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A PERCOLATION MODEL FOR THE PERMEABILITY OF 
KAOLINITE-BEARING SANDSTONES

Gábor KORVIN*

After a brief review of recent theories on the permeability of porous rocks, and of the 
rudiments of percolation theory, I shall develop a new model for the permeability of shaly 
sandstones containing discrete particle (kaohnite) clays. The experimentally round de
crease in permeability for sufficiently high clay contents and low but non-zero porosities 
will be recognized as a percolation phenomenon, due to the blocking of a critical fraction 
of throats between the pore by kaohnite particles.

The main result is an expression for permeability (Eqs. 26a-f) in terms of grain size, 
porositv and kaohnite volume fraction. The expression contains a percolation factor 
(P-Pc>X which is identified with the divergence of the tortuosity near the percolation 
threshold. The percolation exponent PEX is simply connected to the fractal dimension of 
the tortuous fluid path.

The model was applied to compute the permeability of 229 kaolinite-bearing 
sandstone samples from Jurassic to Early Cretaceous fluvial and lacustrine reservoirs of 
the Eromanga Basin, South Australia. Tbe coordination number of the approximating 
discrete percolation lattice and the percolation exponent were determined by computerised 
optimum search. There were no other adjustable parameters.

Fair agreement was found between the measured and computed permeabilities over 
more than 7 orders of magnitudes. Different percolation exponents were found for 
different lithologies: 0 for high permeability fine sand; 1.5-2 for coarse sand and siltstone; 
3-5.5 for medium sand and 4.5-5.5 for low permeability (k < 100 md) fine sand.
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1. Historical introduction and problem discussion

1.1 Previous work on the permeability ofshaly sandstones

The permeability of porous rocks can be expressed [ W a l s h , B r a c e  
1984] as:

к = (1)

where к is permeability, As /V is the surface area per unit volume, т is 
tortuosity of the flow path and the constant b is equal to 2  for circular tubes 
and equal to 3 for cracks. An equivalent expression is:

k = K HYD ,  1 -------ф —
b T2

(2)

where R ^ yd *s the hydraulic radius, defined as the ratio of the pore volume 
to the wetted area. By definition [ D u l l i e n  1979], a porous material has a 
permeability of 1 darcy if a pressure difference of 1 atm produces a flow 
rate of 1 cm3/sec of fluid with 1 cP viscosity through a cube having sides 
1 cm in length. It is easy to check that 1 darcy = 0.987 pm2, that is, if we 
express R ^ yd in Eq. (2) in mm and к in millidarcies, the equation becomes:

к [md\ = (RHYD ф  J_  109 (3)

The tortuosity in Eqs. (1-3) is between 2-4 in clean sands [V O L A R O -  
V IC H  et al. 1968], its role has generally been neglected in permeability 
studies. Equation (2) correctly describes the empirical fact [M A R T IN ,  
H A M IL T O N  1981] that permeability generally increases with increasing 
porosity. To find the grain-size dependence of permeability, assume spher
ical grains of radius r. Then a volume V of rock of porosity Ф will contain

N  =  К ( 1 - Ф )  :
4  r3 7C 

3

3  V{\  - Ф )  

4  r3 71

grains of total surface area:

A s = N 4 г2 л = 3  УП - Ф )

r
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That is, by Eq. (1) the permability can be expected to increase with the 
square of grain-size [ M a r t i n , H a m i l t o n  1981], or using a similar argu
ment, with the square of the pore size [ S e r r a  1984].

It has recently been realized that the permeability of clay-bearing 
sandstones cannot be described by simple equations like (1) or (2) in a way 
universally valid for different values of clay content and for all clay 
morphologies. Any theoretical model attempting to describe fluid flow in 
shaly sands must conform with the following experimental facts:

a) The permeability of shaly sandstones rapidly decreases which increas
ing clay content and becomes almost zero (even for Ф > 0) if the clay 
content is greater than about 15 % (HANIN [1951] cited in [EREMEN
KO 1968]. DENSON et al. [1968] also found that kaolinite clays in 
amounts of above 16 %  reduce the permeability of sands with 
grainsize 0.3 mm ± 0.18 mm SD to practically zero.).

b) The relation between porosity and permeability depends on clay 
morphology. AMAEFULE et al. [1988] found different trends in the 
permeability versus porosity crossplots for reservoir sands, depend
ing on whether the dominant clay minerals were of the ‘pore bridging’ 
(illite), ‘pore lining’ (chlorite) or ‘discrete particle’ (kaolonite) type 
[Neashaivi 1977].

c) The net confining pressure has a much larger effect on permeability 
than on porosity [AMAEFULE et al. 1988], the pressure sensitivity is 
strongly correlated with clay content [AMAEFULE et al. 1988] and is 
different for the various clay mineralogies [AMAEFULE et al. 1988].

As by Eq. (1) permeability is inversely proportional to the square of 
the internal surface-to-volume ratio of the rock, it is reasonable to assume 
that in shaly samples this ratio is affected, or even dominated, by the 
enormous specific surface of the clay particles [GOODE, SEN 1988, MICHA
ELS, LIN 1954]. (V a n  OLPHEN, FRIPIAT [1979] quote 46 m2/g specific 
surface for montmorrilonite, 8-13 m2/g for kaolinite, 100 m2/g for illite.) 
Since there is a well-established empirical correlation between the cation 
exchange capacity (CEC )  and the specific surface of clays [PATCHETT 
1975, STEWARD, BURCK 1986], GOODE, SEN [1988] have recently ex
pressed the volume-to-surface ratio in Eq. (1) in terms of CEC. They 
deduced an expression:

k ~  С Ф"1
Q2

~&v
(4)

where C is an unknown constant, Q v is charge per unit pore volume 
(computed from the measured values of CEC as:

Qy4>
К1 -Ф )Р^]

CEC = (5)
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ps being grain density), £2+ is the surface charge density of clay, m is the 
(electric) tortuosity, determined by conductivity measurements [SEN et. al 
1988].

Equation (4) is based on the assumption that the specific surface of the 
sand/clay composite is dominated by the surface areas of the clay particles. 
In Darcy’s Law [DULLIEN 1979], however, we are only concerned with 
that part of the internal surface which actually becomes wetted. In case of 
pore lining (chlorite) or discrete particle (kaolinite) clays (using the classi
fication of NEASHAM [1977]) only a small fraction of the total clay surface 
will be exposed to fluid flow and only in the case of pore bridging clays 
(illite) will most of the clay surface be wetted. Another problem with Eq. (4) 
is that it cannot explain the observed pressure sensitivity of the permeability 
of shaly sands. Because of the well-known experimental pressure depen
dence of porosity [HEDBERG 1926], the Goode-Sen model [GOODE, SEN 
1988] (Eqs. 4 and 5) predicts a continuous decrease in permeability with 
increasing pressure and increasing clay content, rather than an abrupt 
disappearance of permeability at certain pressure and clay percentages.

To explain these discontinuous permeability changes we should have 
recourse to the Percolation Theory of Statistical Physics [DULLIEN 1979, 
ESSAM 1972, ZIMAN 1979, EFROS 1986].

1.2 Basic concepts o f percolation theory

Historically, the very first published problem in percolation theory was 
a question related to the design of impermeable gas masks. It was raised by
S. R. Broadbent — in abstract mathematical form — at a Symposium of 
the Royal Statistical Society on Monte Carlo Methods [BROADBENT 1954, 
HAMMERSLEY 1983]. At that time (1954) Broadbent was working at the 
British Coal Utilization Research Association on the design of gas masks 
for use in coal mines. The masks contained porous carbon granules into 
which the gas could penetrate. Broadbent found that if the pores were large 
enough and sufficiently well connected, the gas could permeate the interior 
of the granules; but if the pores were too small or inadequately connected, 
the gas would not get beyond the granules’ surface. There was a critical 
porosity and pore interconnectedness, above which the mask worked well 
and below which it was ineffective. Thresholds of this sort are typical of 
percolation processes.

The basic result of percolation theory is represented in Fig. 1 (after 
ZALLEN [1983]). In the (bond-) percolation problem we assume that a 
fraction l-p  ( 0  < p  < 1) of the bonds of a regular grid are randomly cut and 
a fraction p  are left uncut. Then there exists a critical fraction p c (called 
percolation threshold) such that there is no continuous connection along
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FRACTION OF UNCUT BONDS (pi

Fig. 1. Randomly cut network as example for 
percolation (after ZALLEN [1983])

1. ábra. Példa a perkolációra: négyzetrács 
véletlenszerűen elvágott élekkel. (Z a l x e n  [1983] 

nyomán)

Puc.l. Пример перколяции: квадратная 
решетка со случайно пересеченный гранями 

(по Z a l l e n  [1983])

the bonds of the network between the opposite faces for p  < pc, and there 
exists a connection with probability 1 for p > p c.

For the 2-dimensional square lattice (Fig. 1 ) the percolation threshold 
is 0.5. In the more general case the percolation threshold depends on the 
dimensionality of the network, d, and on its coordination number Z (where 
the coordination number is the average number of bonds connected to any 
node of the network), but it is independent of the detailed structure of the 
network. Table /  (from ZlMAN [1979]) lists coordination numbers and

Network Dimension
d

Coordination
number

Z

Pc

Honeycomb 2 3 0.6527
Square 2 4 0.5
Triangular 2 6 0.3473
Tetrahedral (diamond) 2 4 0.39
Simple Cubic 3 6 0.25
Body Centered Cubic 3 8 0.18
Face Centered Cubic 3 12 0 .1 2

Hexagonal Close Packing 3 12 0 .1 2

Table I. Bond percolation tresholds 
I. táblázat. Él-perkolációs küszöbértékek 

Табл. I. Пороговые значения граневой перколяции
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percolation thresholds for some common networks. It was first observed 
by VYSSOTSKY et al. [1961] that the percolation thresholds of Table I 
conform quite closely to the simple empirical rule:

<6)

For a 3-dimensional network ——— = 1.5, that is percolation only
a -  1

occurs if there are on the average more than 1.5 links to any node.
Close to the percolation threshold (p > p c) the nodes which are con

nected with each other by continuous paths form large clusters of average 
size Ç called the correlation distance. The correlation distance diverges for 
P -  Pc as:

K ~ ( P ~  Р с У *  (7)

(see FISCH, Harris [1978]). For 3-dimensional networks we have [FISCH, 
Harris 1978]:

v = 0.83 (8)

independently of the coordination number. Obviously, the percolation 
between two opposite nodes of a cluster, a distance Ç apart, takes place 
along tortuous zig-zag paths. Near the percolation threshold the length 
L(Ç) of a typical zig-zag path will grow as a power of Ç:

L(Ç)~Ça for p~*pc tp > p c (9 )

or using Eqs. (7 and 8 ):

Ufy ~ (p -  pc)~V for p - * p c tp > p c (10)

where, for 3-dimensional lattices ß = v a  = 0.83 a. As the correlation length 
Ç is the natural length scale in percolation problems, we shall follow 
RlTZENBERGER, COHEN [1984] and define the tortuosity т of the percola
tion path as:

T = = ça ■ 1 = ( p - p cT 0S3 <'a ~ l )  = ( p - p c) ~ y (11)

The exponents describing the length and tortuosity of the paths are 
compiled in Table II for different percolation models.
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D e f in i t io n  o f  th e a  in ß in _R 
L~(p-pc) P

Y»n _ R e f .* N o t e
p ath L-'C T-ip-pcf*

C o r r e la t io n  
le n g th  Ç

1 0 .8 3 0 а 3 - D  p e r c o la t io n

M in im u m  p ath 1 .3 1 .0 8 0 .2 5 b ,c 3 - D  p e r c o la t io n

C o n d u c t iv e  p a th 1 .3 5 1 .1 2 0 .2 9 d 3 - D  p e r c o la t io n -  
c o n d u c t io n

S e l f - a v o i d in g  
ra n d o m  w a lk  o n  
u n c u t  b o n d s

1 .7 1 .41 0 .5 8 e
3 - D  p e r c o la t io n

B r o w n ia n  m o 
t io n  in  3 - D

2 1 .6 6 0 .8 3 f

B r o w n ia n  w a lk 3 a=(3/2)df is  c a l le d  
th e  ‘A le x a n d e r -o n  a  df-d im e n 

s io n a l  fra c ta l
a=-df 0 .8 3 0 . 8 3 ( a - l ) c2 O r b a c h  c o n j e c 

tu r e ’ [S t a n l e y  
1 9 8 6 ]

B r o w n ia n  w a lk T h e  p o r e  s p a c e  o f
o n  a  3 - D  d im e n - 4 .5 3 .7 4 2 .9 1 c e r ta in  s a n d s t o n e s
s io n a l  fra c ta l fo r m s  a n  a lm o s t  3 -  

d im e n s io n a l  f r a c 
ta l fW O N G  1 9881

Table II. Percolation exponents
^REFERENCES: a— FISCH, HARRIS 1978; b—Ritzenberger, Cohen 1984; c—STANLEY 

1986; d—LUBENSKY 1977; e—Le GUILLOU, ZINN-JUSTIN 1977; f—MOSOLOV, DlNARYEV 1987

II. táblázat. Perkolációs hatványkitevők
(*HIVATKOZÁS: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley 

1986; d—LUBENSKY 1977; e—Le GUILLOU, Zinn; f—MOSOLOV, Dinaryev 1987

Табл. II. Перколяционные степени
(*ЛИТЕРАТУРА: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley 

1986; d—LUBENSKY 1977; e—LE Guillou, Zinn; f—MOSOLOV, DlNARYEV 1987

The exponent a  in Eq. (9) has a simple physical meaning [RITZENBER
GER, COHEN 1984]: for distances* smaller than Ç, a  is the fractal dimension 
[MANDELBROOT 1982, KORVIN 1992] of the fluid paths between two 
nodes X apart.
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1.3 Percolation models o f rock permeability

The pore structure of a sedimentary rock can be converted to a discrete 
lattice model by letting the pores correspond to nodes and the throats to 
bonds. The coordination number of the pore system is defined as the 
average number of throats which connect each pore, it is a measure of 
connectivity of the network of pores [DULLIEN 1979, WARDLAW, 
McKELLAR 1981] and can be determined experimentally by serial section
ing [DULLIEN 1979]. Recent theoretical work in continuum percolation 
[ELAM et al. 1984, HALPERIN et al. 1985] has proved the general applica
bility of discrete lattice models in simulating continuous problems, though 
the percolation transport exponents for conductivity and permeability have 
been found larger than their discrete lattice counterparts [HALPERIN et al. 
1985].

Early application of percolation theory centred around qualitative 
problems of oil recovery [DULLIEN 1979] and mercury porosimetry 
[WARDLAW, McKELLAR 1981]. Recent, quantitative results are reviewed 
by T h o m p s o n  et al. [1987] and W o n g  [1988]. In 1985 H a l p e r in  et al. 
[1985] at the Harvard University introduced a ‘Swiss cheese’ permeability 
model in which the holes play the role of sand grains and the cheese is the 
flowing water. They found that if we make more and more holes there is a 
critical fraction of cheese Фс ~ 0.03-0.04 at which electric conductivity
vanishes as (Ф -  Фс)г and hydraulic permeability vanishes as (Ф -  Фс)е, 
with t=2.4 and e=4.4. In an important paper KATZ, THOMPSON [1986] of 
Exxon Production Research, Houston, assumed that only throats wider than 
a given characteristic length lc can significantly contribute to permeability 
and then applied percolation arguments to derive permeability in the form:

k = ß Ф 'max IP  ('max) " P ( 'C)]? ( 12)

with ß = 1/32; for t they simply took the percolation conductivity exponent 
[FISCH, H a r r is  1978] t= 1.9. In Eq. (12) p(l) means the probability that a 
throat is wider than /; lc is a critical width such that the throats wider than 
lc still form a connected net across the rock; lma„ is another size parameter. 
The critical width lc can be experimentally determined using mercury 
intrusion [K a t z , T h o m p s o n  1986].

In the present study I shall develop a percolation-theoretical model for 
the permeability of kaolinite-bearing sandstones from oil reservoirs of the 
Eromanga Basin, South Australia. I shall prove that there is a percolation 
threshold at some critical kaolinite content, and that the tortuosity of the 
flow path (figuring in Eq. 2) diverges at the percolation threshold as 
described in Eq. (11).

The main result is contained in Eqs. (26a-f), which is formally similar 
to the KATZ, THOMPSON [1986] equation (12), but the power-like disap
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pearance of permeability at the percolation threshold is attributed here to 
the divergence of tortuosity.

The results are only applicable to ‘discrete particle’ [NEASHAM 1977] 
clay morphologies (as kaolinite). Possible extensions to pore lining and 
pore bridging [NEASHAM 1977] clays will be mentioned at the end of the 
paper.

2.1 Previous studies o f eromanga basin petrophysics 
[ G ra  v e s t o c k , A l e x a n d e r  1986, 1988,1989]

The Eromanga Basin, Australia’s largest onshore hydrocarbon prov
ince, covers an area approximately 1,0 0 0 ,0 0 0  sq km, within which up to 
3,000 m of Jurassic to Late Cretaceous sediments are preserved. The 
sequence consists of a lower suite of continental deposits which uncon- 
formably overlie deeper Palaeozoic basins or older metamorphic and 
igneous rocks, and an upper suite of transgressive marine sediments which 
in turn are overlain by thick paralic to continental strata. Numerous oil and 
gas accumulations have been discovered in the lower suite over the past 1 0  
years.

In 1985, the South Australian Department of Mines and Energy 
commenced a study of the petrophysics of Eromanga Basin reservoirs. 
Funding for the project was provided by the Commonwealth Department 
of Primary Industries and Energy (NERRDDC Project 820). Cores from 
18 wells were selected for analysis (Fig. 2, Table III) and 638 cylindrical

2. Materials and methods

EROMANGA BASIN

Fig. 2. Location map of the study area
2. ábra. A kutatási terület sematikus térképe 

Рис.2. Карта-схема участка

STUDY AREA

0 2000

KILOMETRES
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core plugs were cut from lithologies ranging from coarse sandstones to 
mudrocks. Petrophysical analyses were carried out by the Australian Min
eral Development Laboratories (AMDEL Ltd., Adelaide, South Australia).

Mid-core 
depth (m)

Number of samples

Porosity and 
permeability

Grain den
sity and CEC

XRD Electrical
properties

1207.5 31 9 4 4
1 1209.8 26 14 - -

1243.0 7 3 1 2

1247.7 29 11 4 4
1434.6 65 28 4 7
1448.4 26 1 0 - 5
1495.5 14 8 - -

1505.2 42 14 4 -

j  1564.2 16 8 3 2

1 1571.2 2 2 11 - 3
1587.2 21 1 0 - 2

! 1608.1 35 12 4 4
1635.2 16 7 1 -

1682.7 35 10 4 -

1693.9 92 37 6 12

1797.7 49 10 5 -

1843.9 61 2 0 3 9
1878.5 2 2 9 - 4
2166.2 7 3 - -

2663.1 2 2 12 4 2

Total 638 246 47 60

Table III. Summary of petrophysical measurements 
The results are tabulated in Gravestock, Alexander [1988]

III. táblázat. A kőzetfizikai mérések összesítése 
Gravestock, Alexander [1988]

Табл. III. Обзор измерений физических свойств 
Gravestock, Alexander [1988]
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All plugs were cut, trimmed, and measured for effective porosity by 
helium injection and horizontal permeablility to nitrogen (not Klinkenberg 
corrected) at overburden pressure.

Absolute grain density and cation exchange capacity (CEC) were 
determined on 246 plugs. Forty-seven samples were subject to X-ray 
diffraction analysis to find the distribution of the bulk mineralogy and the 
mineralogy of the < 2 pm fraction. Sixty samples were submitted for 
electrical properties determination, using simulated formation brines, 
twenty-one of these had repeat measurements of conductivity in NaCl 
brines of differing salinity. Results are tabulated in GRAVESTOCK, 
ALEXANDER [1988]. Five grain size categories were selected by visual 
examination: coarse-, medium- and fine sandstone, siltstone and mudrock. 
Fine sandstone samples were further sub-divided into two sets: those with 
permeability of 1 0 0  md or more, and those with less than 1 0 0  md perme
ability.

2. 2 Petrophysical properties

The petrophysical properties relevant to this paper are summarised in 
Figs. 3-8.

Figure 3 shows the porosity distribution for the selected visual grain 
size categories. In spite of the considerable overlap between the porosity 
ranges there is a clear decreasing trend in average porosity with decreasing 
grain size. A similar trend has been observed for the Permian reservoir rocks 
of the Cooper Basin, underlying the Eromanga Basin [MARTIN, HAMILTON 
1981, SCHULZ-ROJAHN, PHILLIPS 1989]. When unconsolidated marine 
sediments are considered the grainsize—porosity relation is just the oppo
site (that is, the smaller the grain size the higher the porosity [HAMILTON 
1972]), we assume that the trend shown by Figure 3 is due to the differences 
in compaction and diagenesis acting on sediments of different grain size.

The permeability vs. porosity cross plots (Fig. 4) show completely 
different patterns in the different visual grain-size ranges. The cross plot 
for ‘fine sands’ (shown twice in Fig. 4) reveals a dual character correspond
ing to the high permeability (k > 100 md) and low permeability (k < 100 md) 
categories. GRAVESTOCK, ALEXANDER [1986] emphasised that two poro
sity-permeability trends were apparent. They later [GRAVESTOCK, ALE
XANDER 1988] provided empirical equations for each trend.

Semi-quantitative X-ray diffraction data for 47 samples are summa
rised in Fig. 5, which shows the distribution of the bulk mineralogy and of 
the < 2  pm fraction as function of the visual grain size of the host facies for 
each sample. The bulk mineralogy is quartz dominated whereas the clay 
size fraction is chiefly kaolinite, other minerals being relatively minor. The 
< 2  pm fraction rarely exceeded 2 0  percent by weight of the bulk sample.
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Fig. 3. Porosity distribution by visual grain-size [from GRAVESTOCK, ALEXANDER 1988]

3. ábra. A porozitás eloszlása különböző szemcseméretek esetében [Gravestock, Alexander
1988]

Рис.З. Распределение пористости при различных размерах зерен [Gravestock,
Alexander 1988]
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MNOftMALlfCO)

FINE SANDSTONE MEDIUM SANDSTONE COARSE SANDSTONE

log (md)

Fig. 4. Porosity—permeability trends by visual grain-size [from Gravestock, Alexander
1988]

4. ábra. Porozitás—perméabilités trendek különböző szemcseméretek esetében [ Gravestock,
Alexander 1988]

Puc. 4. Тренды пористости—проницаемости при различных размерах зерен 
[Gravestock, Alexander, 1988]
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Fig. 5. Distribution of bulk and < 2 fim mineralogy determined by semi-quantitative X-ray 
diffraction, as a function of visual grain-size of the host facies [from Gravestock, ALEXANDER

1988]
5. ábra. A teljes minta, ill. a < 2 gm frakció, fél-kvantitatív röntgen-diffrakcióval meghatározott 
ásványtartalom eloszlása, különböző szemcseméretű hordozókőzetek esetében [Gravestock,

Alexander 1988]
Рис.5. Распределение минерального состава полной пробы и фракции меньше 2 мкм, 

определенного полуколичественным рентген-дифракционным способом для 
вмещающей породы с различным размером зерен [Gravestock, Alexander 1988]



A percolation model... 191

Clay minerals of relatively low electrical activity were indicated from 
CEC measurements of 246 samples whose values range from less than 1.0 
to 10 meq /100 g, which is the typical range of kaolinite (Table IV).

Name CEC meq/100 g Ref*

Kaolinites 3-15 a
4.9 (mean) b

3-25 c
Ulites 10-40 a, c

26.6 (mean) b
20-30 d

Chlorite 10-40 a, c
Smectite 80-150 a, c
Montmorillonite 100-250 d

82.5 b !
Table IV. Cation exchange capacity of clay minerals 

(‘ REFERENCES: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)

IV. táblázat. Agyagásványok kation csere kapacitása 
(‘ HIVATKOZÁS: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—EDMUNDSON, Raymer

1979; d—Patchett 1975)
Табл. IV. Емкость обмена катионов глинистых минералов 

(‘ ЛИТЕРАТУРА: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)

According to literature, there is a good overall correlation between 
CEC and the specific surface of clays [PATCHETT 1975 , STEWARD and 
BURCK 1986]. In the present case the dominant clay mineral is presumed 
to be kaolinite which has a distinct narrow range of CEC values (Table IV). 
Figure 6 shows the correlation between CEC and weight percent of the 
< 2 pm fraction for 27 samples. The relationship can be approximated by 
the empirical equation

X = 0.021 CEC  (13)

where CEC is in meq /100 g, Á is the weight proportion of the clay size 
(< 2 pm ) fraction, determined from semiquantitative XRD [GRAVESTOCK, 
ALEXANDER 1988]. I shall assume that in the Eromanga Basin samples the 
greatest part of the clay size fraction actually consists of clay minerals (as 
found in other parts of the world [KUKAL, HILL 1986]) and that it is 
predominantly kaolinite as indicated by the CEC and XRD data. Also, as 
there is only a slight difference between the densities of quartz
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Fig. 6. Correlation between cation exchange capacity (CEC) and weight percent (X) o f the 
< 2 pm fraction. Equation of the straight line is X = 0.021 CEC. The X values were determined 

[by Gravestock, Alexander 1988] from semiquantitative XRD 
6. ábra. Korreláció a kation csere kapacitás (CEC) és a < 2 pm frakció súlyaránya (X) között. A 

regressziós egyenes egyenlete X = 0.021 CEC. A X értékek meghatározás [Gravestock, 
ALEXANDER 1988] fél-kvantitatív röntgendiffrakción alapult 

Рис.6. Корреляция между емкостью обмена катионов (CEC) и весового содержания (X) 
фракции меньше 2 мкм. Уравнение линии регрессии X = 0.021 СЕС. Определение 
величины X основано на данных полуколичиественного рентген-дифракционного 

способа [Gravestock, Alexander 1988]

[SERRA 1984] and kaolinite [GRIM 1968], I shall identify the X in Eq. (13) 
with the volume fraction of kaolinite.

Previous studies of GRAVESTOCK, ALEXANDER [1988] have already 
indicated that CEC values can be used to judge reservoir quality: good 
reservoir sandstones (k > 100 md) have CEC values less than 3.0 meq /100 g 
whereas fine grained, shaly sediments with fair to nil reservoir quality have 
higher CEC ’s (Fig. 7). The main task of the next section will be to develop 
this empirical observation into a physical theory of the permeability of 
kaolinite bearing sandstones.
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A В

Fig. 7. Cation exchange capacity distribution with visual grain-size (A); and CAP and RES trend 
distribution with CEC (B) (CAP=caprock, RES “reservoir, sc=clean sand, sm=medium sand, 

sf=clean fine sand, sf*=shaly fine sand, si=siltstone, mu=mudstone) [from GRAVESTOCK,
Alexander 1988]

7. ábra. Kation csere kapacitás (CEC) eloszlása különböző szemcseméretekre (A); és a fedőkőzet 
ill. tárolókőzet trendek eloszlása különböző CEC értékekre (B). (CAP=fedőkőzet, 

RES=tárolókőzet, sc=tiszta homokkő, sm=közepes szemcseméretű homokkő, sf“finomszemcsés 
tiszta homokkő, sf*=agyagos finomszemcsés homokkő, si=homokliszt, mu=agyagpala).

[Gravestock, Alexander 1988]

Рис. 7. Распределение емкости обмена катионов (CEC) для разных размеров зерен (А) и 
распределение трендов покрывающих и вмещающих образований при разных 

значениях СЕС (В). (САР “покрывающие образования, ЕЕ8=вмещающие породы, 
sc=4HCTbie песчаники, sm=cpeднезернистые песчаники, зГ=мелкозернистые чистые 

песчаники, 5Г*=тлинистые мелкозернистые песчаники, si=ne4aHbie илы, ти=глинистые 
сланцы). [Gravestock, Alexander 1988]
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3. The percolation model

3.1 Theoretical derivation

In order to describe the permeability of the Eromanga Basin reservoir 
sandstones I start out from the formula [WALSH, BRACE 1984]:

, r _  (r hyd t ™"'])2 к [та] = ---------------- Ф -^ ! ° 9 (3)

and express the hydraulic radius R ^ yd ar|d tortuosity т in terms of grain 
radius (r), porosity (Ф) and kaolinite content (X).

As we assume cylindrical tubes, b is taken as 2 [WALSH, BRACE 
1984]. In a simplified rock model where the < 2 pm fraction consists of 
kaolinite, a volume V0 of the rock will consist of:

И1 = к0 ( 1 - Ф ) ( 1 - Х ) quartz (14a)

V2 =V0 ( 1 - Ф ) \ kaolinite (14b)

Vl = Vo® pore (14c)

It is assumed that the volume fraction \  of kaolinite can be expressed 
in terms of CEC by the empirical equation (13). If the average radius of a 
quartz grain is r, the total quartz volume Vj contains 

К0 ( 1 - Ф ) ( 1 - Х )
N  = ------------------------ grains, that is in a volume V0 of rock the total

4/3 r 3 7t
surface of quartz grains is:

Rtot, quartz N  ^  Г2 К
3 I q ( 1 -  Ф) ( 1 -  A.)

(15)

If (in thought) we remove all clay particles, an increased space 
V2 + V3 = Vq [(1 -  Ф) X + Ф] will be available for fluid flow.

As a cylinder of length h and radius R has a volume V = R2nh and 
surface area (without the bases) 5 = 2 Rnh, that is R = (2 V)/S; we find from 
Eqs. (14 and 15) that the space V2 + V3 can be considered as a very long 
cylinder of average radius:

2(У2 + f 3) 2 Ф + (1 -  Ф) A.
Г2 = S[ot, quartz = 3 (1 -  Ф) (1 -  X) '

(16)
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If we put back again the kaolinite particles the radius of the cylinder 
will be reduced to rh  rl < r2 because kaolinite sticks to the walls. As all the 
pore space is contained within the long cylinder of radius r, and all the clay 
particles are dispersed within the ring rx < r < r2 we can write:

Л _ Ф V
[ФК+(1-Ф)ХИ]

that is

г. ‘ ,' ^ « . * ( Г - Ф)х ' Г2’/ ?  (17)

where we have introduced the notation

Ф ^3
P [Ф + (1-Ф)Я.] (V2 + V3) (18a)

Obviously, 0 < p  < 1; p  has a simple physical meaning: it is the ratio 
of open pore space to the total space filled by pores or clays. We shall also 
need the proportion of clay in this space, it is

M l -Ф)  V2
_ / , ~[Ф + ( 1 - Ф Н ]  (V2 +V3) (18b)

As in Darcy’s Law [DULLIEN 1979] the hydraulic radius R ^ yd is 
defined as the flow cross sectional area divided by the wetted perimeter, in 
Eq. (3) we shall use

f j n  r !
" ” ' 2 r , « ' 2  ( , 9)

If we assume a constant tortuosity and substitute Eqs. (16-19) into 
Eq. (2) we find that for any given kaolinite volume fraction X the perme
ability would tend to zero as a power of Ф and that it is impossible to have 
zero permeability for finite (non zero) porosities. To be able to explain the 
experimental data (viz. the very low or zero permeabilities above a certain 
clay content, see Fig. 7) I shall transform the continuous Darcy flow to a 
lattice percolation problem. Let us make the pores of the rock correspond 
to the nodes of a discrete lattice, throats will correspond to the bonds (Fig. 8, 
where the symbolic ‘current’ represents hydraulic flow). If a given throat 
is completely blocked by kaolinite the corresponding bond will be consid
ered as ‘cut’ otherwise it is ‘uncut’, independently of the actual radius of
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Fig. 8. Fluid transfer through kaolinite-bearing sandstone (a) and the corresponding lattice 
percolation model (b). Nodes correspond to pores, uncut bonds to open throats, cut bonds to 

throats blocked by kaolinite particles. The symbolic ‘current’ can be an arbitrary transfer process

8. ábra. Folyadék-áramlás kaolinit-tartalmű homokkövein keresztül (a), és a megfelelő diszkrét 
perkolációs model (b). A pórusoknak csomópont, nyílt toroknak elvágatlan él, a kaolinit 

részecskék által eltorlaszolt toroknak elvágott él felel meg. A szimbolikus “áram” tetszőleges
átviteli folyamat lehet

Рис.8. Миграция жидкости через каолинит-содержаший песчаник (а) и отвечающая ей 
дискретная перколяционная модель (Ь). Порам соответствует точка, открытым 

горловинам - непересеченная грань, а закрытым горловинам- пересеченная грань. 
Символическому току может отвечать любой процесс переноса

the throat. The coordination number Z of the network depends on the 
original packing of the quartz grains and on subsequent compaction and 
diagenesis history. As the number of long-, concavo-convex and sutured
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contacts between grains increases with depth and age of the rock [TAYLOR 
1950, SMALLEY 1967], the coordination number Z will generally decrease 
with increasing compaction (note the missing bond in Fig. 8 b between 
nodes A and F, because of the concavo-convex contact between the 
adjacent grains). Generally, Z ranges between 1 and 6  for sandstones. Using 
the empirical rule [VYSSOTSKY et al. 1961]:

ZPc =
d

id -  1) (6)

and assuming a 3-dimensional lattice, the bond percolation threshold 
probability becomes

Because kaolinite is distributed as discrete book-like clusters (Fig. 8 a), 
I assume that any given throat connecting adjacent pores is open with 
probability p  and blocked by kaolinite particles with probability q (Eqs. 
18a,b). In the equivalent lattice percolation problem (Fig. 8 b) a fraction q 
of the bonds are randomly cut, and a fraction p  = 1 -  q are left intact.

By the definition of the percolation threshold, the fluid cannot flow 
through the sample for p  < p c and percolation only starts for p > pc. Gen
erally, the fluid particles will follow complicated zig-zag paths, the closer 
is p  to p c, the greater will be the length L(x) of a typical flow path between 
two nodes, which are in a geometrical sense only a distance x  apart.

As it was shown in Section 1.2, for p  -» p c the tortuosity tends to 
infinity as

T ~ {p — pcT  0 83 [“ '  4 ( 11)

that is —r  of the permeability equation (2) or (3) will tend to zero as

\ ~ { p - p c)l M [ a ~ i]
T (21)

In Eqs. (11 and 21) a  (a  > 1) is the fractal dimension [RITZENBERGER 
and COHEN 1984] of the percolation path for small distances. Let us define 
a percolation function PERC as

fo
PERC ip) =

C0( p - p c)L66[a- l] = C0 ( p - p cf EX

if P^Pc
(22)

i f  p >  Pc
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where PEX (percolation exponent) is defined as

P E X  = 1.66 (a -  1) (23)

and the normalizing constant C0 is chosen as to make PERC(1)=1, that is

' ° “ (1 -P C)PEX
(24)

We still have to find the constant factor t 0 in the tortuosity function

\  = \  PERC(p) (25)
T To

For clean sandstones X = 0, consequently p= 1 and PERC( 1)= 1, that is 
for t 0 we must choose some average tortuosity value which is characteristic 
to clean sands in the ambient pressure range of the Eromanga Basin 
reservoir rocks [GRAVESTOCK and ALEXANDER 1988] (12,500- 
22,000 kPa). According to high-pressure studies [VOLAROVITCH et al. 
1968] т0 = 4 seems a reasonable choice.
Combining Eqs. (3, 13 and 16-25) the final expression for к  becomes

with

к =

RHYD

b 4
Ф 10g ( P - Pc) PEX

( 1  -  Pc)PEX
if P^Pc

RHYD

P =

if p <  Pc (26а)

b =  2, r0 =  4 (26Ь)

1 Ф + (1 -Ф)Х г-  
3 ( 1 — Ф) (  1 — Ä.) Р

(26с)

к = 0.021 CEC (26d)

Ф
[Ф + (1 -Ф ) X]

(26е)

1.5
p ' m~z (260
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Equation (26) is the main result of the present paper. In the actual 
application of these expressions to Eromanga Basin sandstones, the coor
dination number Z and the percolation exponent PEX were determined 
numerically. I assumed various Z and PEX values ( 1 < Z < 6 ; 1 < PEX < 6 ), 
computed the permeabilities kcomp(Z,PEX) for all samples and then minimi
sed the error

D E V  (Z, PEX) = £  [log kmeas -  log kcomp(Z, PEX)]2 (27)

with respect to Z and PEX.
Note that Eq. (26) has the same form as the Katz-Thompson [1986] 

percolation equation

* = Р Ф/тах W m -J -P c )? (12)

even the constant factors are the same ( ß = ^  in Eq. (12) and

^ Г ^ т Е Ч.(26».
Equation (26) of the present paper, however (which strictly speaking 

only applies to kaolinite-bearing sands) has been derived using quite 
different arguments, and the percolation factor (p -  pc)PEX corresponds to 
the normalized reciprocal squared tortuosity of the fluid paths near the 
percolation threshold.

3.2 Application to the Eromanga Basin reservoir rocks

I applied the percolation model of Eqs. (26a-f) to compute the permea
bilities of 229 sandstone samples from Eromanga Basin reservoirs. In the 
computations I used measured values of porosity and of cation exchange 
capacity (CEC), and visual grain size estimations. I assumed that the clay 
size (< 2  pm) fraction behaves as kaolinite for all samples, in the sense that 
the permeability reduction is due to the blocking of a part of the throats by 
discrete clusters of clay particles. The clay volume content was estimated 
from the measured CEC using Eq. (13). The percolation parameters Z and 
PEX had been numerically optimised for each lithology class. The main 
problem in applying Eqs. (26) to the real data has been that in Eq. (26c) we 
need a numerical value for the mean grain radius r. First, I identified the 
qualitative lithologic classes with the Wentworth size classes [PETTIJOHN 
et al. 1972] (see Table V) and defined Fas the radius of a particle at the 
middle of the corresponding size range, that is r~= 0.375; 0.1875; 0.094; 
0.094; 0.02 for the respective lithologies 1, 2, 3, 4 and 5 (Table V). As this
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Lithol
ogy

Number

Code Name Wentworth 
Size Range 

(mm)

r No. of 
samp

les

Фтт Фтах Zopt PEXop,

1 □ Coarse
sandstone

1-0.5 0.375 31 0.11 0.24 2.5 1.5

2 О Medium
sandstone

0.5-0.25 0.188 57 0.06 0.25 2.5 3.0

3 ■ High к 
(clean) fine 
sandstone

0.25-0.125 0.094 37 0.0 0.26 - 0

4 Д Low к 
(shaly) fine 
sandstone

0.25-0.125 0.094 74 0.0 0.26 6.0 5.5

5 ▲ Silstone 0.0625-
0.0039

0.02 30 0.0 0.18 6.0 2.0

Table V. Summary of data used to construct Figure 9 
V táblázat. A 9. ábra szerkesztéséhez felhasznált adatok 

Табл. V. Данные, использованные при составлении рис.9.

resulted in an unreasonable large scatter in kcomp, I decided to estimate 
graintsize within the allowed range by assuming some smooth dependence 
on porosity. After many trials and errors I have found that the best way for 
approximating the grain size of any sample of a given lithology i (i= 1 , 2 ,..., 
5) is to linearly interpolate the logarithm of the grain size between the 
Wentworth limits as Ф varies between the measured bounds Ф ^п and

Ф -  Фт ;„(0
log2 r( 0  = log2 rniax(i) +  ----—— г— —  [log2rmax(i) -  log2 rmin(i)]

(i = 1, 2 , ...,5) (28)

(The grainsize-porosity dependence of Eq. (28) is in accord with the results 
of HAMILTON [1972] for recent marine sediments.)

The optimal coordination number Zopt and percolation exponent 
PEXopr were separately determined for each lithology. I computed к from Eqs. 
(26a-r) and Eq. (28) for different values of Z and PEX (2 < Z  < 6 ; 
1 < PEX < 6 ) and determined Zopt and PEXop, as to minimise the error 
between the logarithms of the measured and computed permeabilities. 
Using the optimised values of Z and PEX (compiled in Table V) a fair 
agreement was obtained between measured and computed permeabilities 
over seven orders of magnitude (Fig. 9). The optimisation of expression
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(27) with respect to Z and PEX was not unambiguous: as shown in Fig. 10 
for each lithology there are distinct clusters of suboptimal parameters (Z, 
PEX) around the optimal (ZopP PEX„pt) which were found almost as 
effective in optimising the error, apart from insignificant digits.

Fig. 9. Crossplot of 
measured vs.

computed
perméabilités

9. ábra. Mért 
permeabilitás — 

számítottt
permeabilitás crossplot

Рис. 9. Связь между 
измеренной и 
вычисленной 

проницаемостью

4. Discussion and conclusions

Using the optimised percolation parameters (Table V) I could keep the 
deviation between measured and computed permeabilities within order of 
magnitude limits, except for a few fine-grained samples (Fig. 9). The 
scatter is due to three factors:

a) visual, rather than quantitative, average grain-size estimation; samp
les frequently displayed a range of grain sizes of several phi units;

b) difficulties in measuring very low permeabilities; and
c) using an insufficient number of semiquantitative XRD data to express 

kaolinite volume content in terms of CEC (Eq. 13).
As by Eqs. (26a,c) permeability is proportional to the squared radius of 

quartz grains, if grain size is only known qualitatively to belong to a given 
Wentworth scale class this involves a scatter of ±log1022 = ±0.6 in logkcomp.
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Fig. 10. Optimal percolation parameters Z and PEX for the different lithologies (/ “̂coordination 
number, ££X=percolation exponent, a  “fractal dimension of the tortuous flow path)

10. ábra. Optimális perkolációs paraméterek különböző litológiákra (Z=koordinációs szám, 
££X=perkolációs hatvány kitevő, a=a tekervényes folyadékpálya fraktál-dimenziója)

Рис.10. Оптимальные перколяционные параметры для разного литологического 
состава (Z= координационное число, /^Х^перколяционная степень, 

а=фрактал-измерение траектории жидкости

The grain-size of ‘siltstone’ can be anywhere between 0.0625- 
0.0039 mm which implies a scatter of more than two orders of magnitude 
in kc Also, the fine sandstones with к  < 100 md very likely spread over 
2 or 3 Wentworth classes (judged from the range of their permeabilities) 
which explains the large scatter for this lithology.

The scatter of fine-grained samples is further increased by the less 
reliable measurement of very low permeabilities.

In spite of the known difficulties [M I A N , H lL C H IE  1982] of the mea
surement of CEC, G r a v e s t o c k , A l e x a n d e r  [1988] found very good 
correlation between CEC values and semiquantitative X-ray diffraction 
analysis of the < 2 pm size fraction. They were, however ‘cautious of 
accepting semiquantitative XRD data on the standard against which to 
calibrate wireline logs’ [G R A V E S T O C k , A L E X A N D E R  1988, p. 75] and, 
obviously, the same criticism applies to the calibration involved by Eq. (13) 
of the present paper.

I am convinced that unless one can estimate the grain-size distribution 
and sedimentary fabric from digital image analysis of thin sections 
[B E R R Y M A N , B l a i r  1986] it is hopeless to aim at a better than order of 
magnitude agreement between experimental and computed permeabilities 
over a large porosity and grainsize range. The same conclusion has been
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drawn by BERRYMAN and BLAIR [1986] when reviewing recent theories 
of permeability.

Obviously, the double logarithmic plot of Fig. 9 does not contain those 
data for which either one or both of kmeas and kcomp are zero. There were 
only five such cases: for a ‘shaly fine sandstone’ sample I had kmeas=0 and 
kCOmp=fy there were 3 ‘siltstone’ samples and a ‘shaly fine sandstone’ 
sample with 0 < kmeas < 0.004 md and kcomp- 0.

It is possible to deduce the experimentally known interdependences 
between pressure, permeability and shaliness from a mathematical analysis 
of Eqs. (26a-f). For increasing pressure porosity will exponentially de
crease [H E D B E R G  1926], this leads to a decrease in hydraulic radius 
(Eq. 26c) and in the value of p  (Eq. 26e). As some of the throats will close 
up under pressure, the average coordination number Z will also decrease, 
that is the percolation thresholdp c becomes larger (Eq. 26f). Consequently, 
both factors Rhyd and (P '  Pc) Eq. (26a) are decreasing with increasing
pressure whicn leads to an overall permeability decrease with increasing 
pressure.

Compaction has a similar effect: besides the reduction of porosity, the 
number of long, concavo-convex and sutured contacts between quartz 
grains would generally increase with depth and age [TAYLOR 1950, SMAL
LEY 1967], this reduces the average number of bonds belonging to a node 
in the corresponding percolation lattice (Fig. 8 b). The coordination number 
Z decreases, that is the percolation threshold pc increases (Eq. 26f). The 
percolation model also predicts — at least for kaolinite bearing sandstones 
— that the permeability reduction with increasing compaction is much 
more serious than porosity reduction.

An increase in kaolinite content X slightly reduces the hydraulic radius 
(according to Eqs. 26c,e) but its permeability reducing effect is mainly due 
to the increased tortuosity described by the percolation function 
T2 ~  (p -  p cr PEX.

Figure 10, showing the optimum percolation parameters (Zopt, PEXopt) 
for the different lithologies, deserves a closer lock. Observe that there are 
two horizontal scales: the percolation exponent PEX and the fractal dimen
sion of the percolating fluid path a. The two values are related by: 
PEX = 1.66 (a  -  1) for 3-dim ensional percolation [RlTZENBERGER, 
C o h e n  1984].

For ‘clean fine sands’ (lithology 3, к > 100 md) PEX=0, that is there is 
no percolation transition and tortuosity is constant independently of ka
olinite content. ‘Siltstones’ (lith. 5) and ‘shaly fine sand’ (lith. 4, 
к <100 md) have a more complicated pore network (Z=5-6) than ‘coarse 
sands’ and ‘medium sands’ (liths. 1 and 2) where Z=2-4.

The optimal percolation exponent is PEX=0 (no percolation) for ‘clean 
fine sands’; PEX= 1.5-2.5 for ‘coarse sands’ and ‘siltstone’, PEX=3-5.5 for 
‘medium sand’ and PEX=4.5-5.5 for ‘shaly fine sand’. This seems to settle 
the controversy [T H O M P S O N  et al. 1987] which is the ‘correct’ percolation
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e x p o n e n t :  1.9 f o u n d  b y  K A T Z , T H O M P S O N  [1986] o r  t h e  ‘ S w i s s  c h e e s e ’ 
m o d e l  p e r c o l a t i o n  e x p o n e n t  4.4 o f  H a l p e r i n ’s  g r o u p  [H A L P E R IN  e t  a l.  
1985]. In t h e  p r e s e n t  e x a m p l e ,  ‘s i l t s t o n e s ’ a n d  ‘c o a r s e  s a n d ’ a r e  c l o s e r  t o  
t h e  K A T Z  a n d  T H O M P S O N  [1986] m o d e l ,  w h i l e  ‘m e d i u m  s a n d ’ a n d  t h e  l o w  
p e r m e a b i l i t y  ‘s h a l y  f i n e  s a n d ’ t o  t h e  ‘ S w i s s  c h e e s e ’ m o d e l  [E L A M  e t  a l .  
1984, H A L P E R IN  e t  a l .  1985]. I n  g e n e r a l ,  d i f f e r e n t  p e r c o l a t i o n  e x p o n e n t s  
c a n  b e  e x p e c t e d  f o r  s a n d s  o f  d i f f e r e n t  g r a i n - s i z e  a n d  d i f f e r e n t  c l a y  m o r 
p h o l o g y .

I b e  p e r c o l a t i o n  e x p o n e n t  h a s  a  s i m p l e  p h y s i c a l  m e a n i n g  [R lT Z E N B E R -  
G E R  a n d  C O H E N  1984]: b y  E q .  (23) PEX i s  c o n n e c t e d  t o  t h e  f r a c t a l  
d i m e n s i o n  o f  t h e  f l u i d  p a t h s  n e a r  t h e  p e r c o l a t i o n  t h r e s h o ld .

For the high permeability ‘clean fine sand’, where there is no percola
tion transition, the fluid path is one-dimensional. For ‘coarse sand’ and 
‘siltstones’ a  « 2 which is the fractal dimension of Brownian motion in the 
3-dimensional Euclidian space (Table II). This corresponds to the model 
of M O S O L O V , D lN A R Y E V  [1987] who assumed the transfer of fluid partic
les in a porous rock as a random Brownian motion. For ‘medium sands’ 
a  = 1.8-4.3, for ‘shaly Fine sand’ (к  < 100 md) a  = 3.7-4.3.

According to the Alexander-Orbach conjecture [STANLEY 1986] the 
fractal dimension of a random walk over a dj--dimensional fractal structure 
is:

d w ~ 2 ^ f  (29 )

Thus, the tortous fluid paths in ‘medium sands’ and low permeability 
‘shaly fine sands’ can be visualized as random walks over 1.9-2.9-dimen
sional and 2.5-2.9-dimensional fractal pore-spaces, respectively. The high 
fractal dimensionality of the pore space of these sandstones is in conformity 
with published results of small angle neutron scattering experiments 
[WONG 1988] where for certain sandstones fractal dimensions as high as 
2.96 have been reported.

Equations (26a-f) only apply for sandstones containing ‘discrete par
ticle’ type clay [N E A S H A M  1977], for example, kaolinite. The empirical 
equation (13) has been established for the Eromanga Basin samples, for 
any other region similar calibration should be sought between kaolinite 
content and CEC, or between kaolinite content and wireline logs.

The most important finding of the present paper is that the vanishing 
permeability at and below the percolation threshold can be ascribed to the 
divergence of tortuosity. I expect this conclusion to remain valid for other 
clay morphologies, though different percolation models would describe the 
effect of pore lining (chlorite) and pore bridging (illite) clays. Mixed clay 
morphologies (as e.g. the Permian sandstones from the Cooper Basin, 
South Australia, where the illite/kaolinite ratio has been found [S C H U L Z -  
R O J A H N , P H IL L IP S  1989] to depend on the grainsize of the host rock) pose 
an intriguing, if not intractable, challenge.
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KAOLINIT TARTALMÚ HOMOKKÖVEK PERMEABILITÁSÁNAK 
PERKOLÁCIÓS MODELLJE

KORVIN Gábor

A porózus kőzetek permeabilitására vonatkozó korszerű elképzelések, és a Perkolá- 
ciós Elmélet alapjainak rövid ismertetése után új modellt vezetek le a diszkrét agyagré
szecskéket (kaolinit) tartalmazó agyagos homokkövek permeabilitására. A kíserletileg 
tapasztalt permeabilitás-csökkenés elegendően nagy agyagtartalom és alacsony, de nem 
zéró porozitás esetében perkolációs jelenség, annak következtében, hogy a kaolinit 
részecskék a pórusok közötti áteresztő nyílások ("torkok") kritikus hányadat eltorlaszol
ják.

A fő eredmény (26a-f egyenletek) a permeabilitás kifejezése a szemcseméret, 
porozitás és a kaolinit térfogathanyad segítségével. Szerepel a képeletben a (pc -  p)PE* 
perkolációs faktor, amely a tortuozitás divergenciájaként értelmezhető a perkolációs 
küszöb közelében. A PEX perkolációs hatványkitevó egyszerű kapcsolatban áll a teker- 
vényes folyadékpálya fraktál-dimenziójával.

A modellt 229 db, júra -  korai kréta körű, az Eromanga medence (Dél-Ausztrália) 
folyami és tavi eredetű tárolóiból származó, kaolinittartalmu homokkő minta permeabili- 
tásának kiszámítására alkalmaztam. A közelítő diszkrét perkolációs rács koordinációs
számát és a perkolációs hatványkitevőt számítógépes optimumkereséssel határoztam meg, 
ezenkívül nem volt más illesztési paraméter.

Jó egyezést kaptam a mért és számított permeabilitások között, több mint hét 
nagyságrenden át. Különböző perkolációs hatványkitevők feleltek meg az egyes Etológi
áknak: 0 a nagy permeabilitásu tiszta homokkőnek, 1,5-2 a durvaszemcsés homokkőnek 
és a homoklisztnek, 3-5,5 a közepes szemcseméretű homokkőnek és 4,5-5,5 az alacsony 
permeabilitásű (k < 100 md) finomszemcsés homokkőnek.

ПЕРКОЛЯЦИОННАЯ МОДЕЛЬ ПРОНИЦАЕМОСТИ 
КАОЛИНИТ-СОДЕРЖАЩИХ ПЕСЧАНИКОВ

Габор КОРВИН

После описания современных представлений о проницаемости пористых 
пород и основ перколяционной теории дается новая модель проницаемости 
глинистых песчаников, содержащих дискретные глинистые зерна (каолинита). 
Установленное опытным путем уменьшение проницаемости при достаточно 
высоком содержании глины и низкой, но отличающейся от нуля, пористости 
является перколяционным явлением в связи с тем, что зерна каолинита 
закрывают критическую часть межпоровых отверстий (горловин).

Главным результатом работы являются уравнения 26a-f, выражающие 
зависимость проницаемости от размера зерен, пористости и объемного 
содержания каолинита. В формуле имеется перколяционный фактор (рс -  р /  , 
которы й  м ож но поним ать как  дивергенцию  тортуосн ости  вблизи
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перколяционного порога. Перколяционная степень РЕХ имеет простую связь с 
фрактал-дименсией траектории жидкости.

Модель была применена для вычисления проницаемости 229 образцов 
каолинит-содержащих песчаников юрского и мелового возраста отобранных из 
резервуаров речного и озерного происхождения бассейна Эромендж (Южная 
Австралия). Перколяционная степень и координационное число приближенной 
дискретной перколяционной решетки были определены компьютерным 
способом оптимизации (других параметров сопряжения не было).

М ежду измеренны ми и расчетными значениям и проницаем ости 
наблюдается хорошее совпадение при диапазоне 7 порядков величины. 
Перколяционная степень зависит от литологического состава образца : 0—для 
чистых песчаников высокой проницаемости, 1.5-2—для грубозернистых 
песчаников и песчаного ила, 3-5.5—для среднезернистых песчаников и 
4.5-5.5—для мелкозернистых песчаников низкой проницаемости.




