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COMPARISON OF THE KARHUNEN-LOEVE STACK WITH
THE CONVENTIONAL STACK

Leif BRULAND*

Several applications of the Karhunen-Loéve (KL) transform to seismic data are known, among
which is the use ofthe first principal component as an alternative stack — the KL stack. On analysing
and comparing the KL stack with the conventional stack, it was found that the KL stack is more
influenced by noise, especially coherent noise, than the conventional one. With approximately the
same signal amplitudes from trace to trace, the conventional stack is therefore the better choice. On
the other hand, if the signal amplitudes vary and the noise is uncorrelated with approximately
constant energy on all traces, the KL stack should be preferred.

It has been claimed that the KL stack isrelatively insensitive to small time shifts of the signals,
and that correction for residual statics may be unnecessary when the KL stack is used. It is confirmed
here that the KL stack generally gives the better signal-to-noise ratio in such cases. However, the
time shifts may seriously distort the output signal, and the distortion is found to be very sensitive to
changes in the time shifts, in view of which it is important to correct for residual statics even if the
KL stack is used.
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1. Introduction

The Karhunen-Loéve Transform (KLT) is used to represent a set of, say,
M input vectors or traces by a particular set of M orthogonal vectors called
principal components. The principal components are linear combinations of
the input vectors constructed in such a way that most of the coherent energy is
contained in the first component, or in the first few components. The KLT can
therefore be used to express information in a compact way. The principal
components have long been used in multivariate statistical analysis both for
data reduction and in interpretation.
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Since the first principal component, which can be looked upon as a
weighted stack, usually contains most of the coherent energy from the input
data, it may be used as an alternative stack. This was demonstrated by HEMON
and MACE [1978], who initially suggested the application of the KL T toseismic
data. Several other applications of the KLT to seismic data were later presented
by ULRYCH etal. [1983], LEVY etal. [1983], JONES, LEVY [1987], YEDLIN et
al. [1987] and FRERE, ULRYCH [1988].

In this paper we are mainly concerned with the use of the first principal
component as an alternative stack, hereafter called a KL stack. After a short
introduction to the theory of the KLT, the properties of the KL stack are
explored and compared with those of the conventional stack.

2. The Karhunen-Loéve Transform

Let the data be given as

* = CRi, %2> s> xin)T. 1= 1.2, ..., M (1)

where M is the number of traces, and N the number of samples per trace, M<N.
All traces are assumed to have zero mean values.

We now search for a vector y as a linear combination of the x's
M
Y=£ = Xa (2)
i=l
where X = [xI5x2, ..., xM}, and & =(ab a2, .., aM)T.

The energy (or variance) ofY is then

V() =y Ty=4&aT XTXa =4 TCa. 3)
where C=XJ X is the covariance matrix of the data.
The first principal component is defined as the vector y that maximizes
V(y) under the restriction
M
aTa=£ a}=1 (4)
i=i

Maximizing (3) subject to (4) is equivalent to maximizing

/(a, X) =ATCA4 + X (L-4T4), (5)
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where Ais a Lagrange multiplier. Differentiation of/(a, A) and equating the
result to O leads to:

=2C4- 2A5=0
ha
or

(C- Xl)a=o. (6)

From (6) it follows that A must he an eigenvalue and a the associated
eigenvector of C. Therefore we must have
aTCa-= (A = A

and the solution to the maximization problem is the eigenvector corresponding
to the largest eigenvalue of C (all eigenvalues of C are > 0).

The next principal component is found from (6) when 4 is the eigenvector
associated with the next largest eigenvalue, and so on. We can thus write

Y=XA (7)
where
A {aj, (2> )
Since C is symmetric, the eigenvectors are orthogonal, and A T=A~X Multipli-
cation of (7) by AOgives
X = YAT, (8)

which is then the inverse transformation.
The variance of the ithtrace is

F(x,) =xj Xt.
The variance ofy, is

Y =y! Yi=al xT Xai=Xi»

and the eigenvalues are therefore just the energy or variance of the principal
components.
The total energy of the input data is

1> (*,) =Trace [XTX] =J>f=£ Vfy). 9)
/ i 1

From this it follows that the total energy is invariant under the transfor-
mation.
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Since A!>AN>..> AMmostoftheenergyiscontainedinthefirstprincipal
components. We can therefore approximate X by a linear combination of the
principal components with largest energy, say the first P<M components:

X» Ymp AMM. (10)

The amount of reconstructed energy can be calculated from

3. KLT and Singular Value Decomposition (SVD)

An SVD of the data matrix X also leads to the matrix of coefficients, A,
and the matrix of principal components, Y. To see this we start with the matrix

0 X
= ,BT=B 12
XTO (19
The eigenvalue problem for this matrix can be written
0 X
13
XTO (13)

where 1 is an (N x 1) vector,v is an (M x 1) vector, and / is an eigenvalue. Since
B is symmetric, | will be real. From (13) we get

Xv=1lu, XTu=1lv (14)
Premultiplication of the two equations by XTand X, respectively, gives
XTXv =Py, XXTU=Pu (15)

We thus see that v is an eigenvector of C=XTX and A=/2 the associated

eigenvalue, while i is an eigenvector of XXTwith the eigenvalue X

For convenience we assume the rank of C and XX' to be M. C is then a
positive definite matrix, and therefore all eigenvalues are greater than zero. We
order the eigenvalues so that Aj> A*> ... - \M > 0, and let the corresponding

eigenvectors be normalized so that vf vf= 1, ujui =1, i=1,2, ...,M. Wethen
define the matrices Vand U as

V= (vj, v2,...,vM}
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U- {wj, n2,..-,um]

and define A as the matrix with the eigenvalues as its diagonal elements with

zeroes elsewhere.
From (14) we get

XV = UA (16)
Comparing (16) with (7) we find that
A=V
Y= UA (17)

Postmultiplication of (16) with VTgives the decomposition of X
X=UAVT=YAT

which according to (8) is equivalent to the inverse transformation.

4. Comparison of the KL stack with the conventional stack

Some properties of the KL stack are more easily revealed by observing
that the principal components can be derived in a different way.

From (17) it follows that the principal components are scaled versions of
the first M eigenvectors of XXT. These eigenvectors can also be found from a
maximization problem, viz.

max (ATXXT) (18)
under the restriction
WTin =1
Since this leads to exactly the same sort of problem as was defined by (5),

only with XTX replaced by XXT, ii will be the eigenvector of XX1 that is
associated with the largest eigenvalue X The first principal component is just

y = Xii. But expression (18) can be written

M
max (RTXXTu) = max~T (xf i1)2 (19)
bl

Thus, the normalized first principal component maximizes the sum of the
square of the inner products between this component and the traces. It can be
easily shown that the normalized conventional stack maximizes the sum of the
inner products. In summary,



244 LeifBruland

The normalized first principal component, i1, maximizes ~ (xfu)2
The normalized conventional stack, S, maximizes ~ (xfs)

From these properties of i1 and S we can draw some conclusions:

If one or more traces are reversed in polarity, this will have no influence
on the KL stack. This is shown by Fig. 1. where exactly halfof the traces have
been reversed in polarity so that the conventional stack becomes a zero trace.

Fig. 1. Traces may be reversed in polarity without affecting the KL stack. In this example 6 out
of 12 identical traces have been reversed in polarity. The comventional stack (CS) gives a zero
trace, the KL stack (KL) reproduces the input trace
1 abra. A csatornak polraitasa megfordulhat anélkil, hogy a KL stacking eredményét
megvaltoztatna. A példan 12 azonos csatornabdl 6 ellentétes poiraitasi. A hagyomanyos stacking
(CS) zéro6 csatornat eredményez, a KL stacking (KL) a bemeneti csatornat adja vissza

If the noise is uncorrelated from trace to trace, and all traces have identical
signals and the same signal-to-noise ratio, the conventional stack is the opti-
mum (weighted) stack. In this case the weights in (2) will also be equal, and
therefore the KL stack is also optimum. Now, if the noise energy varies from
trace to trace, the KL stack will be most influenced by the traces with highest
noise energy. This is true whether the noise is correlated or not, but the effect
will be more pronounced if the noise is coherent over two or more traces. This
result is illustrated in Fig. 2.
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Fig. 2. lllustration of the effect of a ‘noise signal’ present on 2 traces (in this case). When the
noise energy is small compared with the signal energy, there are no discernible differences
between the KL stack (KL) and the conventional stack (CS) (a and b). With an increasing relative
amount of noise energy, the differences become quite pronounced (c and d). The stacks have
been scaled to equal signal amplitudes
2. abra. Két csatornan jelen 1évé ,,zavarjel” hatasa. Ha a zaj energiaja a jel energidjahoz képest
kicsi, a KL stacking (KL) és a hagyomanyos stacking (CS) kozott nincsenek észrevehet6
kulénbségek (a és b). A zaj energiaja relativ hanyadanak novekedésével a kiilonbségek
meglehet6sen hangsulyozénak lesznek ( ¢ és d). A stackingeket az egyenl6 jel amplitatdokhoz
igazitottuk
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The synthetic input data to the left of Fig. 2a, contain one coherent signal
(identical on all traces) and a ‘noise’ signal present on only two out of twelve
traces. The KL stack and the conventional stack are shown to the right. The
stacks have been normalized to the signal amplitude. There is no visually
discernable difference between these stacks but the traces with noise were given
slightly higher weights than the other traces in the KL stack. If we increase the
noise energy on the two input traces, these traces will be given successively
higher weights in the KL stack (Fig. 2b-2d).

It may be illustrative to calculate the weights for traces with and without
noise in a case like the last one.

Let the traces be given as

xt =s, /=1,2,...,m
Xj =s +n, i=m+l, m+2,..., M

We assume sTn =0 (i.e., no overlap between coherent noise and signal), and
denotesTs =a, nTn =band (s+n)T(s+h) = a+b =c. We then have

xTx=" B (20)
BT C °

where A is an m*m matrix, B is m *(M-m) and C is (M-m)*(M-m). The
elements in A and B are all equal to a, and those of C are all equal to c. The
eigenvalue-eigenvector problem is then

a B~ n "
=X (21)

BTc v %
where wisanm x 1and van (M-m) x 1 vector. The eigenvector associated with
the largest X has only two different elements, since all elements in /i must be

equal, and so must all elements in v. These values, which we denote 1 and v,
respectively, are the weights given to traces without noise and with noise in the
calculation of the KL stack.

The system is now reduced to

Ta (M-m)a n "
=X
ma (M-m)c v v 22)

Solving for Xgives
X =2 [(M~m) c+ma\ +* V[(M-m) c+ma]2 - 4Ta (M~m) (c~a), (23)

and the ratio v/u becomes
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Since the total energy of the traces is E = (M-m) ¢ +ma and the total noise
energy iSN =b (M-m), we get the following inequality for the ratio v/u

E E

>N > (24)

E-2N wu E-N
W e thus see that the noise traces will always get larger weights in the calculation
of the KL stack, even if the noise is present on only one trace. It may be
concluded that as long as the signal is completely coherent with constant
amplitudes from trace to trace, the conventional stack should be preferred to

the KL stack irrespective of the noise structure.

It has been claimed that the KL stack is relatively insensitive to small
trace-to-trace time shifts of the signal, and therefore residual static correction
can often be avoided when the KL stack is used [HEMON, MACE 1978, ULRICH
etal. 1983]. However, this isonly partly true, as can be seen from the following
argument.

One choice of the weights, ah in equation (2) which satisfies (4) is ak = 1,
a, = 0 when a * k. Thus the energy of the first principal component is always
greater than or equal to the energy of the trace with the highest energy. This
means that even if the signal is somewhat out of phase from trace to trace, the
signal will not be cancelled by a KL stack as it might be by a conventional
stack. With uncorrelated noise, the S/N ratio will therefore be higher in the KL
stack than in the conventional stack. However, there is no guarantee that the
KL stack will reproduce the signal; in fact it may be highly distorted, and the
form of the signal in the KL stack is very sensitive to small changes in the
statics. This is illustrated in-Fig. 3, where quite different signals appear in the
KL stack although only one trace has been changed from step to step. Ifsignal
distortion is to be avoided, it is therefore necessary to perform residual static
correction even if the KL stack is to be applied.

Next we consider the case with varying signal amplitudes across the traces.
If the noise is approximately uncorrelated with nearly the same energy on all
traces, we can use the arguments of the last example to see that in this case the
KL stack is preferable to the conventional stack. This follows from the fact that
the energy in the KL stack cannot be less than the energy in the trace of
maximum energy, and since the difference in trace energy is due to the
difference in signal energy, the S/N ratio will always be higher in the KL stack
than in the single traces. This will not always be the case for the conventional
stack. Ifthe noise varies from trace to trace, the situation becomes more obscure
since the relative amount ofsignal energy to noise energy will affect the weights
in the KL stack. With an increasing amount of coherent noise, the KL stack
should again be avoided.
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Fig. 3. KL stacks (KL) and conventional stacks (CS) of sets of traces with time shifted signals.
Only one of the traces (second from the left) in Fig. 3b is different from those in Fig. 3a. In
Fig. 3b and in 3c, only the third trace is different

3. abra. KL stackingek (KL) és hagyomanyos stackingek (CS) csatomasorozata idében eltolt
jelekkel. A 3b. abran csak egyetlen csatorna (balrél a masodik) tér el a 3a. abran 1évé
csatornaktol. A 3b és a 3c abrak kozott csak a harmadik csatornaban van kiilonbség

5. Conclusions

The properties of the KL stack have been analysed and compared with
those of the conventional stack, and the results can be summarized as follows:

Both stacks are optimal in the case of identical signals contaminated by
completely uncorrelated noise. With identical signals on all traces the conven-
tional stack is superior to the KL stack in all other cases.

Correlated noise will always have a greater influence on the KL stack than
on the conventional stack. The differences between stacking methods are small
as long as the amount of noise energy is small compared with the total signal
energy, but they increase rapidly with an increasing relative amount of corre-
lated noise energy. This is true whether the noise is coherent over all traces
(except for the case of identical noise ‘signals’ on all traces) or only a few.

If traces with residual statics are KL stacked, the S/N ratio will normally
increase (and never decrease), but the signal may be highly distorted. It is
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therefore important to perform residual static correction even if KL stacking is
to be applied.

If the signal amplitudes vary across the traces while the noise is uncorre-
lated and has approximately the same energy on each trace, the KL stack is a
better choice than the conventional stack. This may be so even when the noise
varies and/or is correlated to some extent, but it would be very difficult to
prescribe which method to use in such cases.
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A KARHUNEN-LOEVE ES A HAGYOMANYOS STACKING ELJARAS
OSSZEHASONLITASA

Leif BRULAND

A szeizmikaban a Karhunen-Loéve (KL) transzformacio szamos alkalmazasa ismert, ezek
kozil az els6 fékomponensnek alternativ ésszegzésként vald alkalmazasa a KL stacking. A KL
stackinget és a hagyomanyos stackinget elemezve és 6sszehasonlitva, megallapitottuk, hogy a KL
stackinget a zaj, killéndsen pedig a koherens zaj jobban befolyasolja, mint a hagyomanyos stackin-
get.

Csatornarél csatornara haladva kozel azonos jelamplitidok mellett ezért a hagyomanyos
stacking ajobb valasztas. Masrészt azonban, ha ajel amplitiddja valtozik, és a zaj minden csatornan

Azt allitottak, hogy a KL stacking viszonylag érzéketlen ajelek kismérték( idébeli eltoléda-
saira, és a maradék statikus korrekcié KL stacking esetében felesleges. Megerdsitjik, hogy ilyen
esetekben val6ban a KL stacking adja a jobb jel/zaj viszonyt. Azonban, az id6beli eltolédasok a
kimené jelet lényegesen torzithatjdk, a torzulas nagyon érzékeny az id6ébeli eltolédasokra, és
mindezekre vald tekintettel, fontos, hogy a KL stacking esetében is végrehajtsuk a maradék statikus
korrekciot.






