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SENGUPTA*

A seismic section represents a two-dimensional picture of reflected waves which propagate in 
three-dimensional space. Present day computational facilities enable the seismic responses of the 
earth to be investigated more accurately by setting up wave equations based on 3-D models. Various 
numerical modelling techniques are available to simulate seismic responses in 3-D, such as the finite 
element method. Unlike other schemes, this method needs an efficient networking of computers to 
handle multifold data. The purpose of this paper is to present an efficient and economical finite 
element algorithm for modelling seismic responses in 3-D, keeping in view (i) the reduction of 
memory and storage requirements, (ii) the suitability for multiple processors and mini-computers. 
The degree of freedom is reduced by introducing hierarchical modes in the form of Legendre’s 
polynomials to achieve kinematic condensation of the global matrices. The normal incidence 
synthetic seismograms computed along six profiles over a 3-D dome model along with the snapshots 
and the isotime map given in the paper, prove the validity of the proposed algorithm.
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1. Introduction

Numerical modelling of seismic wave propagation has become an impor­
tant component of seismic prospecting. Probably the most common applicaton 
of such modelling is in the context of interpreting seismic data. Generally 
geophysical data are interpreted and translated into a subsurface geological
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model. A numerical or computer simulation of seismic data acquisition can be 
employed to compute the anticipated seismic response o f the model. If, on 
comparison, the synthetic data closely match with the field-acquired data, the 
geological interpretation gets verified.

A three-dimensional geological environment may either be reduced to a 
one- or two-dimensional geophysical representation, depending on the 
symmetries related to the geological structure and the seismic survey geometry, 
or it can be simulated in the 3-D space itself.

A comprehensive computer program is required to simulate the physical 
complexities of wave propagation. A variety of wave types might propagate in 
the physical environment, viz., P, SV, SH, Rayleigh, etc. For the proper 
selection of a modelling algorithm to simulate these wave types, the charac­
teristics of the medium and the salient features of wave propagation are the 
most crucial factors.

There are various numerical modelling schemes available to geophysicists, 
viz., geometrical ray tracing, asymptotic ray theory, generalized ray theory, 
Fourier synthesis, finite differences, finite elements, etc. Each approach has its 
own merits and demerits, and is unique in its domain of application.

The finite element method needs faster CPUs, large memory and disc 
storage to compute and store the enormous volume of data. The present 
investigation deals with the development of an efficient and economical finite 
element algorithm for simulating seismic responses in 3-D.

In finite element analysis, generally ‘simple’ lower order smooth interpo­
lation functions are used to represent the deformation modes. These can be 
extended to systematic representation of more complex modes through the 
hierarchy of Legendre’s polynomials. Alternatively, the displacement vector 
at any point for a layered medium can be represented by harmonic expansions 
in the form of Fourier series. With these ideas in mind, the kinematic conden­
sation of the global matrices is achieved either by introducing hierarchical 
modes in the form of Legendre’s polynomials or by using harmonic expansion 
in Fourier series [NATH et al. 1990; 1991a, b; 1992; 1993]. The former tackles 
the problem globally whereas the latter performs better for a layered earth 
model.

The major features of the proposed kinematic condensations can be 
summarized as follows:

— Since the CPU requirement is less, the programs can be executed 
on mini-computers. In fact the present simulation is performed on 
a HP-9000 series mini-computer.

— At the initial stage o f condensation, additional multiplications re­
quire extra computational time. But the reduction in the final 
dimensions of the global matrices cuts down drastically the time 
required for matrix inversion and also for the subsequent time 
integration.

— Automatic mesh generation by isoparametric mapping adds gen­
erality to the algorithms. Once the software is developed, it is easy 
to handle a variety of structures and boundary conditions.
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— Both the vertical and lateral inhomogeneity and anisotropism can 
be tackled by controlling the dimensions o f the elements.

— Mode of assembly is simple.
— It adds a meaningful interpretation to the analysis in the form of 

deformation modes.
— Since by the condensation of the deformation modes the degree of 

freedom is reduced, some o f the accuracy is lost though most o f it 
is insignificant because we are interested in the macroscopic re­
sponse o f the subsurface structures.

The inherent disadvantage of these methods is the long execution time 
even though, compared to the direct finite element method, the total computa­
tional time for these condensation algorithms is very low.

At the moment the simulation is performed at the expense of the CPU time 
in a single array processing environment. Once the parallel processing and 
computational facility is easily accessible, the kinematic condensation will gain 
its real entity.

Nomenclature

U(t) : displacement vector at any point in the assemblage 
Uq : nodal displacement vector

U(t) : particle velocity vector

U(t) : particle acceleration vector 
M  : global mass matrix 
К  : global stiffness matrix 
C : global damping matrix 
X ,  y, Z'. global coordinates
x e, Уе, z e : global coordinates at any point in a 3-D solid finite element 
xe ye , ze - global coordinates at the i-th node of a 3-D solid finite element 
Ç, Т|, X: local axes in 3-D space
4  П/, V  local coordinates at the г'-th node of a 3-D solid finite element
v: Poisson’s ratio
N,: shape/interpolation function
N ig  first derivative of Nt with respect to Ç
Ni r]: first derivative of Nt with respect to r|
Nj X' first derivative of Nt with respect to X 
и : x-parallel component of displacement vector 
v : у-parallel component of displacement vector 
w : z-parallel component of displacement vector 
В : strain-displacement matrix 
D : constitutive matrix 
J: Jacobian matrix 
T : condensation matrix
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k e, m e : local stiffness and mass matrices 
f e : local force vector

A A

k e, m e : condensed local stiffness and mass matrices
A

f e\ condensed local force vector 
а ;у*: 3-D global parameter variable

2. General formulation

A general review of the finite element method can be found in many 
standard texts.

The equation of motion for the displacement vector U(t) may be represen­
ted through FEM discretization as,

M Ü(t) + CÙ(t) + K U(f) = F{t) (1)
where M, C and К  are the global mass, damping and stiffness matrices; F(t) 
is either an impulsive force or a harmonic loading, and the dot [ ] denotes the 
derivative with time.

The vector U(t) here represents the nodal degrees of freedom at different 
points in the media. The nodal degrees of freedom may be thought of as discrete 
values of a continuous function in space and time.

Figures 1, 2 and 3 together represent the geometry of the three-dimen­
sional finite element simulation considering an eight-noded isoparametric solid 
element. This includes the isoparametric mapping of the global structures, mesh 
generation, condensation, etc.

Isoparametric mapping and automatic mesh generation

In finite element mesh generation of 3-D surfaces in CAD, ONWUBOLU 
[1989] has reported the development of a geometric modelling procedure based 
on a uniform 5-spline for the representation of general surfaces in 3-D in 
computer-aided geometric design. The 5-spline surfaces which are meshes of 
curves intersecting at model points, facilitate the conversion of the geometric 
definition into a form compatible with finite element analysis programs. The 
algorithm converts the 5-spline surface meshes into six- or eight-noded finite 
elements.

In order to generate the mesh efficiently, the following points are of vital 
importance:
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Fig. 1. 3-D global structure 
1. ábra. A 3D globális szerkezete

— Continuity across the inter macro-element boundary — thus necessitating 
equal divisions across the boundaries between neighbouring macro-struc­
tures to keep the nodal positions unchanged during discretization.

— To divide each 3-D macro-element into smaller 3-D finite elements for 
which the global coordinates are to be determined with respect to the key 
nodal coordinates.
In the present work, we have followed two stages of isoparametric 

mapping to develop the scheme of discretization by considering trilinear 
eight-node hexahedron elements.

The isoparametric formulation extends directly from two dimensions to 
three. We add coordinate z in the global space and a corresponding coordinate 
X in the local space and define faces of the element by Ç, г), X = ±1. The 
isoparametric relationships for an eight-noded solid element can be written as,

8 8 8

x e ~  x ei > N i y ei ; ^  = £  N i Z t
i=l i=l i=l

8 8 8

u  = ' E N i u i ; v - I  N , V ,  ; w = Y , N i w >
i=i 1=1 i=l

(3 )
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Fig. 2. Finite element discretization, isoparametric mapping and condensation of a 3-D
macro-element

2. ábra.Wéges elem mintavételezés, egy 3D-s makro elem izoparaméteres leképzése és
kondenzációja
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Fig. 3. Isoparametric formulation of an eight-noded solid finite element 
3. ábra. Egy nyolc nódusú (csúcsú) véges elem izoparametrikus leírása
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where А,- is the three-dimensional interpolation or shape function; it can be 
given as

and the shape function matrix N can be expresssed in terms o f the individual 
shape functions as,

Each macro-structure is identified by its density-velocity pair. The macro-level 
division of the global structure also depends on the change of curvature of the 
structural boundaries. The xyz origin is located at the centroid of the model and 
y, the depth axis is assumed positive upwards [COOK 1974]. The primary nodes 
with the known coordinates are numbered as shown in Fig. 1.

The discretization of each macro-structure starts with the isoparametric 
mapping of that individual structure from the xyz domain into a local Çq к pace; 
this is followed by meshing of the mapped structure into a finite number of 
elements depending on the accuracy and stability requirements for the solution; 
and, finally, each element of the local space is mapped into the global domain. 
This is illustrated in Fig. 2a and 2b. Figure 2a represents the macro-structure I 
of the global model in xyz space. The primary global nodes [11], [7], [2], [5], 
[12], [8], [1] and [4] are the connectivities of macro-structure I with the known 
coordinates (xu y lt Zj), (x2, y2, Z2), (x3, y3, z3), (x4, y4, z4), (x5,y 5,z 5), (xfyy6, 
Z^), (xj, y7, z-j), and (xs, y8, Zg), respectively. The right hand rule is strictly 
followed when numbering the nodes [COOK 1974]. This macro-structure is 
first mapped into a cubic solid structure in the local Çq к space with the master

(1,1, -1) and (1 ,1 ,1 ) corresponding to above mentioned global primary nodes 
[11]> [7], [2], [5], [12], [8], [1] and [4] respectively. Depending on the numerical 
stability of the simulation, the mapped structure in the Çq к space is discretized 
into a number of eight-noded elements as shown in Fig. 2b. The comer nodes 
for all the elements are numbered and Çqk coordinates for each node are 
computed with respect to the master nodes. All the elements are then mapped 
back into the global domain. For example, element 1 defined by nodes (14), 
(11), (2), (5), (13), (10), (1) and (4) with the local coordinates (Çl5 q l5 к Д
(^2> Л2> г̂)> (?3> Лз> Ы  (̂ 4> Л4> ^t)» (?5> Л5> ^5^ (%6> Пб> б̂)> (%7> Л7> 7̂) 
and (Ç8, q g, kg) respectively, when mapped back into the xyz domain as shown

(4)

We define a vector [A] as

[N]T= {Aj N2 A3 A4 N5 N6 Nj jV8) (5)

W  [0] [0] '
N =  [0] [N]T [0]

[0] [0] [A]r
(6)

Figure 1 represents a global model subdivided into four macro-structures.
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in Fig. 2a and represented megascopically in Fig. 3a, will have the global 
coordinates and {xe^ ye^ ze^, (x^, y ^ , zeJ ,  (x^, y ^ , zeJ ,  (x^, y^, zeJ ,
(xe , ye , Ze ), (x y  ze ), (x y ze ) and (x y ze ) respectively. These3 Э J O Ô O  I I I  Ö Ö Ö
coordinates can be obtained with respect to the primary nodes and the individual 
shapes functions as follows:

Хе, X  I (?,-1,. Xi
Г 1

8

= £  Nj I n x.), Уу (7)
У-1

8

Z«i ”  X  ^7 I (?;. П,. \ ) ’ Z7 •

The x-parallel, у-parallel and z-parallel components of the displacement 
vector Uq at these nodes are (ub vb w,), (u2, v2, w2), (m3, v3, w3), (m4, v4, w4), 
(«5» 5̂» wsX («6. v6> wő)> («7. v7» wi \  and (Mo, vg, w8) respectively.

Once the mesh is generated for the global assemby and the nodal coordi­
nates are computed, each eight-noded element is finally mapped into an 
isoparametric cubic element as shown in Fig. 3b for the formulation of the 
element local stiffness and mass matrices.

Element stiffness and mass matrices

The basis expressions for the 3-D element stiffness and mass matrices as 
formulated from the total strain energy due to internal stresses and the kinetic 
energy P esai, A bel  1972; Cook 1974; Zienkiewicz 1977] can be given as,

W J J B 7D  В dx dy dz (8)

m e N r N d x d y d z  (9)

where В is the strain-displacement matrix and D is the constitutive matrix as 
defined below.
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The constitutive matrix D

For an isotropic 3-D body, matrix D can be written in terms of Young’s 
modulous E and Poisson’s ration v as

Since the finite element method gives a complete solution to the wave 
propagation, the P- and 5-wave propagation and hence the mode conversion 
need not be considered separately. The elastic modulus can be computed by 
considering either the P-wave velocity or the shear wave velocity.

Strain-displacement matrix В

The strain-displacement matrix В cannot be expressed in terms of x, у  and 
Z. Hence, we write it in terms of Ç, r| and X. By using only the linear terms of 
the relations between the strain and the displacement components and by 
invoking the coordinate transformation of the derivatives, matrix В can be 
written as,

(1 -v )  v v 0  0  0
v (1 -v )  v 0  0  0

0  0 0 0  0 .5 ( l - 2 v )  0
0 0  0 0  0  0 .5 (1 -2 v )

B = H JT ‘ B n ( 11)
where,

-[b] [0] [0] 
B„ = [0] [b] [0] 

[0] [0] [b]
( 12)

such that

(13)

and

[/Г 1 [0] [0] 
J - 1 = [0] [/T 1 [0]

[0] [0] [/г1
(14 )
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where J is the Jacobian matrix, and,

'1 0 0 0 0 0 0 0  o'

H =

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

(15)0 1 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 
0 0 1 0 0 0 1 0 0

-_ -*

The stiffness matrix ke given by equation (8) can be rewritten in the local 
domain as,

+ 1+ 1+1

ke = J J J  B r D B I j  I dÇ dq dX, (16)
- l - i - i

The above expression for ke must be evaluated numerically by writing it 
in the summation form as

K  =
ns

I
g  g

£  £  B TD B | / |  щ щ а > т
k= 1 m- 1

(17)

Similarly, mass matrix given by equation (9) can be expressed in the 
summation form:

m* = £  L  £  p N r N \j I со,- со* cow (18)
/'=1 k=  1 m - 1

where ng is the number of Gauss points in the solid element, co„ cô , co;/( are the 
weighting functions at these Gauss points (ng, co(, (ok and co„, are obtained from 
standard tables).

Condensation and time integration

Let и (x,t) be a continuous function which represents the actual displace­
ment o f a point in the domain concerned. Then we can write,

U(Xh t) = и (x=Xh t) (19)

This continuous function и may further be expanded in terms of a Fourier 
series as
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u (x ,t)=  £ a nf n(x) (20)
П

where a n(t) are the time dependent generalized Fourier coefficients anàfn(x) 
are the Fourier expansions in space coordinates.

The above equation may be put in the matrix form, viz.

u (x ,t )= p T(x)a (t)  (21)

where

PT(x) = (f0(x) f {{x) .../„(*)) 

a T(t) = (a0(t) a j (r ) ... a n(t))

Using the above notations, displacement at a discrete point X,- is represen­
ted as

Uj (Xht) = p T(Xj) a  (t) (22)

where Ut (Xj, t) is the displacement vector at point X,- at any time instant t.
In the above treatment the following points must be noted:

— although/^*) are orthogonal in function space, components p(Xt) are not 
continuous and represent the discrete value off n(x) at point X,; hencep xp T 
is not a diagonal matrix.

— relationship (21) is a Fourier expansion but transformation (22) is simply 
a discrete representation.
The displacement vector U at any node can be further written as

U =
и
V

w
(23)

Using relations (19) and (20), equation (23) can be approixmatedby rolling 
independent Legendre’s polynomials in the x, у  and z directions. The terms u, 
V and w can be expanded by Legendre’s polynomials:

n m  l

" ■ I  I I  a »  W  P p )  W  (24)
1=0 7=0 fc=0
n m l

- I L E  ®(i- +nm[) (j+nmt) (k+nml) >̂/(-̂ ) (25)
i=0 y=0 k=0

n m  l

- E L I  i+ 2 n m l) (j+ 2 n m l) (k + 2 n m l) Pfcx) P fy) P k ^ Z )  (26)
i-O 7=0 k = 0
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In the above equations a  is the global parameter matrix in 3-D for the 
global structure shown in Fig. 1, and P.pt), P/y), P^z) are the associated 
Legendre’s polynomials in the x, y  and z directions respectively.

Hence, relationship (23) takes the form,

V  = T a  (27)
where T is the condensation matrix. Using expressions (24), (25) and (26) and 

considering element 1 of Fig. 3, we can define a matrix \t\ such that

P o ( \ )  p o(Ув1) Р о Ц )

P o (x e2)  Р о(У е2) P o(Z e2)

P o(x e7) Р о(Уе7) P o(Ze7)  

P0 ( \ )  Ро(Уек) Po(Zes)

Ро(хе{) P0(yei) P l(Zex) 

P o(x e2)  Р о(Уе2) P lU e 2)

P 0(x e7) Р 0(Уе7)  P l(Ze7)

p o ( \ )  p o(yeJ  p i(ze&)

(28)

then the element condensation matrix T can be written as

T =
[t]
[0]
[0]

[0] [0] 
[t] [0] 
[0] [t]

(29)

Now considering the element static equt ibrium equation when subjected 
to an external force vector/ ç and substituting relationship (27) for the displa­
cement vector U, we can wnte,

ke T a  = fe

Premultiplying both sides of equation (30) by TT we get, 

(Тт к, T) a  = TT/ e

(30)

(31)

By the same token, the element dynamic equilibrium equation with 
damping neglected can be written as

(TT meT) à  + (Тт к Д ) á= TTf e (32)

Since, by condensation, the degree of freedom is reduced, TT will reduce 
the number of equations and at the same time will condense the local stiffness 
and mass matrices into the symmetric global matrices. TT will transform the 
local force vector or the array of local force vectors into an equivalent 
condensed global force vector or an array of force vectors.
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The condensation matrix T transforms the element stiffness matrix k„ into
A A # A

k e, mass matrix m e into m e and the array of external force vectors f e mto f e 
such that

ke = T r ke T (33)

HsF~.Hil<E (34)

A -  t  TL (35)

These matrices are then assembled by direct addition into the correspond­
ing global matrices К, M  and F. The stiffness and mass matrices of all the 
basement elements are first compacted before condensing and assembling. 

The dimensions of К  and M will be (nxn) where 
n = 3 X no. of polynomials in the x  direction 

X no. of polynomials in the у  direction 
x no. of polynomials in the z direction 

It is difficult to assess the global matrix C. Actually it should be determined 
from the attenuation of the waves obtained from the field records. However, 
common practice assumes the C matrix to be proportional to mass M and the 
stiffness К  matrices. For example, C = ßM + yK, where ß and у are the 
proportionality cons tans.

The equilibrium equation of motion (1) in 3-D thus gets converted into the 
second order differential equation in a. This equation is then transformed into 
the following form (36) by the central difference method and is solved by direct 
integration or by mode superposition and Cholesky decomposition [BATHE, 
WILSON 1976] after initiating the wavefield and introducing boundary condi­
tions:

ГМ C ] „ M ' Г M C )
a | (f + A t) At2 ' 2 At

= F(f) - К  -  2—  
At2t *

a l (0 At2 2A t
< /

(36)
where ‘Ai’ is the sampling interval and ‘f  is the instant of time at which the 
response is computed.

Since U is a function of a, x, y  and z, on solving for a  U is calculated 
which, on differentiation by the central difference method, gives the particle 
velocity vector and hence the seismic response at a particular node.

Boundary conditions

The boundary conditions specified here are as follows:
— At the bottom, the boundary is taken to be rigid, though apparently this 

may give rise to a standing wave in the strata. However, the bottom boundary
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should be lowered enough so that the reflections from this do not intermingle 
with the actual seismic events and thus the salient features are brought out in 
the numerical results.

— The side boundaries are taken as free so that they do not produce a 
confining effect. In this case the oblique incident waves will split and reverse 
their sign. But this is of no major consequence in a practical case where the 
horizontal extent of the boundary is much greater than its depth. Hence at least 
in the middle portion of the model the seismogram represents an undistorted 
picture of the reflected waves.

It is possible to incorporate absorbing boundary conditions for the edges 
[KEYS 1985]. However, in the present simulation we do not fint it to have any 
pronounced effect.

3. Numerical model study

In order to carry out an ideal synthetic 3-D survey, one can compute a large 
number of shot records for each profile on the simulated earth surface, do the 
normal moveout corrections and further processing in order to obtain stack 
sections for all the seismic lines. This involves an extensive amount of 
computational effort. But a normal incidence seismogram constructed by 
placing the source at a grid location on the surface and computing the seismic 
response at that grid position only and then shifting the source-receiver position 
to the next grid location and so on, resembles an actual unmigrated CDP time 
section.

In selecting a 3-D modelling example, MUFTI [1990] suggested the 
following points:

— as far as possible the model should be based on and represent 
real geology,

— the model should be characterized by prominent 3-D structural 
features,

— to interpret the seismic results easily, the model should be as simple 
as possible.

With the above aspects in mind, we have performed the following 
numerical simulation of a 3-D dome model in order to test the effectiveness of 
the three-dimensional modelling algorithm discussed in the previous sections.

3-D dome model

A  finite element three-dimensional model is set up by considering a dome 
structure as shown in Fig. 4 generated by a 3-D cubic Л-spline program. It 
extends both east-west and northsouth to 2 km. The depth extent is set to 1 km
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Fig. 4. A 3-D dome structure (2 km x 1 km x 2 km) — Configuration and physical parameters 
4. ábra. 3D-s dóm szerkezet (2 km x 1km x 2km) — elrendezés és a fizikai paraméterek

with the top of the hump at 400 m from the horizontal plane of observation. 
The top surface layer has a density of 2.46 gm/cm3 and a P-wave propagation 
velocity of 4000 m/s. The compact base layer has a P-wave propagation 
velocity of 5500 m/s and a density of 2.74 gm/cm3. Figure 9 represents the 
depth contour map at 50 m interval over the dome model. This diagram is the 
two-dimensional geometrical representation of the 3-D model of Fig. 4. The 
500 m contour in this diagram represents the proximity of the top of the dome 
formation, the bottom of it is represented by the 1000 m contour. For stiffness 
computation, Poisson’s ratio was taken as 0.25.

The starting point of the 3-D simulation of the above model is the 
macro-level discretization of the entire global structure depending on the 
change of curvature of the dome interface. As presented in Fig. 5, this model 
is first subdivided into 32 solid eight-noded macro-elements bounded by 71 
principal nodal points. Each solid macro-element is in turn isoparametrically 
mapped and discretized into 1000 finite elements. Thus, the whole global model 
is isoparametrically disseminated into 32,000 finite elements. Although the 
accuracy of the seismogram depends on the size of the element or the mesh 
size used in the discretization of the structure, we had to restrict ourselves to
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’( 0 ,  5 0 0 ,  -Ю О О  »
ЮОО. 5 0 0 .  - tO OO  )

i l o o o . 4 s a .
5 0 0  >

(  — I 0 0 0  *57 C , О )

( - 1 0 0 0 , - 4 5 * .  500

(-1000 ,-500,1000 ) ( 1 0 0 0 , - 5 0 0 , 1 0 0 0 )

Fig. 5. Macro-level discretization of the 3-D dome model of Fig. 4. 
5. ábra. A 4. ábrán látható 3D-s modell makro szintű mintavételezése

only 32,000 elements — which is slightly coarser than would have been 
necessary for a 0.5 ms sampling interval as per the numerical stability criteria.

A synthetic 3-D survey is conducted by dividing the observation plane 
into 11 Jt-parallel profiles. Each profile from our 3-D data volume represents a 
seismic line along which the geologic model resembles, as closely as possible, 
a 2-D structure. All the 11 profiles on the surface are drawn and marked in 
Fig. 4. Each seismic line is assigned 55 trace/source-receiver locations. An 
external load of 10,000 N acting for one sample duration is used to simulate 
the 3-D array of impulsive force vectors. The normal incidence synthetic 
seismic responses are computed for 11x55 grid locations at 0.5 ms sampling 
rate. Time integration is performed for a total of 1500 time steps.

Seismograms along profiles 1 to 6 as depicted in Figs. 6 to 8 together 
present the gradual change of the curvature of the relection pattem from the
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dome interface as the structure is tracked from the flank to the top. Figure 6a 
shows the seismic section modelled along profile 1. The strong event ‘A ’ at 
420 ms to 450 ms between traces 28—1 and 28-55 is from the relatively 
flattened section of the dome. This event ‘A ’ gains curvature when modelled 
along profile 2 as shown in Fig. 6b. The modelling response of the dome 
interface in this section is located at 360 ms to 450 ms between traces 28-1 and 
symmetrically between traces 28-55. The dome structure becomes more 
prominent when modelled along profile 3 as is evident from the normal 
incidence synthetic time section of Fig. 7a. Reflection event lA ' can be detected 
at 330 ms to 450 ms between the source-receiver positions 28-1 and symmet­
rically between 28-55. When simulated along profile 4, the synthetic zero-off­
set time section presented in Fig. 7b, represents the strong reflection event ‘A’ 
at 270 ms to 450 ms between the surface positions 28-1 and 28-55. The same 
event ‘A ’ appears at 240 ms to 450 ms between traces 28-1 and symmetrically 
between traces 28-55, while modelling responses from the dome are computed 
along seismic line 5 as shown in Fig. 8a. Profile 6 is at the mid surface location 
and the entire model is symmetrically divided along this profile only. When 
the 3-D simulation is performed along this line, reflection event ‘A’ from the 
dome gains the maximum curvature as is depicted in Fig. 8b. In this zero-offset 
section, seismic event ‘A’ can be detected at 230 ms to 450 ms between traces 
28-1 and symmetrically between locations 28-55.

In all six zero-offset sections, one can identify an out-of-plane event ‘Ő’ 
just above the reflections arrivals from the dome interface. In the section along 
profile 1 of Fig. 6a, event iB' is quite prominent and is located at 210 ms to

S u r f o c s
P o i n t s  1 5  10 15 20 25 30 35 4 0  45 5 0  55

Fig. 6. Normal incidence synthetic time section along: (a) Profile 1; (b) Profile 2 
6. ábra. Merőleges beesésű szintetikus időszelvény, (a) 1. szelvény; (b) 2. szelvény
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Fig. 7. Normal incidence synthetic time section along: (a) Profile 3; (b) Profile 4 
7. ábra. Merőleges beesésű szintetikus időszelvény: (a) 3. szelvény; (b) 4. szelvény

Fig. 8. Normal incidence synthetic time section along: (a) Profile 5; (b) Profile 6 
8. ábra. Merőleges beesésű szintetikus időszelvény: (a) 5. szelvény; (b) 6. szelvény
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-------------  H O R I Z O N T A L  E X T E N T  IN M A L O N G  ' x' ----- »-

Fig. 9. Depth contour map over the 3-D dome model 
9. ábra. A 3D dóm modell mélységtérképe

Fig. 10. Simulated isotime map over the 3-D dome model 
10. ábra. A 3D dóm modell szimulált időtérképe
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300 ms between traces 28-1 and traces 28-55. Event 'B ' becomes feeble and 
weaker as the central profile is approached. In the section along proflie 3, the 
amplitude of event ‘5 ’ is very low. In the seismogram along line 4, this event 
is absent between trace locations 28-25 and 28-31. In the time section along 
profile 5, event ‘B ’ is totally absent between locations 22-28 and 28-34, and 
at other locations the amplitude is extremely low. Normal incidence synthetic 
seismogram along the central profile 6, contains only a faint trace of event ‘5 ’ 
at the source-receiver positions 1 to 19 and 37 to 55. Seismic event ‘5 ’ can be 
attributed to the interference of the side reflections from the dome.

Near the top of all the seismic sections of all the profiles, a comparatively 
flat event ‘C’ is observed. This event is due to the first compressions on the 
arrival of the direct wave because of the external impact.

In the zero-offset sections along profiles 2 ,3 ,4 ,5  and 6, an event is noticed 
at the base of each seismogram. This event is due to the multiple reflections.

The seismograms of profiles 7-11 are the mirror images of profiles 1-5.
Although the reflection event is somewhat stronger in all the sections, the 

overall frequency content seems to be lower. In order to make an estimate of 
the frequency content in the synthetic time sections, FFT is mn on trace 28 of 
profile 6. The resulting amplitude spectrum is presented in Fig. 11. This 
spectrum shows a freqency range of about 0-72 Hz with 38 Hz being the most 
dominant one.

By making a qualitative analysis of all the sections along the seismic 
profiles just discussed, one can thus identify all the in-plane and out-of-plane 
events by differentiating between the consistency of the pulse signatures. 
Further insight about the nature of seismic events can be gained by identifying 
them in the time slices, and how they vary areally as a functions of time. 
Representative time slices are presented in Figs. 12 to 15 for 200 ms, 300 ms, 
400 ms and 500 ms respectively.

F r e q u e n c y  in Hz --------  >>>

Fig. 11. Amplitude spectrum of trace 28 of profile 6 
11. ábra. A 6. szelvény 28. csatornájának amplitúdó spektruma
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Figure 12 shows the time slice for 200 ms in grey level with the intensity 
varying gradually between the dark representing a minimum amplitude of 
-0.70E-05 to the bright representing a maximum value of 0.27E-05. The 
brightest band appearing at the flanks of the diagram is due to the interferences 
of the side reflections. The bright band reappears in patches at the central region. 
This is the out-of-plane event. The time slice for 300 ms is given in Fig. 13. 
The central bright image corresponding to a maximum value of 0.59E-05 
represents reflection event ‘A \  This image increases in dimensions in the next 
time slice for 400 ms in Fig. 14. In Fig. 15. we get the multiple effect. In all 
the time slices the same grey look-up table is used.

In the next phase of the simulation, the time of arrival for each reflection 
signal at all the 11x55 positions is picked up and an isotime map at 20 ms contour 
interval is prepared over the 3-D dome model. The time contour map thus 
simulated is presented in Fig. 10 with the innermost contour labelled 230 ms 
and the outer-most one labelled 450 ms. The depth contour map presented in 
Fig. 9 shows a close match with the synthetic isotime map of Fig. 10 thus 
justifying the validity of the proposed numerical modelling algorithm.

hi the above algorithm, 3-D condensation of the local matrices is achieved 
by using 10 hierarchical modes.

The result of the numerical model example presented above demonstrate 
that wavefields for meaningfully sized 3-D models of interest to exploration 
geophysicists can be computed using the 3-D Finite Element Legendre Poly­
nomial Condensation Technique on mini-computers. The main advantage of 
this algorithm lies in its generality in automatic meshing and its capability in 
tackling both the latereal and vertical inhomogeneities.

4. Conclusion

Much of the current methodology of seismic data processing is based on 
the assumption that the earth can be adequately represented by a horizontally 
stratified medium. Over the years, this simiplistic picture of the subsurface has 
influenced our attitude and style of thought regarding the nature of seismic data. 
But the above algorithm simulates the wavefield by assigning global parameter 
variables to the entire model.

All the published forward modelling algorithms vary greatly in accuracy 
and model generalization. It is well known that both the finite-difference and 
finite element formulations are more efficient than the Fourier and other 
methods. The method of condensation as envisaged in the present study adds 
further efficiency to the finite element modelling scheme. The probable source 
of error that might be associated with this algorithm is due to the spatial 
discretization and time integration as restricted in parts by the considerable 
computer storage and speed that are necessary. If the mesh size and the time 
step increments are coarser, the simulated seismic sections will be devoid of 
higher frequency components. The recent advances in computer technology
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Fig. 12. Time slice for 200 ms 
12. ábra. 200 ms-os időmetszet

Fig. 13. Time slice for 300 ms 
13. ábra. 300 ms-os időmetszet



286 S. K. Nath — S. Majumdar — S. Sengupta

Fig. 14. Time slice for 400 ms 
14. ábra 400 ms-os időmetszet

Fig. 15. Time slice for 500 ms 
15. ábra. 500 ms-os időmetszet
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— especially the size of fast, accessible memory, however — have the greatest 
impact on this 3-D forward modelling scheme.

The efficacy of the method has been tested on a three-dimensional dome 
shaped structure having a velocity of 5500 m/s and density 2.74 gm/cm3 
overlain by a top layer of velocity 4000 m/s and density 2.46 gm/cm3. The 
model is subdivided into 32,000 elements and normal incidence synthetic 
seismic responses are computed for 11x55 grid locations at 0.5 ms sampling 
rate for a total of 1500 time steps. By making a qualitative analysis of all the 
time sections we can identify all the m-plane and out-of-plane events. Further 
insight regarding the nature of seismic events is obtained after the amplitudes 
are displayed as raster images in time slices and their variation with time. The 
isotime map prepared from the reflected arrivals also finds a good match with 
the depth contour map thus establishing the validity of this condensation 
technique.
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HÁROMDIMENZIÓS SZEIZMIKUS MODELLEZÉS VÉGES ELEMES 
KONDENZÁCIÓS MÓDSZERREL

Sankar Kumar NATH, Swapan MAJUMDAR and Saradindu SENGUPTA

Egy szeizmikus szelvény a háromdimenziós térben terjedő reflektált hullám kétdimenziós 
képe. A mai számítástechnikai eszközök lehetővé teszik a rétegsor szeizmikus válaszának sokkal 
pontosabb vizsgálatát, ha a hullámegyenleteket 3D-s modellekre Írjuk fel. Számos olyan numerikus 
modellezési eljárás alkalmas a 3D-s szeizmikus válaszfüggvény szimulációjára, mint amilyen a 
véges elemes eljárás is. Más sémákhoz képest ez az eljárás a számítógépek hatékony hálózatát igényli 
a többszörös fedésű rendszerek kezeléséhez. E dolgozat célja egy gazdaságos és jó hatásfokú véges 
elemes algoritmust adni a 3D-s szeizmikus modellezéshez, amely szem előtt tartja: (i) a memória és 
tárolási kapacitás csökkentését, (ii) az alkalmazhatóságot multiprocesszorork és mini-számító gépek 
esetén. Ahhoz, hogy a szabadságfok mértéke csökkenthető legyen egymás alá- és fölérendelési 
(hierarchikus) módokat vezettek be a Legendre polinómokban, és ezzel elérik a globális mátrixok 
kinematikus kondenzációját. Hat vonal mentén számoltak ki merőleges beesésű szintetikus szeiz- 
mogramot egy 3D-s dóm modell felett. Az eredmények pillanatnyi időmetszetével és izovonalas 
időtérképekkel igazolják a javasolt algoritmus értékét.


