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PRACTICAL DEFINITION OF ROBUSTNESS

Ferenc STEINER and Béla HAJAGOS

The paper defines the index of robustness (r) as a weighted average efficiency belonging to a 
statistical estimating procedure. The weights are the occurrence probability densities of the various 
model types which can be accepted as adequate for a given discipline. The value r  can simultaneously 
take very different probability distribution types into consideration. Instead of deciding categorically 
‘robust’ — ‘not robust’ the examples show robustnesses in the interval from r=36 % to r=96 %. In 
geophysics practice quantitative comparisons are unavoidable.

Some of the figures demonstrate the original efficiency curves (e(t)-s), figuring in Eq. 12 given 
for r, too, thereby enabling so that the changes in the efficiencies can be analysed in detail.

Keywords: robustness, index of robustness, statistical efficiency, probability density, 
error distribution

1. Introduction and preliminaries

The definition o f robustness by theoretical experts o f mathematical statis­
tics [see e.g. HAMPEL et al. 1986] does not result in numerical values (thereby 
facilitating the near-optimum choice of the statistical algorithm,) and/or it 
belongs to very narrow (or even infinitesimal) neighbourhood of a distribution 
type. Let one comment be cited from the Summary o f the article o f DONOHO 
and LlU [1988], i.e., from a paper written by mathematicians: ‘Of course, this 
robustness is formal because p-contamination neighbourhoods may not be 
large enough to contain realistic departuresfrom the model' (enhancement was 
not made in the original text). Here we propose the acceptance of a measure of 
robustness which is also suitable for practical applications. The discipline of 
geophysics particularly needs quantitative comparisons made on the grounds 
o f large type-intervals.
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1.1. Various estimations o f the location parameter (a brief enumeration)

A chronological enumeration o f different statistical procedures is given 
below with some comments. In every case below the task is to determine 
(estimate) on the grounds o f a given sample the most characteristic value o f the 
actual probability distribution (this is naturally the symmetry point if the 
distribution is symmetrical). — In the first and second case it is impossible to 
determine how old these estimations are (at least two hundred years old):

arithmetic mean 
sample median
a-trimmed mean 1821 see e.g. FEGYVERNEKI [ 1992] — but may be as old 

as the arithmetic mean itself
Hodges-Lehmann es- 1963
timate
Huber estimate 1964
M  -estimate 1965 this is the minimum place o f  the P -norm, see Eq. 36 

in Hajagos and Steiner [1991]
M-estimate 1973 this is the minimum place o f  the P-norm, see Eq. 30 

in Hajagos and Steiner [1991]
/.„-estimate 
Q?>0, p* \, p*2)

1990 this is the minimum place of the generalized Ip-
norm, see e.g. TARANTOLA [ 1987] (it is well known 
that for p = 1 we would get the sample median and 
forp=2 the arithmetic mean). The date o f  Lp is given 
here in accordance with SOMOGYI and ZÁVOTI 
[1990], as the authors do not know any earlier article 
in applied statistics that deals in detail with a p  value 
which is not an integer.

Where no explanation is given or no reference is cited, see e.g. the 
monograph HUBER [1981] or the original papers HODGES, LEHMANN [1963] 
and HUBER [1964] (in the present paper ‘Proposal 2 ’ o f HUBER is treated). It 
should be mentioned that both M*- and M-estimates are called ‘/Hostfrequent 
value’ therefore in the case o f more unknown parameters the corresponding 
statistical algorithm is called ‘M FF procedure’ (and the simple estimate can 
also be called iMFV-value’ instead of M- or M*-estimate). Some characteristics 
o f the M-estimate are given in a comprehensive manner in the Table at the end 
of the book STEINER (ed. ) [ 1991 ] ; Jn the bibliography of this book are cited the 
paper and thesis where M- and M*-estimates were first defined.

1. 2. How to calculate the efficiencies

If certain conditions for the density function are fulfilled and the sample 
range (ri) tends to infinity, the distribution type o f the estimates becomes
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Gaussian (see e.g. HUBER [1981]; the overwhelming majority o f the following 
can also be found in the same monograph). This means that the dispersion can 
adequately be characterized by the variance ( VAR =o2) o f  the estimates. To be 
independent o f n, it is convenient to introduce the notion ‘asymptotic variance’ 
{A2) with the equation

A 2 = Hm n.o2. (1)
П-.0О

It is often easy to find statistical algorithm that leads to the minimum asymptotic 
variance (A2^ )  for the probability distribution in question.

The efficiency (e) of an arbitrary statistical algorithm having an asymptotic 
variance A2 for a well defined probability distribution, is defined as

e = (2)

(where A 2^  obviously belongs to the same probability distribution). Often e 
is expressed in per cent.

E q .2  says that e per cent o f the data would be sufficient for the same 
estimation accuracy if we were to use an optimum algorithm instead o f the one 
actually used. In practice therefore, from the viewpoint o f the cost o f measure­
ments it is o f crucial importance that the statistical efficiency e is as great as 
possible.

How does one calculate the asymptotic variance A 2? If the so-called 
influence function IC(x) is known for the statistical algorithm and for the actual 
probability distribution defined by the density function f(x), A2 can be deter­
mined as

A2 = j lC 2 (x ) . f ( x )  dx. (3)

If primarily the \|/(x)-function is given (the \|/-function plays a key-role in the 
best elaborated part o f the robust statistics), the influence function can be 
calculated as

-l
CO

/C (x) = f W . JV (y) -/OOdy (4)

In some cases A2 can be calculated directly by means o f a simple formula. 
Table /  gives either / l 2-formulas, or 1C-, or у -functions (always choosing the 
simplest alternative) for the statistical procedures yet enumerated in 1.1. (for 
probability distributions symmetrical to the origin). The asymptotic variance 
A2 can be calculated in every case without difficulty.
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1. 3. The supermodel f a(x)

The supermodel f a(x) was introduced by the density functions

fa W  = Г
a
2

->-1
/* 1 Na - 1

n ( M )2 \- a /2
( f l > D (5)

[see e.g. CSERNYÁK, STEINER 1991]; this standard form can be generalized 
by replacing x  by (x-TyS  and dividing by S (T  and S are the parameter o f  
location and parameter o f scale, respectively). Here, we mention some types 
of this supermodel: the distribution type a=5 is called geostatistical or simply 
statistical having clearly the density function

f st (jc) = 0.75(1 +x2r 2-5 . (6)

(according to DUTTER [1987] this is a very commonly occurring distribution 
type in geostatistics, but in the opinion of the authors its acceptance as a model 
is justified more generally in the practice o f statistics). If short flanks are 
guaranteed, the so-called Jeffreys-type (a=9) can serve as an adequate model 
for the distribution:

statistical procedure 
(estimate)

characterization o f the procedure from the view­
point o f the asymptotic variance o f  the estimates

arithmetic mean IC(x) = x, i.e., A2 = VAR - a2
(VAR means the variance, о the scatter of 

the mother distribution)

sample median .2 1
4 . f  \ 0)

a-trimmed mean IC(x) =
l-2o.F 1(a)’
*/(l-2ot), if |jc| <F_1( l-a )  

-p 4^ F _1( l-a )  if x > f  't l-a )

Hodges-Lehmann estimate

.2 1

'2

»
J dr

J
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Huber-estimate

cS °°
J  AC2 7(x)dr+(c5)2p ( .r )d r

.2 0 cS
, 42 • 
cS

2 p(.t)d.r 
0 /

the value S fulfils the condition
. cS <“

— f  X2/(x )d t+ c2 f/(x)dx =2J J V j j  V /
45 0 cS
c oo

=J/c( ï) d.r+c2J /c  (x) dx ;
0 c

(/g(x) represents the Gaussian density function)

*
M -estimate

most frequent 
values

A/-estimate

* x VM* -  2 2 2
[3 m 2+x2]2

The dihesion e fulfils in both 
cases the condition
00 2 2
Г / ( x ) d x - 0  

l i e 2 + x2]2
VM -  2 2  

(k tf+ x2

/.^-estimate Чр(х) = sign x . J_xj p~x

Table I. Charaterization of some statistical procedures 
I. táblázat. Statisztikai eljárások jellemzése

Ä W - f a ^ 2)4 5  • (7)
It сап easily be shown that for the supermodel f a(x) the minimum asymptotic 
variance is given by the simple formula

2 a+2
^mtn a (a - j ) (8)

For integer values o f a we get Student distribution types characterized by ( a - 1) 
degrees o f freedom; the so-called Jeffreys interval o f distribution types defined 
by 6 < a <10 was primarily given also by limits expressed as 5 and 9 degrees 
o f freedom. Obviously , f a [ x . (a -3 )~ 1/2] tends to the standard
Gaussian density function f G (x) = (2n ) x/l. exp(-Jc2/2 )  if  For a=2 we
trivially get the Cauchy distribution.
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The probability density functions o f the Cauchy-, (geo)statistical-, Jeff­
reys- and Gaussian type are shown in Fig. i;  in all four cases the probable error 
(i.e., the semi-interquartile range q) equals unity (choosing the parameter o f  
scale S always appropriately). We find these curves visually very similar — 
although statistical procedures can behave very differently if  the actually 
occurring error distribution type is, say, geostatistical instead o f Gaussian. 
Some statistical procedures (first o f all the classical ones) are extremely 
sensitive to the behaviour o f the flanks but Fig. 1 (and other such commonly 
used visualizations, too) does not characterize these parts o f the distributions 
vety well (the small values o f fix) at both ends o f the /(x)-curve can result in 
misjudging the weight of the flanks measured in the occurrence probability o f  
X  o f the neglected sides). The authors therefore prefer the plotting of the density 
function versus F(x)-curve since this does not depend upon the parameter of 
scale and, moreover, it enhances the behaviour o f the tails (as usually,

Fig. 1. Four-probability density functions of x from the supermodel f a(x) (see Eqs. 5-7). With 
appropriately chosen parameter of scale the probable error (semi-interquartile range) q equals

unity in every case
1. ábra. Az fa(x) szupermodell négy valószínűségsűrűség-függvénye (ld. az 5-7 egyenleteket). A 
skálaparaméter megfelelő választásával a q valószínű hiba (azaz az interkvartilis félterjedelem) 

egységnyi nagyságú mind a négy esetben
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X

F(x) = J / ( x )  dx represents the distribution function). It is advantageous to
—oo

‘norm’ the densities to their maximum value; this was done in Fig. 2. where 
the great difference between the flanks and the general features o f the Cauchy-, 
(geo)statistical and the Gaussian type are visualized. (For Laplace- and uniform 
distributions the f(x)/fmax versus F(x)-‘curves’ consist o f straight lines, see the 
dashed lines in Fig. 2.) It should be mentioned, too, that Fig. 2 clearly shows: 
that there are distribution types that are characterized by much heavier flanks, 
than those o f the Cauchy-type.

Fig. 2. Probability densities (normed to their maximum value) versus distribution function F(x) 
as a visualization which is independent both of the parameter of scale and the parameter of 

location. The different behaviour of the flanks is satisfactorily accentuated here 
2. ábra. Maximális értékükre normált valószínűségsűrűségek az F(x) eloszlásfüggvény 

értékeinek a függvényében. Ily módon mind a hely-, mind a skálaparamétertől független görbéket 
nyerünk, amelyek jól láthatóan fejezik ki az eloszlások szárnyainak különböző viselkedését

2. Quantitative characterization of robustness

2. 1. Inherent supposition o f the maximum likelihood-principle from  the 
practical viewpoint. Occurrence probability densities (fj(t), fû (t)) o f

type t distribution.

Statistical procedures can be derived on the basis of the maximum Zikeli- 
hood-principle (but these procedures are usually applied not only for the
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distribution type which was supposed in the first step). The ML-principle 
originally postulates that the type o f the actual distribution is a priori known 
(with probability = 1). Good Heavens! Indeed, the statistician working in a 
practical environment never a priori knows the type o f the actual probability 
distribution exactly.

Let us suppose, however, just for a moment, that this supposition is fulfilled 
and this a priori known type is the Jeffreys distribution (see Eq. 7). It is easy 
to verify that the maximum likelihood method results in the calculation o f the 
M-estimate with k=3. This latter value is a slightly rounded one consequently 
the efficiency is not exactly 100 % but ‘only’ 99.9999 %. Obviously the 
practical statistician would tolerate perhaps a ‘loss’ o f say, 2 -3  %, too (and a 
loss o f 1% would certainly be accepted as insignificant even by the most 
rigorous mathematician).

The question arises if other estimation procedures can approximate the 
maximum efficiency or not. Fig. 3 shows the efficiencies o f the /.^-estimates 
versusp  for the Jeffreys distribution; ifp= 1.6 is chosen the efficiency is greater 
than 98 %. It can be demonstrated in a similar way that the Huber estimate has 
maximum efficiency for the Jeffreys distribution if c=1.4 is chosen. Briefly, 
the efficiencies o f six estimating procedures (to an accuracy o f two decimals) 
are summarized in Table II.

statistical procedure efficiency for the Jeffreys distribution

M-estimate; k= 3 100.00%
M*-estimate; k= 3 99.87%
Hodges-Lehmann estimate (H.L.) 99.86%
Huber; c=1.4 99.60%
a-trimmed mean (xa); a=0.1 99.54%
Ip-estimate; /3=1.6 98.19%

Table II. Efficiencies of various statistical procedures if the errors are Jeffreys-distributed 
II. táblázat. Statisztikai eljárások Jeffreys-eloszlásra vonatkozó hatásfokai

From the practical viewpoint, all six procedures turned out to be equally 
good if the samples come from the Jeffreys distribution. It should be empha­
sized that the first five estimates show efficiencies even greater than 99.5 %.

Introducing t = (u -1) 1 as the type parameter, the assumption o f the 
maximum likelihood-principle says nothing less than that the density function 
of the occurrence probabilities o f various f a(x) types is

f ML(t) = b(t~0A25) (9)

(5 means Dirac-Ö). For practical purposes, this is unacceptable. W e can require 
at least that the occurrence probability density must be maximum for the type
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Fig. 3. Efficiency curve for different Ip-estimates for the Jeffreys distribution (see Eq. 7)
3. ábra. Különböző ty-becslések hatásfokai a Jeffreys-eloszlásra vonatkozóan (Id. a 7 formulát)

t=0.125 (and not significantly less for the neighbouring types). If outliers 
seldom occur then one per cent probability density of file maximum value 
should be enough for the Cauchy-type to model somehow such situations, too; 
and finally w e requirent))=0 (see SZŰCS 1993 and references therein). Conse­
quently, instead o f Eq. 9 it is not only convenient but also justifiable to accept

fj(t) = 64.7.e~8f-, (10)

the letter J  in the index refers to the fact that fj( t)  has its maximum position at 
t= 0.125, i.e., at the Jeffreys distribution.

(A comment seems to be appropriate here: although Д0)=0 holds — in 
agreement with the modem statistical literature — the following zero hypo­
thesis: ‘the error distribution is Gaussian’ is generally accepted at the commonly 
used significance levels even if Eq. 10 characterizes the occurrence probabili­
ties o f each type-interval, see SZŰCS [1993].)

The so-called Jeffreys interval o f probability distribution types around 
t=0.125 shows the shortest flanks which can realistically be hoped for in nature. 
For example, in geostatistics, it can be stated [after DUTTER 1987] that we can 
accept as the most common type an f a(x) with a=5, i.e., with 7=0.25. On the 
other hand, STEINER (ed.) [1991] shows examples proving that in the geosci­
ences the Cauchy-type really occurs, i.e., the probability density o f the types 
can not be a negligible value around 7= 1 compared with the maximum one.
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These conditions are fulfilled (and Д 0) = 0 also) if we accept as a probability 
density function for the distribution type t:

f D(t) = 16.t.e~4t (11)

(compare Eq. 12 in STEINER 1991). Generally speaking, it is of crucial 
importance that we must at least be approximately imformed about the proba­
bility densities o f the types o f supermodel which can be accepted for adequate 
modelling o f the error distributions occurring in a given discipline. It is the duty 
o f the expert o f the discipline in question to give an acceptable density function 
formula for the types which are able to model the actual error distributions in 
his territory o f science or application. Both f D(t) and f / t )  curves are visualized 
in Fig. 4.

Fig. 4. Occurrence probability density 
functions for different model distribution 

types (r=(a-l) l)
4. ábra. Különböző eloszlástípusmodellek 

előfordulási valószínűségsűrűségei 
(f=(ű-l)-1). Azfj(t) elfogadása csak 

garantáltan rövidszárnyú eloszlásokat 
eredményező szituációkban javasolható

2.2. Efficiency curves to visually demonstrate the different robustnesses 
o f various statistical procedures

One can find, in the literature o f robust statistics, statements o f the form: 
‘procedure A is robust, procedure В is not robust’. By the authors opinion such 
categorical distinctions are hard to justify — to say nothing about the contra­
diction that BOX [1953] introduced the notion ‘robustness’ for a method of
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conventional statistics (based on the Lj-norm) which letter is quite uniformly 
classified as ‘not robust’ by robust statistics (in the last three decades).

The efficiency curves versus t are shown in Figs. 5-8  for all six statistical 
procedures figuring in Table П (in Figs. 7 and 8 the e(f)-curve for the median 
is also given). The speed of the decrease o f e is different for increasing t from 
the nearly equal maximum value: it is most rapid for Lp p= 1.6; at t > 0.8333 
even e=0 holds. (It is easy to demonstrate also for the general case that e > 0 
can hold only if t < (2p-2)'1.) It is curious that two pairs o f estimates behave
similarly (M and M* both for Z=3; Huber c= 1.4 and xa a  = 0.1 ; see Figs. 6 and 7) 
though the definitions of the corresponding statistical procedures are different.

Qualitatively the order concerning the robustness o f the six procedures
seems to be the following: L^ p= 1.6; xa a  = 0.1 and Huber c=1.4; Hodges- 
Lehmann estimate; M  and M  both for k= 3. The interesting behaviour o f the 
latter e(i)-curves is that for t—>°° (a -* l)  the efficiency seems to tend to an 
asymptotic value o f 33-34% (see Fig. 8); Fig. 2 shows that these distributions 
have extremely heavy flanks. In Figs. 9 and 10 also for k=2 the efficiency curves 
are shown both for M  and M*; the corresponding asymptotic values here are 
48 and 50%, respectively. It should be mentioned that k=2 is accepted as the 
‘standard version’ o f the most frequent value (MFV-) calculations, in full 
agreement with the fact that maximum efficiencies are to be obtained very near 
to t=0.25 (i.e., to a=5) where f D(t) reaches its maximum (see Eq. 11).

The asymptotic behaviour o f the e(t) curves is a hint that MFK-procedures 
are not only robust to a high degree but are also extremely outlier-resistant. The 
two notions robustness and resistance, must be distinguished although there 
exists some interconnection between them. The oft occurring opinion, how­
ever, that robustness = outlier-resistance, is misleading and unacceptable.

2. 3. Average efficiencies as adequate indices o f  robustness in practice

Definition. Let us take the probability density function ср(Г; x) for Г-values 
in the inverval 7) < t < T2 and let it be supposai that the probability density 
function of the type parameter t (i.e., fit)) is also given. The index of the 
robustness o f an estimation procedure according to fit) is defined as

h
r= je ( t) .f ( t)d t  (12)

T\
where e(t) is the efficiency o f the estimation procedure in question if the data 
are distributed according to cp(t; Jt).

Comment 1. The existence o f e(t) anticipates the existence o f the Fisher- 
information of cp(i; x) to the fixed value t, on the one hand and, on the other, it
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Fig. 5. Efficiency curves for six estimating procedures in the type interval 0 < t < 0.25
5. ábra. Hatásfokgörbék hat becslési eljárásra a 0 < t <25 típustartományban
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Fig. 6. Efficiency curves for six estimating procedures in the type interval 0 < t < 1.5
6. ábra. Hatásfokgörbék hat becslési eljárásra a 0 < t < 1,5 típustartományban
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Fig. 7. Efficiency curves for six estimating procedures in the type interval 0 < t < 10
7. ábra. Hatásfokgörbék hat becslési eljárásra a 0 < t < 10 típustartományban
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Fig. 8. Efficiency curves for four estimating procedures in the type interval 0 < t <100 
8. ábra. Hatásfokgörbék négy becslési eljárásra a 0 < t < 100 típustartományban

also anticipates the existence o f the asymptotic variance o f the estimates if the 
data are distributed according to cp(t;x) ( T[ < t < T2).

Comment 2. It is the task of the expert o f a discipline (and not the task of 
the mathematician) to define a function f(t) which can be accepted as an 
adequate one for the discipline in question. The choice f(t)=fß(t) (see Eq. 11) 
seems to be an adequate one in the geosciences (but the authors o f the present 
paper suppose that this choice may be all right in other territories o f statistics, 
too). The choice f(t)= fjt) (see Eq. 10) seems to be a ‘quasi-classical’ one as
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the tails o f the distributions in the overwhelming majority o f the cases are very 
short.

Comment 3. The definition of r given in Eq. 12 based on a supermodel 
cp(t;x), i.e., for a case o f only one type parameter, can be trivially generalized 
if more than one type parameter exist in the supermodel used.

In Table III. for ten statistical estimating procedures the indices o f robust­
ness are given (in per cent), calculated for both f(t)= fjt) and f(t)=fD(t); the 
ordering was made according to the latter one.

statistical estimate
index of robustness (r) 

concerning the supermodel f j x )  if the 
occurrence probability of the various er­
ror distribution types are characterized 

by the density function

name symbol fj(t) (Eq. 10) / 0(1) (Eq. 11)
arithmetic mean X (Lp, p = 2) 67% 36%

Lp;p=l.6 85% 60%
a-trimmed mean xa\ a = 0.1 93% 79%

sample median med (Lp; p= 1) 77% 80%
Huber-estimate (Proposal 2) Huber; c= 1.4 94% 81%
Hudges-Lehmann estimate H. L. 96% 85%

M*; k= 3 96% 89%

most frequent value (MFV) M\k= 3 97% 90%
M*\k= 2 98% 96%
M;k= 2 98% 96%

Table III. Indices of robustness for various statistical estimates 
III. táblázat. A robusztusság mérőszámai különböző statisztikai becsléseknél
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A ROBUSZTUSSÁG MÉRŐSZÁMÁNAK DEFINÍCIÓJA

STEINER Ferenc és HAJAGOS Béla

A dolgozat megadja a robusztusság r-reljelölt mérőszámának a definícióját. A definíció szerint 
r a szóban forgó statisztikai eljárás hatásfokainak a súlyozott átlagaként számítandó; a súlyok 
valamely tudományág szemszögéből adekvátnak minősülő hibaeloszlástípusoknak az előfordulási 
valószínűségsűrűségei. A „robusztus” — „nem robusztus” kategorikus megítélés helyett, amely ma 
már túlhaladottnak tekintendő, a bemutatott példák az r=36 %-tól r=96 %-ig terjedő intervallumba 
eső robusztusság-értékeket mutatnak. A geofizika gyakorlatának különösen szüksége van ezen a 
téren is arra, hogy kvantitatív összehasonlításokat tehessen.

A dolgozat hat ábrája azokat az e(t) hatásfokgörbéket is bemutatja, amelyek alapján az r 
számítása történik. Az olvasónak így módja van arra, hogy esetleges speciális szempontok szerint 
is vizsgálat tárgyává tegye a különböző statisztikai eljárások hatásfokainak a hibaeloszlástípus 
szerinti változásait.


