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Near-surface resolution power of the Schlumberger 
sounding method: examples from Lake Fertő 

(Neusiedlersee) region, Austria-Hungary

Franz KOHLBECK*, László SZARKA**’***, Alina JELINOWSKA***, 
Michel MENVIELLE***'****, Jean-Jacques SCHOTT,

Piotr TUCHOLKA***, Viktor WESZTERGOM**

The near-surface layer-resolution power of geoelectric soundings is illustrated by means of di
rect comparison between the geoelectric and the core sample results. Three one-dimensional inver
sion techniques (classical least-squares interpretation, the Zohdy technique, and the stochastic 
Bayesian method) are used. All of them show more similarity with the measured core sample physi
cal parameters (core resistivity, humidity and susceptibility) than with the drillhole lithology itself. 
Local inhomogeneities and very thin layers cannot be seen from the surface; in contrast, the robust 
layer boundaries and continuously changing layer transitions can be resolved by various geoelectric 
inversion methods.
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1. Introduction

The Schlumberger sounding technique (also known as ‘vertical electrical 
sounding’), as all surface geophysical techniques, allows non-invasive insight 
into the electrical structure of the subsurface. In spite of its widespread appli
cation and of the increasing interest in the reliable imaging of near-surface 
geological structures, information about its performance for investigating 
very near-surface structure is very limited.

Such information can only be obtained by direct comparison of measure
ments of the actual resistivity profile with that obtained through inversion of 
the Schlumberger sounding curves. In the framework of French-Austrian and
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French-Hungarian cooperations, geophysical measurements, including very 
precise Schlumberger soundings, were carried out in 1997 in the region of 
Lake Fertő (Neusiedlersee). (For earlier geophysical studies of the region see 
KOHLBECK et al. [1993] and [1994].) As a part of this investigation, several 
shallow drillholes were deepened both in Austria and in Hungary. Continuous 
core sampling was carried out at each site, and Schlumberger soundings were 
performed at the core location along different (usually two perpendicular) di
rections.

In this paper the resolution power of near-surface Schlumberger sound
ing, utilizing the highest available precision in the field is discussed. The re
sults obtained from different inversion techniques are directly compared with 
the subsurface rock physical properties. A summary is given of the techniques 
used and here we present the results for three sites, viz. Fertőújlak, Király-tó 
and Lébény. A detailed analysis of laboratory data together with the near
surface geology of the region is given elsewhere [JELINOWSKA et al. 2000].

2. Description of the techniques

Schlumberger sounding

With the advent of technological and computational development the 
resolution power of the Schlumberger sounding method (for a full description, 
see KOEFOED [1979]) has been significantly improved. Nowadays the main 
limitation of the method is the time requirement to implant the electrodes into 
the soil, with minimum geometrical error. In order to get very precise data 
within minutes, a special tool was employed. A wooden rod (made up of three 
lengths of 2.2 m, for ease of transportation) was prepared and perforated at 
preselected electrode locations. (The^ß lengths were evenly distributed on a 
20 holes/decade logarithmic scale between Л5=500 mm and 6400 mm, and 
holes for three different MN distances, MN =100, 200 and 500 mm, were 
made, too.) At larger distances, traditional cable markers were used, still with 
20 AB distances/length decade.

Soundings were carried out at different directions. Only a small differ
ence was observed between the sounding curves, indicating that horizontally 
stratified layers can be assumed. Therefore we simply took the arithmetic 
mean of sounding curves measured in two perpendicular directions. Such 
sounding curves are shown for three sites (Fertőújlak, Király-tó and Lébény) 
in Figure 1.
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Inversion techniques

Geoelectric inversion is inherently ambiguous for horizontally layered 
problems (i.e. in one-dimensional situations). It means that an infinite set of 
possible horizontally layered models can give equivalent responses and these 
responses are the same as the field response within very small or zero errors.

We applied three different one-dimensional inversion techniques:
(1) the Zohdy method, which is an automatic linear transformation of the 

apparent resistivity curves into the depth-resistivity domain, based on the 
morphological properties of apparent resistivity sounding curves [ZOHDY 
1989]. Its main limitation comes from the fact that the layer thickness is as
sumed to increase logarithmically with increasing depth;

(2) a least-squares inversion technique, in which a small number of homo
geneous layers are considered [JOHANSSON 1975]. From such an approach we
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Fig. 1. Schlumberger resistivity sounding curves (mean values of two perpendicular 
directions, used in the geoelectric inversion) at Fertőújlak, Király-tó and Lébény 

l. ábra Vertikális elektromos szondázás (azaz az inverzióhoz felhasznált, két merőleges 
irányban kapott szondázási görbe átlaga) Fertőújlakon, a Király-tónál és Lébény mellett
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can expect that the most pronounced layers, or layer-sets, can be distinguished 
from each other;

(3) the stochastic Bayesian inversion elaborated by SCHOTT et al. [1999], 
which considers smooth models, digitized over a large number of thin layers 
of fixed thickness; the variable parameters are the layer resistivities. The re
sults are the a posteriori marginal laws of the parameters over a priori pre
selected resistivity ranges.

Laboratory measurements on the core samples

The drillholes were deepened by using a manual drilling set. The core 
samples with a diameter of 5 cm were collected in about 50 cm long sections. 
They were immediately sealed from the air and the measurements were carried 
out later in the laboratory of the University of Orsay. For further investigations 
22 mm x 22 mm x 22 mm standard perspex cubes were pushed into the sedi
ment. The susceptibility and the water content were measured using standard 
methods; for the susceptibility a Bartington MS-2 susceptibility meter was 
used. The electric resistivity of core samples was measured by using a new, 
self-made technique (a detailed description is given in the Appendix.)

3. Results

Figures 2, 3, and 4 present observed morphological and measured physi
cal (susceptibility, water content, and electrical resistivity) core properties for 
the three sites, viz. Fertőújlak, Király-tó and Lébény. Results of the inversion

Fig. 2. Lithological and physical properties of near-surface layers at the Fertőújlak 
site. From left to right: (a) observed lithology of the core; measured variations of 

physical parameters along the core: (b) susceptibility, (c) water content, and 
(d) electrical resistivity; resistivity profiles deduced from the inversion of the 
Schlumberger sounding curves given in Figure 1 using three one-dimensional 
inversion techniques: (e) Zohdy [ZOHDY 1989], (f) least-square fitting with a 
few-layers model, and (g) stochastic Bayesian method [Schott et al. 1999]

2. ábra. A fertőújlaki mérési hely felszínközeli rétegeinek litológiai és fizikai 
tulajdonságai. Balról jobbra: (a) fúrómag litológiai szelvénye; majd a fúrómagban 
mért három fizikai paraméter-szelvény: (b) szuszceptibilitás, (c) víztartalom, és 

(d) elektromos fajlagos ellenállás; s ezután az 1. ábrán bemutatott vertikális 
elektromos szondázási görbékből nyert fajlagos ellenállás-mélységszelvények, három 

egydimenziós inverziós eljárás alkalmazásával: (e) Zohdy-eljárás [Zohdy 1989],
(f) néhány réteges modellt szolgáltató legkisebb négyzetes illesztés, és 

(g) sztochasztikus Bayes inverzió [Schott et al. 1999]
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of the Schlumberger sounding curves (shown in Figure 1), using the three 
aforementioned one-dimensional inversion techniques (Zohdy, least-squares 
fitting, and stochastic Bayesian methods), are also presented in these figures.

The inversion results are given to a depth of 4 m, which is greater than any 
of the drillhole depths. At each site, the three resistivity-depth profiles ob
tained are actually quite different, thereby giving a clear illustration of the 
non-uniqueness of the inverse problem. Their mean values are, however in 
good agreement with the measured core resistivity values, though all the de
tails of the measured core resistivity profiles are not seen in the inverted pro
files. This filtering out is expected either because the effect of very thin and 
relatively deep layers is too small to be observed, or because some changes in 
the core sample resistivity values might correspond to very local inhomoge- 
neities and not to realistic layers.

For Fertőújlak the near-surface resistivity increase in the upper part of the 
layer of organic origin (between 0-25 cm) can be seen in all three inversion re
sults, but the resistivity decrease observed just below it (between 25 cm and 
50 cm) cannot be seen in any of them. The deeper and small resistivity changes 
are not detectable, either.

For Király-tó the detailed resistivity structure of the uppermost 100 cm 
cannot be seen from the Schlumberger sounding, though the resistivity de
crease in the upper 50 cm, as well as the resistivity increase below 250 cm, is 
visible on all three inversion results.

For Lébény the core sample resistivity profile and the Zohdy resistivity 
profile run nearly parallel. A resistivity decrease between 30 and 40 cm, fol
lowed by a resistivity decrease between about 60 and 80 cm can be equally 
well seen. The classical inversion assuming a few layers does not allow one to 
detect it —, with the exception of some resistivity change at a depth of about 
20 cm. The Bayesian inversion gives some weak indication about this resistiv
ity change, but it takes place at somewhat shallower depths than where it was 
actually observed on the core. It is, however, worth noting that the uncertainty 
of the resistivity determination provided by the Bayesian inversion is of the 
same order as the measured resistivity variation, thus indicating that it is not 
possible to get clear evidence of it from inversion. At the same time, the or
ganic matter/sand layer boundary at a depth of 85 cm can be seen perfectly in 
the classical interpretation. Given the already mentioned non-uniqueness of 
the solution of the inverse problem, this result would have been difficult to in
terpret in the absence of direct measurements on the core.
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4. Conclusion

The results from the three sites dealt with allow one to discuss the subsur
face resolution of high-precision Schlumberger soundings in conditions, in 
which there is no one-to-one correlation between the lithology and the physi
cal parameters (magnetic susceptibility, water content, electric resistivity) of 
the core. It is evident that local resistivity heterogeneities and very thin layers 
cannot be resolved from the surface by using any geophysical methods. Nev
ertheless, significant changes in the resistivities of well-developed layers, or 
even progressive resistivity changes can be detected from the surface by using 
precise Schlumberger soundings. For the first problem (correlation of lithol
ogy and physical parameters) the classical few-layer inversion techniques are 
preferable whereas the latter problem (inability of geophysical methods to in
terpret resistivity heterogeneities) can only be resolved by inversion methods, 
allowing smooth layer transitions. A combination of different inversion tech
niques and sometimes direct comparison with measurements on the core pro
vide a useful aid in understanding the subsurface resistivity distribution.
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Appendix
Core sample resistivity measurements

The electric measurements were carried out by using a special, small
sized, four-electrode (AMNB) system, connected to the field instrument and 
simulating a Wenner sounding on the centimetre scale. The AM, MN, and NB
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distances were equal to 2 cm, and — in order to have good contact with the ma
trix —  each of the electrodes had a length of 20 mm and a diameter of 2 mm. 
The R = AU/I electric resistance values were measured along the cores at 
every 5 cm, applying the smallest possible current intensity. For the computa
tion of apparent resistivities from these resistance values, instead of a theoreti
cal determination of geometrical coefficient for electrodes penetrating into a 
cylinder, a physically-based correction factor was used as follows.

In the first step of the physical correction, detailed resistance measure
ments were carried out with the field equipment along three parallel profiles of 
a more or less homogeneous core sample. The arithmetic mean of all measure
ments was found to be 62.3 fim, with a standard deviation of 1.1 fim. In the 
second step of the correction, large sheet electrodes were connected to the 
ends of a 26 cm long section of the same core sample, and the potential differ
ences due to the current flowing along the core sample were measured in the 
central section of the sample by using different MN distances. The measured 
resistance values (R = A U /1) were found to be proportional to the MN lengths, 
as had been expected from the following form of the differential Ohm’s law: 
R = pc. MN /  A, where A is the cross section of the sample. In our case 
A was 15.9 cm2. The specific resistivity of the core was then directly obtained 
from the above equation. For the selected core sample we found pc = 6.98 fim. 
This means that to transform all AU/Iresistance values into resistivity values 
the correction factor in our case was 6.98 fim / 62.3 Q = 0.112 m (within 2 % 
of error). In order to avoid any confusion either with results of direct resistiv
ity measurements or with apparent resistivity papp, this transformed resistivity 
pc is denoted as ‘core resistivity’ throughout the paper.
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A vertikális elektromos szondázás felbontóképesssége felszínközeli mérések
esetén

Franz KOHLBECK, SZARKA László, Alina JELINOWSKA,
Michel MENVIELLE, Jean-Jacques SCHOTT, Piotr TUCHOLKA, WESZTERGOM Viktor

Nagy geometriai pontossággal (20 adat/dekáddal; az /10=6.4 m-nél kisebb tápelektróda 
távolság esetén mindössze mm-nagyságú geometriai hibával) végzett vertikális elektromos 
szondázás felszínközeli rétegekre vonatkozó felbontóképességét a felszíni geoelektromos- és a 
magminta-eredmények közvetlen összehasonlításával szemléltetjük. Három különböző egydimen
ziós inverziós eljárást használtunk: a klasszikus legkisebb négyzetes kiegyenlítés módszerével 
néhány vízszintes réteget szolgáltató megoldást, a Zohdy-eljárást és a sztochasztikus Bayes- 
módszert. Mindhárom eljárás eredménye nagyobb hasonlóságot mutat a folyamatosan vett 
fúrómagon mért fizikai paraméter-szelvényekkel (az elektromos fajlagos ellenállással, a víztarta
lommal és a mágneses szuszceptibilitással), mint a fúrómagon szemmel megfigyelhető litológiai 
változásokkal. Helyi inhomogenitások és nagyon vékony rétegek a felszínről nem mutathatók ki, de 
a jól kifejlett réteghatárok és a rétegződés folyamatos változásai megjelennek a különböző inverziós 
eredményekben.
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