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New results on the theory of the most frequent value
procedures

Ferenc St e in e r*

New results have been published in the last few years on the theory of the most frequent 
value (MFV) procedures. In this paper some of these results are presented in a concise manner to 
show more clearly the differences between the statistical procedures based upon the L i, L\ and 
P-norms, respectively.
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1. Different attitudes to the actual probability distribution type of 
measurement errors result in quite different statistical procedures

To facilitate the presentation of the ne v results, let us start from the 
definitions of the likelihood function and from that of the /-divergence. There 
are similarities (or even equalities) and, on the contrary, substantial differ­
ences, too. These are summarized in Table I.

Table 1.

/ i s  assumed to be unknown (this corresponds 
to the overwhelming majority of practical 
tasks), and therefore it is substituted by 
g(T,S;x) of given analytical form. This substitu­
tion results in an information loss measured by 
the ‘/-divergence’:

Jg = l  f ( x ) ,n [ / ( v ) / g (  T,  N; A')]dx.
—00

/ i s  assumed to be a priori known, including 
the value of S or T (this latter assumption is 
implicitly present in the well known book of 
Andrews et al. [1972]).

J = Í - \ n f ( T , S ; x i)
i=l

is the so-called likelihood function which is 
appropriate for to the basic assumption.
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Table I. continued

Both Ig and Л  should be minimized. If S is known, the accepted value of T  fulfils:

dA
dT

— 0 ( 1)
dJ
дт

■ 0 (2)

The integral form of Eq. (2) can be trivially given, and similarly Eq. (1) (which is an integral ex­
pression) for the data j:,. Astonishingly enough, both Eqs. (1) and (2) lead to exactly the same 
formula for T-determination. (In general, iteration is necessary.)
On the contrary, the two approaches belonging to/result in the fact that S-formulae essentially 
differ from each other:

To be sure that Eq. (1) really results in mini­
mum information loss, the relation

8T2
>0 (3a)

must also hold. The fulfilment of this relation, 
however, is warranted if

/ w  81g(T,S\x) f i x )
^  'T r V 4 dY=0 (3)-oo о T  g[T,S;x)  

holds [see Hajagos 1991]. Eq. (3) defines 
(with an analytically given g-function) the for­
mula for the calculation of S (i.e., of the par- 
ameter of scale).__________________________

According to the usual maximum likelihood 
techniques (see the already cited Andrews et al. 
[1972],)

ÔJ
dS

= 0 (4)

is also demanded and with an analytically given 
/ Eq. (4) results in a formula for determining the 
parameter of scale. Unfortunately, Eq. (4) leads 
to such 5-formulae which are not resistant (i.e., 
they are outlier-sensitive).

A new result can already be formulated:
The formulae derived from Eq. (3) and Eq. (4) never coincide with each other except in the 
Gaussian case.___________________________________________________________________

Notations

X, : direcdy measured value (1 < i < ri) 

f  f(x)< f(T,S;x): the actual probability density function

T: parameter of location (this is often the symmetry point). In nearly all of the tasks the unknown 
of primary interest is the value of T.

S: parameter of scale. We are perhaps not intrinsically interested in its value but the resulting T- 
value can be heavily influenced by the actual value of S.__________________________________

Table I. Two different approaches to the type of the actual probability distributions lead to both 
theoretically and practically different statistics

I. táblázat. A z  előforduló valószínűségeloszlások típusára vonatkozó különböző szemléletű alap- 
feltevések elméleti és gyakorlati szempontból egyaránt eltérő statisztikai eljárásokhoz vezetnek

This new thesis: ‘the formulae derived from Eq. (3) and Eq. (4) never 
coincide with each other except in the Gaussian case’, [see C s e r n y á k  1994] 
is important also concerning the / ’-determinations inasmuch as using both
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methods (namely based on the maximum likelihood principle, on the one 
hand, and on the other hand, on the /-divergence), in just the same manner 
two formulae are to be fulfilled simultaneously (Eqs. (1) and (3) or Eqs. (2) 
and (4)). Consequently, the formula for the determination of the parameter 
of scale strongly influences the behaviour of the Г-determination, e.g. in 
respect of robustness.

Let us show an example. Choosing the Cauchy type distribution as 
substitute one (i.e. g-function) in the first method, and the same Cauchy-dis- 
tribution as an a priori known /density function in the second one (i.e., in 
the maximum likelihood method), the actual Г-formulae derived on the basis 
of Eqs. (1) and (2) are just the same (as was mentioned earlier in the fourth 
row of Table I). On the contrary, Eqs. (3) and (4) result in quite other 
formulae for the parameter of scale, if the Cauchy distribution was chosen 
as substitute distribution g, — but this is in full accordance with the thesis at 
the end of Table I. If Xt means the residual, i.e., measured value xt minus 
computed value (in the simplest case X{=xr T obviously holds), from Eq.(3) 
it follows that:

and the resulting value is called ‘dihesion’ (and is denoted by s). Eq. (4) results 
in quite another formula (without squares and without the factor ‘3’)

if the Cauchy-distribution was chosen as substitute distribution g.
The question arises as to whether the choice of the determination method 

of S, i.e. of the parameter of scale, is really of significant importance in 
respect of the determination of T? Determination of the value of Г (or of the 
values p 1,p2,...,Pj,...,pJ as components of the unknown parameter vector p 
in multidimensional cases) always has priority in our practical tasks. The 
question of errors or bias of the 5-determinations is treated in general as a 
secondary one, or simply the conventional formulae are used for error-de­

(5)

i=l

n

(6)
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terminations. B a r ta  and H a jó sy  [1985] showed an astonishing (or even 
comical or possibly even rather tragic) example concerning determinations 
of the universal gravity constant: the error intervals given by three authors 
to their measurements have no common point (Fig. 1). Possibly Gaussian 
error distribution was supposed but the real error seemingly was that nothing 
was known about this supposition... (The whole range of the three error-in­
tervals divided by the absolute value of the gravity constant is 0.07%, i.e., 
by several orders of magnitude greater than in the case of some other universal 
constant, e.g. the velocity of light in vacuum, etc.) Figure 1 shows that 
error-determinations of classical manner can lead to completely false results.

1972 >962 >977

-oo-

I I I I I  1 I I I  í 1 I I I I I I I  I I I I I I I I I I
6.6700 6.67Ю 6.6720 6.6730 6.67^0 6.67SO

•  measured values o( Ihe gravity constant 

О erro r lim its

Fig. 1. Error intervals for differing values of the universal gravity constant determined by the 
measurements of three authors [from Barta and Hajósy 1985]. The error intervals have no

common point
1. ábra. Hibaintervallumok az általános tömegvonzási állandónak három szerző által meghatáro­

zott értékeihez [Barta és Hajósy 1985 nyomán]. Egyetlen közös pontja sincs a 
hibaintervallumoknak

2. Essential differences between modern statistics (based e.g. upon 
the norms Pj, P, Pc, Pit) and the conventional statistical 

procedures (based on the L2-norm)

One can perhaps say that some experimenters with limited theoretical 
background work only on the basis of the outdated statistics of the last century. 
Not at all. Even the Heisenberg relation is formulated for scatters, i.e., for 
minimum values of the old L2-norm. Incidentally, nowadays primarily norm 
representations of statistical algorithms are more and more given. The 
following table (Table IT) therefore gives the simple expressions of six norms
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(expressed by the Xt residuals defined earlier) based on H ajagos and Steiner 
[1993a].

Norm Formula Eigen-distribution (for this type of error dis­
tribution the norm in question works optimally)

U
1 П
ï Z wi=\

Laplace

Li
\

Gauss

Pj e • lo 1 + (f)
2"

1
12  n

Jeffreys

P 8 • |n 1 + (i)
2“

1
2 n

geostatistical

Pc s • lo 1 + ( i )
U  )

2'
1

12 n
Cauchy

Pi, £-|
n

П
/=1 1+(

'2Xj
e Гf

(very long-tailed error distributions)

п ту2 _ 2
For s (called dihesion) V — ----------------T = 0 must be fulfilled.

Í~í (e2 +xf)~

Table II. Formulae of six statistical norms (the corresponding eigen-distributions are also
given)

II. táblázat. Hat statisztikai norma formulája és a normákhoz tartozó sajáteloszlások

Returning to the Heisenberg relation, it is formulated in the literature of 
the Fourier transforms [see e.g. P apoulis 1962] in the following way: if у is 
the Fourier-transform of tp, and two density functions are defined as
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/ои / 0 0

/ М  = Ф2(* )/ jV (*)dx  and g(y)= y2( x ) / J y 2(x)dx (7)

(g can be called the ‘Heisenberg counterpart’ of/), then the product of the scatters 
(standard deviations) cannot be less than 1/2:

a ( /) -o (g )> ^ -  (8)

It is well known [see e.g. H uber 1981] that a is at the same time the asymptotic 
scatter (A) of the algorithm based on the minimization of the L2-norm and 
therefore relation (8) can also be written as

1
A(f) ■ A(g) > for the L2-norm. (8a)

Let us show an example, namely the supermodel/a(x) (see e.g. in Steiner 
[1991] the first column of the table at the end of the book):

/«(*) = '
1

л/л-rl a - 1 (i + x 2)'
<7/2 («>!)• (9)

(Incidentally, it is easily seen with this analytically simple density function what 
an enormous difference exists between the formulae given in Eqs. (5) and (6): 
if the sum expressions are changed to integral ones and f jx )  figures in these 
integrals, Eq. (6) yields S-»oo if a -*  1; on the contrary, Eq. (5) yields S->2.592, 
if a -»  1, see H ajagos and Steiner [1993b].)

The Heisenberg counterpart of f jx )  is [see Steiner 1991, p. 281]:
a-2

4n p2Í Û 
4

a -\ ia > !)■ ( 10)

The latter formula is a little bit more difficult (the modified Bessel 
function К  figures in it) but the distributions gjy) are symmetric and unimodal 
(like the f jx )  distributions). The density curve of gjy) e.g. to a = 8 (Fig. 2) 
proves that for modelling actual cases the types of the supermodel gjy) could 
also be appropriately used.

As was mentioned earlier the scatters in the Heisenberg relation (char­
acterizing primarily the mother distributions themselves) have also the
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Fig. 2. Probability density function 
ga(y) for a = 8 (see Eq.10); this is the 

‘Heisenberg counterpart’ of the density 
function/a (xj for a = 8

2. ábra. A gafyj-sűrűségfüggvény a = 8 
esetén (Id. а (10) egyenletet); ez az 
а = 8-hoz tartozó f a(x) valószínűség- 
sűrűségfüggvény ‘Heisenberg-pan- 

dantja’

meaning of asymptotic scatters for the case if the L2-norm is used for 
determining the parameter of location, e.g. the symmetry point. Conse­
quently, the Heisenberg relation can be written, for the L2-norm as 
A (fa)-A(ga)> 1/2 (where equality holds if and only if both f a and ga are 
Gaussian).

And what about the behaviour of the products of the asymptotic scatters 
of Heisenberg pairs of density functions if the statistical algorithm is defined 
by minimization of the PJt P, Pc and Pu norms? Astonishingly enough, they 
have quite opposite behaviour to that shown by the L2-norm. The curves of 
the products A(fJ-A(gJ are demonstrated in Fig. 3: 1/2 is no longer the 
minimum value for the simultaneously reachable accuracy in the two domains 
o f the Fourier-transformation. This should also be stressed as a new result 
[see S t e in e r  and H a ja g o s  1995].

Figure 3 shows the products of asymptotic scatters versus t -  l/(a -  1) as 
type-parameter. For comparison in all four cases the same increasing curve 
concerning the Lr norm is also shown; if t = 1/(a - 1) is equal or greater than
0.5 this error-product for L2 is infinite.

The descending curves of the new statistical norms start for Pj and P at 
a value which is not significantly greater than 1/2. The curve for Plr starts at 
about 1, i.e., twice greater value of this mystical 1/2. No wonder, then, that 
P„ is defined for error distribution with extremely long tails. It should be
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Fig. 3. Descending curves (versus the type parameter (а-l)"1) of the product of asymptotic scat­
ters for ‘Heisenberg counterparts’ [A (fa)-A (ga)\ for the statistical norms Pj, P, Pc and Pit. In all 

four cases the corresponding A(fa)-A(ga) product-curve for L i is also demonstrated, for easier 
comparison [from Steiner and Hajagos 1995]

3. ábra. A r= l/(a - l)  típusparaméter növekedésével a ‘Heisenberg-pandantok’ aszimptotikus 
szórásainak A(fa).A(ga) szorzatára monoton csökkenő görbék adódnak a Pj, P, Pc  és Pu normák 

eseteiben. Mind a négy esetben feltüntettük az Li normára vonatkozó, meredeken emelkedő
A(fa).A(ga) szorzatgörbét is
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mentioned, however, that even in this case the product of error-characteristics 
for a = 5 is only by 12% greater than 1/2; in cases of Ph P and Pc is for 
t = l/(a-l) = 0.25 i.e., for the so-called geostatistical distribution the product 
is significantly smaller than 1/2.

It is perhaps useful to tabulate this opposite behaviour (see Table III).

h -norm:

The opposite relations for the P-norms at the same limit above are as follows:

PiTJ 1 -norm: A(fa)-A(ga)< ~,
if ű<20 f a(x) for a - 20 is very near the 
Gaussian type).

P -norm: 4 fa ) -4 ë a )< \,
if a <10 (this means diat die opposite 
relation is valid already for the whole 
Jeffreys-interval of types).

Pc -norm: A(fa)-A(ga)< 1- ,
if a <6 (i.e., tire opposite relation is 
already valid in the neighbourhood of the 
so-called geostatistical distribution).

Pi, -norm: A(/a)-A(ga)<±,
if a < 4 (tliis limit is yet in die domain of 
distributions of finite variance).

Table III. The product of asymptotic scatters belonging to f a and to its Heisenberg-counterpart 
ga behaves in cases of modern norms inversely to the classical case of the L2-norm 

III. táblázat. Az /д-hoz és a ga-val jelölt Heisenberg-megfelelőjéhez tartozó aszimptótikus 
szórások szorzata a modern normák esetében az Ьг klasszikus esetéhez viszonyítva ellentetten

viselkedik

This advantageous behaviour is partly due to the fact that in the new 
norms the parameter of scale is a constant times the dihesion e: Pj works with 
S=3s, P with S=2s, Pc with the dihesion itself, and Pu with half of it. Let 
us recall that e is defined by Eq. (5), i.e., due to Eq. (3) which is based on 
a train of thought concerning the /-divergence.
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3. Significance of the right choice of S (parameter of scale) in 
respect of the behaviour of T’-determinations (the location 

parameter is denoted by T)

Well, we have returned to the significance of the right choice of the 
parameter of scale S in respect of the behaviour of the determination of T. In 
Fig. 4 two curves of statistical efficiencies are presented for the distribution 
type-interval 0 < t < 2. For t = \j(a  — 1) = 1 i.e ., for the Cauchy type itself, 
it is evidently indifferent whether Eq. (5) or Eq. (6) is used for the 5-deter­
mination: in both cases maximum efficiency is achieved. With regard to other 
types, however, significant differences occur between the efficiencies de­
pending upon whether Eq. (5) (‘MFV’-curve, from most frequent value), or 
Eq. (6) (CML-curve, Cauchy maximum likelihood) is used to calculate the 
parameter of scale.

Figure 4 is ideal for showing what robustness really means. This notion 
does not mean outlier-insensitivity: this latter — also very important — 
behaviour is called resistance. The very meaning of robustness is the

100 ■

e l t l(%1

80 -

Fig. 4. Significantly different effi­
ciency curves for determining the loca­

tion parameter [from Hajagos and 
Steiner 1993b], although ‘only’ the de­
termination method of the parameter of 

scale is different for the ‘MFV’ and 
‘CML’ methods 

4. ábra. A helyparaméter 
meghatározására vonatkozó hatásfok­
görbék [átvéve Hajagos et al. 1993b- 
ből] ; a görbék szignifikáns mértékben 
különböznek egymástól, noha a hely- 
paramétermeghatározások ‘MFV’- és

60-- 0 2

‘CML’-módszerei ‘csak’ a skála­
paraméter számítási módszerében 

különböznek
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following: starting from the maximum efficiency place, with increasing 
type-distance the efficiency slowly decreases. (The correct definition of the 
type-distance will be given later in Eq. (11); by good fortune it is approxi­
mately constant times of the correctly calculated distances in the Gaussian- 
Cauchy type-interval, — see also Fig. 5 in this article: the proportionality is 
almost perfect in the broad neighbourhood of the geo statistical type.) It can 
be easily concluded on the basis of Fig. 4 that the MFV method is much more 
robust than the CML method though the ig-function (see H uber 1981; 
nowadays also known as ‘influence function’) is just the same in both 
methods. Consequently, it is far from satisfactory to give the ig-function only: 
we have also to decide which formula must be used to determine S on the 
basis of the data. Surely, it is possible to give an S-value at random — and 
not on the basis of data — calling this parameter of scale, for example, an 
‘empirically proven’ value or any arbitrary designation; practices of such 
kind, however, are out of our present scope of interest. (The \g-function has 
a well known fundamental role in the theory of Huber as the function for 
estimating T  on the basis of the measured xt data. The v|/-functions can be 
constructed from straight lines, too, if no deeper theoretical background is 
given; a classical example of this is the \g-function of the Huber-estimate, 
see H uber [1964].)

4. Quantitative characterization of the robustnesses of different
norms

The two efficiency-curves in Fig. 4 [cited from H ajagos and Steiner 
1993b] are excellent for the comparison of robustnesses and the conclusion 
in that special case obviously is that the MFV method is more robust than 
the CML estimation. This conclusion is, however, only of qualitative nature. 
We therefore found it necessary to characterize this property by a numerical 
value. The formula for this value (as a rate of the robustivity denoted by r) 
is as follows:

where e(t) is the statistical efficiency of the statistical method in question for the 
probability distribution type characterized by the type parameter t, and q(t)

oo

(8)
0
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means the probability density of occurrence of type t in the discipline studied 
[see Steiner and Hajagos 1993].

But which q(t) density function can be regarded as adequate for the 
geosciences? The old statistical literature (not only in the geosciences) often 
claims that in the overwhelming majority of cases the error-distributions are 
Gaussian, then called this type ‘normal’. (This would mean that q(t) is a 
Dirac-S at the point t= 0.) This dogma was accepted not only because the use 
of the simplest statistical methods should be justified but also the statistical 
tests for ‘normality’ (applying the proposed significance levels) can be 
misleading. Details about this fact are given in Szucs[1993]. For example, 
the %2-test can ‘prove’ the normality even for data coming from a random 
variable of a quite different distribution type, if the sample is not sufficiently 
large.

Only sporadically can reliable information be found about the real type 
of data although even at the end of the last century Newcomb [1886] did not 
use the L,-norm for his astronomical data as it was important to exhaust all 
information contained in the measured values. Briefly speaking, he did not 
accept the dogma of ‘normality’. On the contrary, he concluded that the 
Gaussian error distribution occurs very rarely.

Newcomb is one of the very few scientists who can be regarded as 
competent in the problem of the really occurring error-types. But also 
generally: if experts work only in the field of geosciences, or only in the 
discipline of mathematical statistics, their opinion about error-types must not 
be taken into consideration. In this question only such scientists are competent 
who work deeply enough in both disciplines.

As the best example Sir Harold Jeffreys, the great geophysicist should 
be cited, who exhausted the information optimally from the seismological 
data with adequate iteration algorithms, although it was extremely tedious to 
do this in the thirties of this century: the execution of a single iteration step 
needed some hours. The book Jeffreys [1961] written on the theme of 
probability proves that he was a deep thinking scientist in both disciplines. 
As for the error-distributions, he concluded that in practice the flanks are not 
in such a degree short as by the Gaussian, in the best cases f j x )-like tails can 
occur for the type-parameter interval 0.1 <t < 0.2, or otherwise written for 
6 < a<  10. This interval is marked in the abscissae of Fig. 3 as ‘Jeffreys-in- 
terval’.

Rather than listing and discussing all the citations, we opted to accept 
the following expression as g(r)-formula for the geosciences:
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q(t) = 161 ■ e ^ ' . (9)

The q density has its maximum at /=1/4, i.e., at й= 5; this corresponds exactly 
to a statement of D u tter  [1986/87] about the most commonly occurring type of 
error in geostatistics. Therefore the type belonging to /=0.25 is called ‘geosta­
tistical’. As is well known we sometimes have to work with Cauchy-distributed 
data, too. According to Eq. (9) the probability density q(X) of the Cauchy 
occurrence is really by far not vanishing: it amounts to 20% of the maximum 
density (9rmax=^(0.25)=5.^(1)). It should be mentioned, too, that the probability 
densities of the Jeffreys-interval range from 0.77qmiiX to 0.98-(7rnax and in the very 
neighbourhood of the Gaussian, namely for f jx )  ö= 40 the probability density 
amounts 0.25- q ^  (q=0 holds only for just the Gaussian as modem authors 
state that this type never occurs as a mother-distribution in practice see 
M o steller  and T uk ey  [1977]). Note also that the / type-distance from the 
Gaussian of the distribution for a=40 is only 10% compared with the / 
type-distance between the geostatistical and the Gaussian types.

Accepting the gf/j-expression given in Eq. (9) for the geosciences, for 
the rate of robustness the values given in per cent in Table IV can be calculated 
according to Eq. (8 ) [see S t e in e r  and H a ja g o s  1993].

norm rate of robustness for geosciences
U 36%
L\ 80%

Pj 90%
P 96%

Pc 94%

Pu 75%

Table IV. Quantitative characterization of the robustnesses of different norms 
IV. táblázat. Különböző normák robusztusságának kvantitatív jellemzése

The norms for the MFV-algorithms show the greatest values (except P„ 
which prefers the very long tailed distributions and not the types charac­
terizing the geosciences). It should be mentioned that r is not zero even for 
L2 although the statement of the modern statistical literature formulates 
categorically as follows: ‘L2 algorithms are not robust'. This is not really
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astonishing: Table IV (and Eqs. (8) and (9)) gives new results that charac­
terize the robustness quantitatively. Consequently, our formulations must be 
more accurate regarding these new results also in other respects. An example: 
one decade ago the notations ‘robustness’ and ‘resistance’ could be used (with 
a little opportunism) synonymously, but this is no longer allowed — if 
confusions are to be excluded. We should avoid (or even forget) the 
wide-spread practice that resistance is proved by one or more example and 
the consequence is formulated as ‘the statistical method is robust’. (There 
are examples showing that decreasing robustness occurs simultaneously with 
increasing resistance, see H a ja g o s  and S t e in e r  [1993b].)

The notion ‘type-distance’ was mentioned earlier for the quantity t= l/(a-l) 
as Eq. (9), i.e., the q(t) function was discussed. This intuitively introduced 
quantity has also been investigated by us recently, giving an exact definition 
for type-distances based upon the well known Kolmogorov distance (K) 
defined for two arbitrary distributions:

K=my { T F,SF-x) -  H{Th,Sh-x)\. (10)

F  and H  mean probability distribution functions, the T and S values are 
parameters of location and that of scale of the distributions in question. (Writing 
‘sup’ instead of ‘max’ the definition is more correct from the point of view of 
mathematics.)

The Kolmogorov-distance (the K-value) is obviously strongly influenced 
by the actual values of TF, SF, TH and SH. If we are interested primarily on the 
part of the distance which is caused by the difference of the types, we have 
to eliminate the effects of these four parameters. Consequently, type-distance 
between F  and H  (denoted by D(F,H)) can be defined (and calculated) in the 
following way [see H a ja g o s  and S t e in e r  1994]

min f max. . .
D(F,H)= \f (Tf,Sf-x) -  H(Th,Sh,x )\\ (11)

TF,SF,TH,SH l л: J

(mathematically it is more correct to write ‘inf instead of ‘min’).
It is generally proven that such ‘min-max’defmitions fulfil the require­

ments given for distances (this means, D(F,F)— 0, D(F,H)=D(H,F) and the 
triangle-relation is also fulfilled: £>(#,,# 2) + D(H2,H3) > £>(#[,# 3) , see 
Csernyák[1995]).

The minimization which is to be done actually in our case, is much 
simpler as is seen in the generally valid Eq. (11). First of all, we compute 
here only distances of ^-distributions from the Gaussian; the distribution
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function of the latter should be denoted for T= 0 and 5=1 by G(0,1; x) 
(evidently this is the ‘standard version’ of the so-called ‘normal’ distribution 
tabulated in nearly every book written on the subject of probability and 
mathematical statistics). If 7= 0  is also substituted in Fa, the minimization 
according to T  is already made (functions Fa and G both being symmetrical 
to T and unimodal). As for the 5-values: they have during the minimization 
no separate role, only the ratio of both 5-values influences the D-value. 
Consequently, the type-difference of any Fa from the Gaussian can be 
calculated simply as

This exact type-difference is still about the Cauchy-type (astonishingly 
enough) approximately proportional to the intuitively introduced t= l/(a - l) , 
(see Fig. 5). It would therefore be superfluous to make ‘more correct’ the 
abscissae of all figures in the MFV-literature which are given in the 
overwhelming majority of cases for the Gaussian-Cauchy interval. Even the 
modification of the definition of the robustness for the geosciences (r) in

( 12)

Fig. 5. Type-distance D(Fa,G) (i.e., 
the distance of type Fa from the 

Gaussian) versus t= l/(a -1), showing 
approximate proportionality between 

the two quantities in the interval 
demonstrated [from Hajagos and 

Steiner 1994]
5. ábra. A z Fa típusnak a Gauss- 
félétől mért D(Fa,G) távolsága az 

ábrázolt intervallumban közelítő ará­
nyosságot mutat a t=  1/(ú-1) 

típusparaméterrel [Hajagos et al. 
1994 nyomán]
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Eq. (8) is not necessary; no significant diminishing is expected if D were to 
figure in Eq. (8) instead of t.

But what about the much greater D-values, i.e., greater than 0.058? 
Which value is the Cauchy-Gaussian distance? According to Eq. (8) such 
types occur very rarely in geophysics and geology practice. We can, however 
(and, perhaps, we are even obliged) to deal with such questions in a much 
more general sense, including other geosciences, too, e.g. meteorology, 
perhaps also astronomy, etc. And finally: exclusion of other disciplines would 
be unjustifiable if the behaviour of statistical methods in general is to be 
investigated.

It can be proven [see C s e r n y á k  1995] that D(Fa, G) tends to 0.25 if ű-» 1 
and this value is the maximum possible type-distance among symmetric 
distributions. This means that the overall behaviour of the statistical methods 
based on different norms can be easily visualized for the whole supermodel 
f j x )  and for 0 < D(Fa,G) <0.25; this is a complete characterization in the 
sense that characteristic values are shown for all possible type-distances.

In Fig. 6 the efficiency-curves are shown for the norms listed in Table II 
versus the type-distance D from the Gaussian from Steiner et al. [1995]. The 
curve for L2 quickly drops from 100% to zero. The efficiency curve for the 
Lr norm tends to zero if D tends to 0.25; not one of the efficiency-curves of 
the P^-norms has such a behaviour. The Lr curve starts at the value 63.66% 
(e=200/n% being .valid for the Gaussian distribution) and reaches a maxi­
mum over 80% near to the Cauchy-type; for the latter e = 800/n2 — 81% holds.

For the whole supermodel f jx )  (except the close neighbourhood of the 
Gaussian type) the Lr curve shows very great advantages over the conven­
tional statistics characterized by the L2-curve. Fig. 6 shows, however, that 
the norms Pr. P-> Pc and Pu have significant advantages even compared with 
the efficiency curve of the Lr method. With a slight overstatement this 
property of these four P^-norms can be called ‘overall robustness’. Note, for 
example, that the Pc curve shows for this as long as theoretically possible 
type-interval an e-value never less than 74%.

The ‘overall robustness’ (OR) for the f jx )  supermodel, however, can 
also be characterized quantitatively supposing that all distances D (Fa, G) occur 
with the same probability density, i.e., q=4 holds for the complete type 
domain, neglecting special aspects of various disciplines. In this case the 
definition of the ‘overall robustness’ is:

0.25

0
( 13)
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Fig. 6. Efficiency curves for norms 
listed in Table II versus type-dis­

tance D=D(Fa,G) [from Steiner et 
al. 1995]. The demonstrated D inter­
val is as long as theoretically possi­

ble for symmetrical error distribution 
types

6. ábra. A II. táblázatban felsorolt 
normák hatásfok-görbéi a Gauss- 

típustól mért D=D(Fa,G) típustávol- 
ság függvényében [Steiner et al. 

1995 nyomán]. Az ábrázolt ű-inter- 
vallum szimmetrikus esetekre 

vonatkozóan az elmélet szerint a le­
hető leghosszabb

[see St e in e r  et al. 1995]; а^100% would obviously result in OR =  100%. — 
For the six norms in Table II, the OR-values are given in Table V.

Lp L2: 7.8% 
Li: 50.1%
Pf. 59.3%

norms of the MFV-procedures P: 71.5%
Pc'. 90.7%
Pu: 92.6%

Table. V. ‘Overall robustnesses’ for different norms 
V. táblázat. Különböző normák általános robusztussága
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The conclusions can be formulated as follows:
1. The overall robustness of L2 can really be regarded as nearly vanishing;
2. The overall robustnesses of the norms resulting in MFV procedures are 

greater (or even significantly greater) than the overall robustness of the 
Lr norm.
Also in respect of the overall robustness of the standard version P has a 

significantly greater OP-value compared with that of L x.

OR(P)-OR(Ll) = 21.4 %.

It is perhaps more interesting that

OR(Lx)-OR(L?)  = 42.3 %

and

ORiP^-ORdO  -  42.5 % (14)

hold and this nearly full coincidence of the differences means not less than 
(concerning overall robustness) the choice of Pu instead of L, has the same 
advantage that we could have reached using Lx instead of the conventional 
L2-norm.

5. ‘Philosophies’ in statistics

The rates of robustness (the values of r and OR) are very helpful in 
choosing the appropriate statistical norm for a given task, but this is far from 
being satisfactory. It must also be taken into consideration which ‘philoso­
phies’ are behind the formulae. Finally, let me show a table (Table VI) for 
orientation (from C ser n y á k  et al. [1995]).

All three philosophies can be applied appropriately in different disci­
plines. For example, in the case of the geosciences (where outliers often 
occur and modelling can rarely be exact), the statistical method must be 
sufficiently resistant — and this is warranted in the philosophy of the 
MFV-procedures. Accepting e.g. the P-norm and its philosophy we have to 
decide additionally whether or not neglecting more than 50% of the data is 
acceptable from the point of view of a well defined task to be solved in a 
framework of a given discipline.



New results on the theory o f the most frequent value procedures 19

MULTIPARAMETER REGRESSION, GEOPHYSICAL INVERSION
Philosophy Theoretically best elaborated and experi­

mentally proved alternative is the 
minimization of the given norm of the 

residuals
Classical philosophy: The greatest val­
ues of the squared residuals should not 
be too large, even if the values char­
acterizing the concentration of the 
residuals differ significantly from 
zero.

L2-norm

Median-type philosophy: Positive and 
negative residuals must be in equilib­
rium with regard to their absolute val­
ues, no group of the data should be 
neglected.

Li-norm

MFV-philosophy: Residuals must 
concentrate possibly close around 
zero, even if some data (or occasional­
ly even a significant part of the data) 
are practically neglected.

Py-norm, P-norm, Pc-norm, P;rnorm

Table VI. Different philosophies in statistics and the corresponding norms 
[Csernyák et al. 1995]

Vf. táblázat. Különböző statisztikai filozófiák és az azoknak megfelelő normák 
[Csernyák et al. 1995]
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A leggyakoribb érték (MFV) eljárások elméletének új eredményei

Ferenc Steiner

Az MFV-filozófia szerinti elmélet, azaz a leggyakoribb érték-eljárások elvi problémaköre 
több új eredménnyel gyarapodott az elmúlt néhány évben. A publikációk különböző szakfolyóira­
tokban jelentek meg, így indokolt, hogy ebben a dolgozatban az eredmények egy részének tömör 
összefoglalása történjék meg abból a célból, hogy a maximum likelihood-elven, valamint az Li-, 
L\- és P-normákon alapuló statisztikai eljárások lényegi különbségei minél tisztábban álljanak 
előttünk.




