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COMPARISON OF THE KARHUNEN-LOÈVE STACK WITH 
THE CONVENTIONAL STACK

Leif BRULAND*

Several applications of the Karhunen-Loève (KL) transform to seismic data are known, among 
which is the use of the first principal component as an alternative stack — the KL stack. On analysing 
and comparing the KL stack with the conventional stack, it was found that the KL stack is more 
influenced by noise, especially coherent noise, than the conventional one. With approximately the 
same signal amplitudes from trace to trace, the conventional stack is therefore the better choice. On 
the other hand, if the signal amplitudes vary and the noise is uncorrelated with approximately 
constant energy on all traces, the KL stack should be preferred.

It has been claimed that the KL stack is’relatively insensitive to small time shifts of the signals, 
and that correction for residual statics may be unnecessary when the KL stack is used. It is confirmed 
here that the KL stack generally gives the better signal-to-noise ratio in such cases. However, the 
time shifts may seriously distort the output signal, and the distortion is found to be very sensitive to 
changes in the time shifts, in view of which it is important to correct for residual statics even if the 
KL stack is used.

Keywords: seismic, stacking, Karhunen-Loève Transformation

1. Introduction

The Karhunen-Loève Transform (KLT) is used to represent a set of, say, 
M  input vectors or traces by a particular set o f M  orthogonal vectors called 
principal components. The principal components are linear combinations of 
the input vectors constructed in such a way that most o f the coherent energy is 
contained in the first component, or in the first few components. The KLT can 
therefore be used to express information in a compact way. The principal 
components have long been used in multivariate statistical analysis both for 
data reduction and in interpretation.
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Since the first principal component, which can be looked upon as a 
weighted stack, usually contains most o f the coherent energy from the input 
data, it may be used as an alternative stack. This was demonstrated by HEMON 
and MACE [1978], who initially suggested the application of the KLT to seismic 
data. Several other applications o f the KLT to seismic data were later presented 
by ULRYCH et al. [1983], LEVY et al. [1983], JONES, LEVY [1987], YEDLIN et 
al. [1987] and FRERE, ULRYCH [1988].

In this paper we are mainly concerned with the use of the first principal 
component as an alternative stack, hereafter called a KL stack. After a short 
introduction to the theory o f the KLT, the properties o f the KL stack are 
explored and compared with those o f the conventional stack.

2. The Karhunen-Loève Transform

Let the data be given as

*/ = C*;i, *;2> •••> xín)T . i = 1. 2, ..., M  (1)

where M  is the number of traces, and N  the number o f samples per trace, M< N. 
All traces are assumed to have zero mean values.

W e now search for a vector у as a linear combination of the x's
M

У = £  = Xä  (2)
i=l

where X = [x l5 x2, ..., xM,}, and ä = (ab a2, ..., aM)T.
The energy (or variance) o f ÿ  is then

V(ÿ) = ÿ Tÿ = â T XTXä = ä T Cä. (3)

where C=XJ X is the covariance matrix o f the data.
The first principal component is defined as the vector ÿ  that maximizes 

V(y) under the restriction

M
ä Tä=  £  a} = 1. (4)

i=i
Maximizing (3) subject to (4) is equivalent to maximizing 

/ ( a ,  X) = ä T Cä + X, (1 - ä T ä), (5)
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where A is a Lagrange multiplier. Differentiation o f / ( a ,  A.) and equating the 
result to 0  leads to:

= 2Cä -  2A5 = 0 
да

or

(С -  XI) ä  = 0. (6)

From (6) it follows that A must he an eigenvalue and a the associated 
eigenvector o f C. Therefore we must have

ä T Cä = (АЛ) = А,

and the solution to the maximization problem is the eigenvector corresponding 
to the largest eigenvalue o f C (all eigenvalues o f C are > 0).

The next principal component is found from (6) when ä  is the eigenvector 
associated with the next largest eigenvalue, and so on. We can thus write

Y = XA  (7)

where

A {ûj, Û2> •••)

Since C is symmetric, the eigenvectors are orthogonal, and A T=A~X. Multipli­
cation o f (7) by A Ogives

X = YAT, (8)

which is then the inverse transformation.
The variance o f the ith trace is

F(x,) = x j  x t.

The variance o f y, is

У (ÿ/) = у!  Уi = aI xT Xai = Xi »

and the eigenvalues are therefore just the energy or variance o f the principal 
components.

The total energy of the input data is

! > ( * , )  = Trace [XTX] = J > f = £  V f y ) . (9)
/ i Î

From this it follows that the total energy is invariant under the transfor­
mation.
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Since A-! > A^>...> A^mostoftheenergyiscontainedinthefirstprincipal 
components. W e can therefore approximate X  by a linear combination of the 
principal components with largest energy, say the first P<M components:

X »  Y mp A ^ M . (10)

The amount o f reconstructed energy can be calculated from

3. KLT and Singular Value Decomposition (SVD)

An SVD o f the data matrix X  also leads to the matrix o f  coefficients, A, 
and the matrix o f  principal components, Y. To see this we start with the matrix

B = ' 0  X 
XT 0

, B T =B

The eigenvalue problem for this matrix can be written

0 X' 
XT 0

( 12)

(13)

where и is an (N x 1) vector,v is an (M x 1) vector, and / is an eigenvalue. Since 
В is symmetric, l will be real. From (13) we get

Xv = lu, XTu = Iv (14)

Premultiplication o f the two equations by XT and X, respectively, gives

XTXv = Pv, XXTÛ = Pu (15)

W e thus see that v is an eigenvector o f C=XTX  and A=/2 the associated
eigenvalue, while й is an eigenvector o f XXT with the eigenvalue X.

For convenience we assume the rank of C and XX'  to be M. C is then a 
positive definite matrix, and therefore all eigenvalues are greater than zero. We 
order the eigenvalues so that Aj> Â  > ... -  \M > 0, and let the corresponding
eigenvectors be normalized so that v f  vf = 1, u j  ui = 1, i= l ,2 ,  ...,M . Wethen 
define the matrices V and U as

V= (vj, v2,.. . ,v M}
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U -  {wj, й2, . . -,им ]

and define A  as the matrix with the eigenvalues as its diagonal elements with 
zeroes elsewhere.

From (14) we get

XV  = UA (16)

Comparing (16) with (7) we find that

A = V
Y= UA (17)

Postmultiplication o f (16) with VT gives the decomposition o f X

X = U A V T = YAT
which according to (8) is equivalent to the inverse transformation.

4. Comparison of the KL stack with the conventional stack

Some properties o f the KL stack are more easily revealed by observing 
that the principal components can be derived in a different way.

From (17) it follows that the principal components are scaled versions o f  
the first M  eigenvectors o f XXT. These eigenvectors can also be found from a 
maximization problem, viz.

max (йт ХХтй) (18)

under the restriction

йт й = 1

Since this leads to exactly the same sort o f problem as was defined by (5),
only with Хт X  replaced by XXT, й will be the eigenvector o f XX1 that is 
associated with the largest eigenvalue X. The first principal component is just
ÿ = Хй. But expression (18) can be written

M
max (RT XXTu) = max^T (x f  й)2 (19)

Ы
Thus, the normalized first principal component maximizes the sum o f the 
square o f  the inner products between this component and the traces. It can be 
easily shown that the normalized conventional stack maximizes the sum o f the 
inner products. In summary,
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The normalized first principal component, й, maximizes ^  ( x f  u)2

The normalized conventional stack, s, maximizes ^  ( x f  s)

From these properties o f й and s  we can draw some conclusions:
If one or more traces are reversed in polarity, this will have no influence 

on the KL stack. This is shown by Fig. 1. where exactly half o f the traces have 
been reversed in polarity so that the conventional stack becomes a zero trace.

Fig. 1. Traces may be reversed in polarity without affecting the KL stack. In this example 6 out 
of 12 identical traces have been reversed in polarity. The comventional stack (CS) gives a zero 

trace, the KL stack (KL) reproduces the input trace 
1. ábra. A csatornák polraitása megfordulhat anélkül, hogy a KL stacking eredményét 

megváltoztatná. A példán 12 azonos csatornából 6 ellentétes poíraitású. A hagyományos stacking 
(CS) zéró csatornát eredményez, a KL stacking (KL) a bemeneti csatornát adja vissza

If the noise is uncorrelated from trace to trace, and all traces have identical 
signals and the same signal-to-noise ratio, the conventional stack is the opti­
mum (weighted) stack. In this case the weights in (2) will also be equal, and 
therefore the KL stack is also optimum. Now, if  the noise energy varies from 
trace to trace, the KL stack will be most influenced by the traces with highest 
noise energy. This is true whether the noise is correlated or not, but the effect 
will be more pronounced if the noise is coherent over two or more traces. This 
result is illustrated in Fig. 2.
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Fig. 2. Illustration of the effect of a ‘noise signal’ present on 2 traces (in this case). When the 
noise energy is small compared with the signal energy, there are no discernible differences 

between the KL stack (KL) and the conventional stack (CS) (a and b). With an increasing relative 
amount of noise energy, the differences become quite pronounced (c and d). The stacks have 

been scaled to equal signal amplitudes
2. ábra. Két csatornán jelen lévő „zavarjel” hatása. Ha a zaj energiája a jel energiájához képest 

kicsi, a KL stacking (KL) és a hagyományos stacking (CS) között nincsenek észrevehető 
különbségek (a és b). A zaj energiája relativ hányadának növekedésével a különbségek 

meglehetősen hangsúlyozónak lesznek ( c és d). A stackingeket az egyenlő jel amplitúdókhoz
igazítottuk
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The synthetic input data to the left o f Fig. 2a, contain one coherent signal 
(identical on all traces) and a ‘noise’ signal present on only two out o f twelve 
traces. The KL stack and the conventional stack are shown to the right. The 
stacks have been normalized to the signal amplitude. There is no visually 
discernable difference between these stacks but the traces with noise were given 
slightly higher weights than the other traces in the KL stack. If we increase the 
noise energy on the two input traces, these traces will be given successively 
higher weights in the KL stack (Fig. 2b-2d).

It may be illustrative to calculate the weights for traces with and without 
noise in a case like the last one.

Let the traces be given as

xt = s, / = 1 , 2 , ..., m 
Xj = s + n, i = m+l, m+2,..., M

We assume s T n = 0 (i.e., no overlap between coherent noise and signal), and 
denote s T s = a, nT n = b and (s+n)T (s+h) = a+b = c. W e then have

X TX = A В 
BT C ’

(20)

where A is an m*m matrix, В is m *(M-m) and C is (M-m)* (M-m). The 
elements in A and В are all equal to a, and those o f C are all equal to c. The 
eigenvalue-eigenvector problem is then

:a B~ и
= X и

BT c V V
(21)

where w is an m x 1 and v an (M -m ) x 1 vector. The eigenvector associated with 
the largest X has only two different elements, since all elements in й must be
equal, and so must all elements in v. These values, which we denote и and v, 
respectively, are the weights given to traces without noise and with noise in the 
calculation of the KL stack.

The system is now reduced to

та (M-m) a и = X и
ma (M-m) c V V

Solving for X gives

(22)

X = 2 [(M~m) c+ma\ + ^  V [(M-m) c+ma]2 -  4та (M~m ) (c~a) ,  (23)

and the ratio v/u becomes

v X
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Since the total energy of the traces is E = (M -m ) c + ma and the total noise 
energy isN  = b (M-m),  we get the following inequality for the ratio v/u

E
E -2N

> ^ >
и

E
E -N

(24)

W e thus see that the noise traces will always get larger weights in the calculation 
o f the KL stack, even if  the noise is present on only one trace. It may be 
concluded that as long as the signal is completely coherent with constant 
amplitudes from trace to trace, the conventional stack should be preferred to 
the KL stack irrespective o f the noise structure.

It has been claimed that the KL stack is relatively insensitive to small 
trace-to-trace time shifts o f the signal, and therefore residual static correction 
can often be avoided when the KL stack is used [HEMON, MACE 1978, ULRICH 
et al. 1983]. However, this is only partly true, as can be seen from the following 
argument.

One choice o f the weights, ah in equation (2) which satisfies (4) is ak = 1, 
a, = 0 when a * k. Thus the energy o f the first principal component is always 
greater than or equal to the energy o f the trace with the highest energy. This 
means that even if the signal is somewhat out o f phase from trace to trace, the 
signal will not be cancelled by a KL stack as it might be by a conventional 
stack. With uncorrelated noise, the S/N ratio will therefore be higher in the KL 
stack than in the conventional stack. However, there is no guarantee that the 
KL stack will reproduce the signal; in fact it may be highly distorted, and the 
form of the signal in the KL stack is very sensitive to small changes in the 
statics. This is illustrated in- Fig. 3, where quite different signals appear in the 
KL stack although only one trace has been changed from step to step. If signal 
distortion is to be avoided, it is therefore necessary to perform residual static 
correction even if the KL stack is to be applied.

Next we consider the case with varying signal amplitudes across the traces. 
If the noise is approximately uncorrelated with nearly the same energy on all 
traces, we can use the arguments o f the last example to see that in this case the 
KL stack is preferable to the conventional stack. This follows from the fact that 
the energy in the KL stack cannot be less than the energy in the trace o f  
maximum energy, and since the difference in trace energy is due to the 
difference in signal energy, the S/N ratio will always be higher in the KL stack 
than in the single traces. This will not always be the case for the conventional 
stack. If the noise varies from trace to trace, the situation becomes more obscure 
since the relative amount o f signal energy to noise energy will affect the weights 
in the KL stack. With an increasing amount o f coherent noise, the KL stack 
should again be avoided.
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Fig. 3. KL stacks (KL) and conventional stacks (CS) of sets of traces with time shifted signals. 
Only one of the traces (second from the left) in Fig. 3b is different from those in Fig. 3a. In 

Fig. 3b and in 3c, only the third trace is different 
3. ábra. KL stackingek (KL) és hagyományos stackingek (CS) csatomasorozata időben eltolt 

jelekkel. A 3b. ábrán csak egyetlen csatorna (balról a második) tér el a 3a. ábrán lévő 
csatornáktól. A 3b és a 3c ábrák között csak a harmadik csatornában van különbség

5. Conclusions

The properties o f the KL stack have been analysed and compared with 
those o f the conventional stack, and the results can be summarized as follows:

Both stacks are optimal in the case o f identical signals contaminated by 
completely uncorrelated noise. With identical signals on all traces the conven­
tional stack is superior to the KL stack in all other cases.

Correlated noise will always have a greater influence on the KL stack than 
on the conventional stack. The differences between stacking methods are small 
as long as the amount o f noise energy is small compared with the total signal 
energy, but they increase rapidly with an increasing relative amount o f corre­
lated noise energy. This is true whether the noise is coherent over all traces 
(except for the case o f  identical noise ‘signals’ on all traces) or only a few.

If traces with residual statics are KL stacked, the S/N ratio will normally 
increase (and never decrease), but the signal may be highly distorted. It is
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therefore important to perform residual static correction even if KL stacking is 
to be applied.

If the signal amplitudes vary across the traces while the noise is uncorre­
lated and has approximately the same energy on each trace, the KL stack is a 
better choice than the conventional stack. This may be so even when the noise 
varies and/or is correlated to some extent, but it would be very difficult to 
prescribe which method to use in such cases.
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A KARHUNEN-LOÈVE ÉS A HAGYOMÁNYOS STACKING ELJÁRÁS
ÖSSZEHASONLÍTÁSA

Leif BRULAND

A szeizmikában a Karhunen-Loève (KL) transzformáció számos alkalmazása ismert, ezek 
közül az első főkomponensnek alternatív összegzésként való alkalmazása a KL stacking. A KL 
stackinget és a hagyományos stackinget elemezve és összehasonlítva, megállapítottuk, hogy a KL 
stackinget a zaj, különösen pedig a koherens zaj jobban befolyásolja, mint a hagyományos stackin­
get.

Csatornáról csatornára haladva közel azonos jelamplitúdók mellett ezért a hagyományos 
stacking a jobb választás. Másrészt azonban, ha a jel amplitúdója változik, és a zaj minden csatornán 
közel azonos energiájú és korreláltalan, a KL stackinget kellene előnyben részesíteni.

Azt állították, hogy a KL stacking viszonylag érzéketlen a jelek kismértékű időbeli eltolódá­
saira, és a maradék statikus korrekció KL stacking esetében felesleges. Megerősítjük, hogy ilyen 
esetekben valóban a KL stacking adja a jobb jel/zaj viszonyt. Azonban, az időbeli eltolódások a 
kimenő jelet lényegesen torzíthatják, a torzulás nagyon érzékeny az időbeli eltolódásokra, és 
mindezekre való tekintettel, fontos, hogy a KL stacking esetében is végrehajtsuk a maradék statikus 
korrekciót.




