 2001.
IPI 1P2 1P3 1P4 IP5
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ig. 3.1. Area of electrochemical polarization (time-constants are between 0.6 and 1.2 s)
3.1. abra. Az elektrokémiai polarizacio terilete (az id6alland6 0.6 s és 1.2 s kdzotti)

Tokaj, 2001.
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Fig. 3.2. Area of metallic polarization (time-constants are higher than 1s)
3.2. abra. A fémes polarizacio terilete (az idéalland6é nagyobb mint 1s)
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Az IP adatok feldolgozasanak eredményei, a TAU-transzformacié
id6alland6 spektrum meghatérozasi céla alkalmazésaval

TURAI Endre

A dolgozat a TURAI [1981] altal kozzétett TAU-transzformaciés moédszer altalanositasat
mutatja be. A TAU transzformaciés mddszer és az inverziés elmélet eszkdzeinek otvozésével
folytonos spektrumok esetére egy olyan altalanos algoritmust tudunk létrehozni, amellyel az
id6tartomanybeli Gerjesztett Polarizacids (GP) mérések polarizacios adataihoz tartozé idéallandé
spektrum meghatarozasa lehetséges lesz. A dolgozat magyarorszagi hulladéklerakék folott mért
terepi adatok id6allando6 spektrumon alapul6 értelmezésének néhany eredményét mutatja be a fébb
polarizalodé 6sszetevék sulyozott id6allandokkal torténd jellemzésével.
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