GEOPHYSICAL TRANSACTIONS 1992
Vol. 37. No. 2-3. pp. 177-209

A PERCOLATION MODEL FOR THE PERMEABILITY OF
KAOLINITE-BEARING SANDSTONES

Gabor KORVIN*

After abriefreview of recent theories on the permeability of porous rocks, and of the
rudiments of percolation theory, I shall develop a new model for the permeability of shaly
sandstones containing discrete particle (kaohnite) clays. The experimentally round de-
crease in permeability for sufficiently high clay contents and low but non-zero porosities
will be recognized as a percolation phenomenon, due to the blocking of a critical fraction
of throats between the pore by kaohnite particles.

The main result is an expression for permeability (Egs. 26a-f) in terms of grain size,
porositv and kaohnite volume fraction. The expression contains a percolation factor

P-Pc>Xwhich is identified with the divergence of the tortuosity near the percolation
threshold. The percolation exponent PEX is simply connected to the fractal dimension of
the tortuous fluid path.

The model was applied to compute the permeability of 229 kaolinite-bearing
sandstone samples from Jurassic to Early Cretaceous fluvial and lacustrine reservoirs of
the Eromanga Basin, South Australia. The coordination number of the approximating
discrete percolation lattice and the percolation exponent were determined by computerised
optimum search. There were no other adjustable parameters.

Fair agreement was found between the measured and computed permeabilities over
more than 7 orders of magnitudes. Different percolation exponents were found for
different lithologies: 0 for high permeability fine sand; 1.5-2 for coarse sand and siltstone;
3-5.5 for medium sand and 4.5-5.5 for low permeability (k < 100 md) fine sand.
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1. Historical introduction and problem discussion

1.1 Previous work on the permeability ofshaly sandstones

The permeability of porous rocks can be expressed [(w aish, B race
1984] as:

K= (1)

where K is permeability, As/V is the surface area per unit volume, T is
tortuosity of the flow path and the constant b is equal to 2 for circular tubes
and equal to 3 for cracks. An equivalent expression is:
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where R”yd % the hydraulic radius, defined as the ratio of the pore volume
to the wetted area. By definition [p u11ien 1979], a porous material has a
permeability of 1 darcy if a pressure difference of 1 atm produces a flow
rate of 1 cm3sec of fluid with 1 cP viscosity through a cube having sides
1cm in length. It is easy to check that 1darcy =0.987 pm2, that is, if we
express R™yd in Eqg. (2) in mm and K in millidarcies, the equation becomes:

k [md\ = (RHYD ¢ J_ 109 3

The tortuosity in Egs. (1-3) is between 2-4 in clean sands [vOoLARO-
vicH et al. 1968], its role has generally been neglected in permeability
studies. Equation (2) correctly describes the empirical fact (MARTIN,
HAMILTON 1981] that permeability generally increases with increasing
porosity. To find the grain-size dependence of permeability, assume spher-
ical grains of radius r. Then a volume V of rock of porosity ® will contain

4 r3T V{\ -
N=kK@-0): ' 3Vl o)
47371

grains of total surface area:

As=Napn=>YT-9)

r
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That is, by Eq. (1) the permability can be expected to increase with the
square of grain-size [Martin, Hamitton 1981], or using a similar argu-
ment, with the square of the pore size [serra 1984].

It has recently been realized that the permeability of clay-bearing
sandstones cannot be described by simple equations like (1) or (2) in a way
universally valid for different values of clay content and for all clay
morphologies. Any theoretical model attempting to describe fluid flow in
shaly sands must conform with the following experimental facts:

a) The permeability of shaly sandstones rapidly decreases which increas-
ing clay content and becomes almost zero (even for @ > 0) if the clay
content is greater than about 15 % (HANIN [1951] cited in [EREMEN-
KO 1968]. DENSON et al. [1968] also found that kaolinite clays in
amounts of above 16 « reduce the permeability of sands with
grainsize 0.3 mm + 0.18 mm SD to practically zero.).

b) The relation between porosity and permeability depends on clay
morphology. AMAEFULE et al. [1988] found different trends in the
permeability versus porosity crossplots for reservoir sands, depend-
ing on whether the dominant clay minerals were of the ‘pore bridging’
(illite), “‘pore lining’ (chlorite) or ‘discrete particle’ (kaolonite) type
[Neashaivi 1977].

c) The net confining pressure has a much larger effect on permeability
than on porosity [AMAEFULE et al. 1988], the pressure sensitivity is
strongly correlated with clay content [AMAEFULE et al. 1988] and is
different for the various clay mineralogies [AMAEFULE et al. 1988].

As by Eq. (1) permeability is inversely proportional to the square of
the internal surface-to-volume ratio of the rock, it is reasonable to assume
that in shaly samples this ratio is affected, or even dominated, by the
enormous specific surface of the clay particles [GOODE, SEN 1988, MICHA-
ELS, LIN 1954]. (Van OLPHEN, FRIPIAT [1979] quote 46 m2g specific
surface for montmorrilonite, 8-13 m2g for kaolinite, 100 m2g for illite.)
Since there is a well-established empirical correlation between the cation
exchange capacity (CEC, and the specific surface of clays [PATCHETT
1975, STEWARD, BURCK 1986], GOODE, SEN [1988] have recently ex-
pressed the volume-to-surface ratio in Eg. (1) in terms of CEC. They
deduced an expression:

Q2
k~ Co"1 @)
~&v

where C is an unknown constant, Qv is charge per unit pore volume
(computed from the measured values of CEC as:

_ Q4>
“EC T ki -] ©
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ps being grain density), £2+is the surface charge density of clay, m is the

(electric) tortuosity, determined by conductivity measurements [SEN et. al
1988].

Equation (4) is based on the assumption that the specific surface of the
sand/clay composite is dominated by the surface areas of the clay particles.
In Darcy’s Law [DULLIEN 1979], however, we are only concerned with
that part of the internal surface which actually becomes wetted. In case of
pore lining (chlorite) or discrete particle (kaolinite) clays (using the classi-
fication of NEASHAM [1977]) only a small fraction of the total clay surface
will be exposed to fluid flow and only in the case of pore bridging clays
(illite) will most of the clay surface be wetted. Another problem with Eq. (4)
is that it cannot explain the observed pressure sensitivity of the permeability
of shaly sands. Because of the well-known experimental pressure depen-
dence of porosity [HEDBERG 1926], the Goode-Sen model [GOODE, SEN
1988] (Egs. 4 and 5) predicts a continuous decrease in permeability with
increasing pressure and increasing clay content, rather than an abrupt
disappearance of permeability at certain pressure and clay percentages.

To explain these discontinuous permeability changes we should have
recourse to the Percolation Theory of Statistical Physics [DULLIEN 1979,
ESSAM 1972, ZIMAN 1979, EFROS 1986].

1.2 Basic concepts ofpercolation theory

Historically, the very first published problem in percolation theory was
a question related to the design of impermeable gas masks. It was raised by
S. R. Broadbent — in abstract mathematical form — at a Symposium of
the Royal Statistical Society on Monte Carlo Methods [BROADBENT 1954,
HAMMERSLEY 1983]. At that time (1954) Broadbent was working at the
British Coal Utilization Research Association on the design of gas masks
for use in coal mines. The masks contained porous carbon granules into
which the gas could penetrate. Broadbent found that if the pores were large
enough and sufficiently well connected, the gas could permeate the interior
of the granules; but if the pores were too small or inadequately connected,
the gas would not get beyond the granules’ surface. There was a critical
porosity and pore interconnectedness, above which the mask worked well
and below which it was ineffective. Thresholds of this sort are typical of
percolation processes.

The basic result of percolation theory is represented in Fig. 1 (after
ZALLEN [1983]). In the (bond-) percolation problem we assume that a
fraction |I-p (0o <p < 1) ofthe bonds ofa regular grid are randomly cut and
a fraction p are left uncut. Then there exists a critical fraction pc (called
percolation threshold) such that there is no continuous connection along
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Fig. 1. Randomly cut network as example for
percolation (after ZALLEN [1983])

1 abra. Példa a perkoléciéra: négyzetracs
véletlenszer(en elvagott élekkel. (Zaixen [1983]
nyoman)

Puc.l. Mpumep nepkonsauuun: KBagpaTHas
peLLeTKa Co CnyyaiiHO MepeceyeHHbI rpaHAMM
(no zarren [1983])

the bonds of the network between the opposite faces forp <pc, and there
exists a connection with probability 1 forp >pc.

For the 2-dimensional square lattice (Fig. 1) the percolation threshold
is 0.5. In the more general case the percolation threshold depends on the
dimensionality of the network, d, and on its coordination number Z (where
the coordination number is the average number of bonds connected to any
node of the network), but it is independent of the detailed structure of the
network. Table / (from ZIMAN [1979]) lists coordination numbers and

Network

Honeycomb

Square

Triangular

Tetrahedral (diamond)
Simple Cubic

Body Centered Cubic
Face Centered Cubic
Hexagonal Close Packing

Dimension  Coordination Pc
d number
4
2 3 0.6527
2 4 0.5
2 6 0.3473
2 4 0.39
3 6 0.25
3 8 0.18
3 12 0.12
3 12 0.12

Table I. Bond percolation tresholds
I. tAblazat. El-perkolacios kiiszobértékek
Tabn. |. MoporoBble 3HaUYeHUs1 FpaHeBol NepPKONSALMN
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percolation thresholds for some common networks. It was first observed
by VYSSOTSKY et al. [1961] that the percolation thresholds of Table |
conform quite closely to the simple empirical rule:

<6)

For a 3-dimensional network ——= 1.5, that is percolation only

occurs if there are on the average more than 1.5 links to any node.
Close to the percolation threshold (p >pc) the nodes which are con-

nected with each other by continuous paths form large clusters of average
size Ccalled the correlation distance. The correlation distance diverges for

P - Pcas:
K~ (P~ Pcy* (7)

(see FISCH, Harris [1978]). For 3-dimensional networks we have [FISCH,
Harris 1978]:

v =0.83 (8)
independently of the coordination number. Obviously, the percolation
between two opposite nodes of a cluster, a distance C apart, takes place

along tortuous zig-zag paths. Near the percolation threshold the length
L(C) of a typical zig-zag path will grow as a power of C

L(G)~Ga for p~*pctp>pc (©)
or using Egs. (7 and 8):

Ufy ~(p - pcyV for p-*pctp>pc (10)
where, for 3-dimensional lattices B = va =0.83 a. As the correlation length
C is the natural length scale in percolation problems, we shall follow

RITZENBERGER, COHEN [1984] and define the tortuosity T of the percola-
tion path as:

T= =caml=(p-pcT0S3@a~I)=(p-pc)~y (11)

The exponents describing the length and tortuosity of the paths are
compiled in Table 11 for different percolation models.



Definition of the
path

Correlation
length C

Minimum path

Conductive path

Self-avoiding
random walk on
uncut bonds

Brownian mo-

tion in 3-D

Brownian walk
on a df-dimen-
sional fractal

Brownian walk
on a 3-D dimen-
sional fractal

a in

1.3
1.35

1.7

=2 df
a3

4.5
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i Bin R Yon
L-'C L~(p-pc) P T-ip-pcf*

0.83 0

1.08 0.25

1.12 0.29

1.41 0.58

1.66 0.83
0.83 0.83(a-)

3.74 2.91

Table Il. Percolation exponents

Ref.*

a

b,c
d

C

183

Note

3-D percolation

3-D percolation

3-D percolation-
conduction

3-D percolation

a=(3/2)dfis called
the ‘Alexander-
Orbach conjec-
ture’ [Stanley
1986]

The pore space of
certain sandstones
forms an almost 3-
dimensional frac-
tal fWONG 19881

AREFERENCES: a—HSCH HARRIS 1978; b—Ritzenberger, Cohen 1984; c—STANLEY
1986; d—LUBENSKY 1977; e—Le GUILLOU, ZINNWJUSTIN 1977; f—MOSOLOV, DINARYEV 1987

Il. tablazat. Perkolaciés hatvanykitevék
(*HIVATKOZAS: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley
1986; d—LUBENSKY 1977; e—Le GUILLOU, Zinn; f—MOSOLOV, Dinaryev 1987

Tabn. 1l. MepKoNAUNOHHBbIE CTeNeHN
(*NUTEPATYPA: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley
1986; d—LUBENSKY 1977; e—LE Guillou, Zinn; f—MOSOLOV, DINARYEV 1987

The exponent . in Eqg. (9) has asimple physical meaning [RITZENBER-
GER, COHEN 1984]: for distances™ smaller than G a is the fractal dimension
[MANDELBROOT 1982, KORVIN 1992] of the fluid paths between two

nodes x apart.
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1.3 Percolation models ofrock permeability

The pore structure of a sedimentary rock can be converted to a discrete
lattice model by letting the pores correspond to nodes and the throats to
bonds. The coordination number of the pore system is defined as the
average number of throats which connect each pore, it is a measure of
connectivity of the network of pores [DULLIEN 1979, WARDLAW,
McKELLAR 1981] and can be determined experimentally by serial section-
ing [DULLIEN 1979]. Recent theoretical work in continuum percolation
[ELAM et al. 1984, HALPERIN et al. 1985] has proved the general applica-
bility of discrete lattice models in simulating continuous problems, though
the percolation transport exponents for conductivity and permeability have
been found larger than their discrete lattice counterparts [HALPERIN et al.
1985].

Early application of percolation theory centred around qualitative
problems of oil recovery [DULLIEN 1979] and mercury porosimetry
[WARDLAW, McKELLAR 1981]. Recent, quantitative results are reviewed
by Thompson etal. [1987] and Wong [1988]. In 1985 Halperin et al.
[1985] at the Harvard University introduced a ‘Swiss cheese’ permeability
model in which the holes play the role of sand grains and the cheese is the
flowing water. They found that if we make more and more holes there is a
critical fraction of cheese ®@c~0.03-0.04 at which electric conductivity

vanishes as (® - dc)rand hydraulic permeability vanishes as (® - ®c)e,
with t=2.4 and e=4.4. In an important paper KATZ, THOMPSON [1986] of
Exxon Production Research, Houston, assumed that only throats wider than
a given characteristic length Ic can significantly contribute to permeability
and then applied percolation arguments to derive permeability in the form:

k=R 'mx P (max) " P ('QJ? (12)

with B = 1/32; for tthey simply took the percolation conductivity exponent
[FISCH, Harris 1978] t=1.9. In Eq. (12) p(l) means the probability that a
throat is wider than /; Icis a critical width such that the throats wider than
Icstill form a connected net across the rock; Ima,,is another size parameter.
The critical width Ic can be experimentally determined using mercury
intrusion [Katz, Thompson 1986].

In the present study I shall develop a percolation-theoretical model for
the permeability of kaolinite-bearing sandstones from oil reservoirs of the
Eromanga Basin, South Australia. I shall prove that there is a percolation
threshold at some critical kaolinite content, and that the tortuosity of the
flow path (figuring in Eg. 2) diverges at the percolation threshold as
described in Eqg. (11).

The main result is contained in Egs. (26a-f), which is formally similar
to the KATZ, THOMPSON [1986] equation (12), but the power-like disap-
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pearance of permeability at the percolation threshold is attributed here to
the divergence of tortuosity.

The results are only applicable to ‘discrete particle’ [NEASHAM 1977]
clay morphologies (as kaolinite). Possible extensions to pore lining and
pore bridging [NEASHAM 1977] clays will be mentioned at the end of the

paper.

2. Materials and methods

2.1 Previous studies oferomanga basin petrophysics
[G ravestock, Alexander 1986, 1988,1989]

The Eromanga Basin, Australia’s largest onshore hydrocarbon prov-
ince, covers an area approximately 1,000,000 sq km, within which up to
3,000 m of Jurassic to Late Cretaceous sediments are preserved. The
sequence consists of a lower suite of continental deposits which uncon-
formably overlie deeper Palaeozoic basins or older metamorphic and
igneous rocks, and an upper suite of transgressive marine sediments which
in turn are overlain by thick paralic to continental strata. Numerous oil and
gas accumulations have been discovered in the lower suite over the past 10
years.
In 1985, the South Australian Department of Mines and Energy
commenced a study of the petrophysics of Eromanga Basin reservoirs.
Funding for the project was provided by the Commonwealth Department
of Primary Industries and Energy (NERRDDC Project 820). Cores from
18 wells were selected for analysis (Fig. 2, Table I1l) and 638 cylindrical

EROMANGA BASIN

Fig. 2. Location map of the study area
2. abra. A kutatési tertlet sematikus térképe
Puc.2. KapTta-cxema yyacTka

STUDY AREA

0 2000
KILOMETRES
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core plugs were cut from lithologies ranging from coarse sandstones to
mudrocks. Petrophysical analyses were carried out by the Australian Min-
eral Development Laboratories (AMDEL Ltd., Adelaide, South Australia).

Number of samples

Mid-core
depth (M) porosity and ~ Grain den- XRD Electrical
permeability sity and CEC properties

1207.5 31 9 4 4
1 1209.8 26 14 ,

1243.0 7 3 1 2

1247.7 29 11 4 4

1434.6 65 28 4 7

1448.4 26 10 5

1495.5 14 8 :

1505.2 42 14 4

1564.2 16 8 3 2
1 15712 22 1 3

1587.2 21 10 : 2
I 1608.1 35 12 4 4

1635.2 16 7 1

1682.7 35 10 4

1693.9 92 37 6 12

1797.7 49 10 5 :

1843.9 61 20 3 9

1878.5 22 9 : 4

2166.2 7 3 : :

2663.1 22 12 4 2
Total 638 246 47 60

Table Ill. Summary of petrophysical measurements
The results are tabulated in Gravestock, Alexander [1988]

Il. tablazat. A kézetfizikai mérések Gsszesitése
Gravestock, Alexander [1988]

Tabn. 11l. O630p M3MepeHUii HU3NYECKUX CBOWCTB
Gravestock, Alexander [1988]
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All plugs were cut, trimmed, and measured for effective porosity by
helium injection and horizontal permeablility to nitrogen (not Klinkenberg
corrected) at overburden pressure.

Absolute grain density and cation exchange capacity (CEC) were
determined on 246 plugs. Forty-seven samples were subject to X-ray
diffraction analysis to find the distribution of the bulk mineralogy and the
mineralogy of the <2 pm fraction. Sixty samples were submitted for
electrical properties determination, using simulated formation brines,
twenty-one of these had repeat measurements of conductivity in NaCl
brines of differing salinity. Results are tabulated in GRAVESTOCK,
ALEXANDER [1988]. Five grain size categories were selected by visual
examination: coarse-, medium- and fine sandstone, siltstone and mudrock.
Fine sandstone samples were further sub-divided into two sets: those with
permeability of 100 md or more, and those with less than 100 md perme-
ability.

2. 2 Petrophysical properties

The petrophysical properties relevant to this paper are summarised in
Figs. 3-8.

Figure 3 shows the porosity distribution for the selected visual grain
size categories. In spite of the considerable overlap between the porosity
ranges there is a clear decreasing trend in average porosity with decreasing
grain size. A similar trend has been observed for the Permian reservoir rocks
ofthe Cooper Basin, underlying the Eromanga Basin [MARTIN, HAMILTON
1981, SCHULZ-ROJAHN, PHILLIPS 1989]. When unconsolidated marine
sediments are considered the grainsize—porosity relation is just the oppo-
site (that is, the smaller the grain size the higher the porosity [HAMILTON
1972]), we assume that the trend shown by Figure 3 is due to the differences
in compaction and diagenesis acting on sediments of different grain size.

The permeability vs. porosity cross plots (Fig. 4) show completely
different patterns in the different visual grain-size ranges. The cross plot
for ‘fine sands’ (shown twice in Fig. 4) reveals a dual character correspond-
ing to the high permeability (k >100 md) and low permeability (k <100 md)
categories. GRAVESTOCK, ALEXANDER [1986] emphasised that two poro-
sity-permeability trends were apparent. They later [GRAVESTOCK, ALE-
XANDER 1988] provided empirical equations for each trend.

Semi-quantitative X-ray diffraction data for 47 samples are summa-
rised in Fig. 5, which shows the distribution of the bulk mineralogy and of
the <2 pm fraction as function of the visual grain size of the host facies for
each sample. The bulk mineralogy is quartz dominated whereas the clay
size fraction is chiefly kaolinite, other minerals being relatively minor. The
<2 pm fraction rarely exceeded 20 percent by weight of the bulk sample.
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Fig. 3. Porosity distribution by visual grain-size [from GRAVESTOCK, ALEXANDER 1988]

3. &bra. A porozitas eloszlasa kiilénb6zd szemcseméretek esetében [Gravestock, Alexander
1988]
Puc.3. PacnpefeneHrie NOpUCTOCTM MPY Pa3/IMUHbIX pasMepax 3epeH [Gravestock,
Alexander 1988]
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MNOftMALIfCO)
FINE SANDSTONE MEDIUM SANDSTONE COARSE SANDSTONE

log (md)

Fig. 4. Porosity—permeability trends by visual grain-size [from Gravestock, Alexander
1988]
4. dabra. Porozitds—perméabilités trendek kiillénb6z6 szemcseméretek esetében [ Gravestock,
Alexander 1988]
Puc. 4. TpeHAbl NOPUCTOCTU—FAPOHULLAEMOCTU NPU Pa3NINYHbIX pasMepax 3epeH
[Gravestock, Alexander, 1988]
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OTHER
( SIOERITE AND MIXED
LAYER CLAYS)
3 r "
i
LLIK . LLL A£LLL X
10- e i : KAOLINITE
. F R
MUDSTONE  SILTSTONE F''« Medium Coa,se
1
I
SANDSTONE
—2 micron fraction T Bulk sample

89 24 SADME

Fig. 5. Distribution of bulk and < 2 fim mineralogy determined by semi-quantitative X-ray
diffraction, as a function of visual grain-size of the host facies [from Gravestock, ALEXANDER
1988]

5. abra. A teljes minta, ill. a < 2 gm frakcid, fél-kvantitativ réntgen-diffrakcidval meghatarozott
asvanytartalom eloszlasa, kiilénbdzd szemcseméretli hordozokbzetek esetében [Gravestock,
Alexander 1988]

Puc.5. PacnpegeneHne MUHepanbHOro cocTaBa Mo/HOM NPo6bl U pPaKLUM MeHblle 2 MKM,
onpefenieHHOro MoayKoNUYeCTBEHHbLIM PEHTreH-AMPPaKLMOHHbIM CNOCO6GOM Anst

BMelLatoLL el nopoabl ¢ pasinyHbiM pasmepom sepeH [Gravestock, Alexander 1988]
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Clay minerals of relatively low electrical activity were indicated from
CEC measurements of 246 samples whose values range from less than 1.0
to 10 meq /100 g, which is the typical range of kaolinite (Table 1V).

Name CEC meq/100 g Ref*
Kaolinites 3-15 a
4.9 (mean) b
3-25 c

Ulites 10-40 a, ¢
26.6 (mean) b

20-30

Chlorite 10-40 a,c

Smectite 80-150 a, c
Montmorillonite 100-250 d
82.5 b

Table IV. Cation exchange capacity of clay minerals
(*REFERENCES: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)
IV. tablazat. Agyagéasvanyok kation csere kapacitasa
(“ HIVATKOZAS: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—EDMUNDSON, Raymer
1979; d—Patchett 1975)
Tabn. IV. EMKOCTb 06MeHa KaTMOHOB FIMHUCTbIX MUHEPasnoB
(‘ TNTEPATYPA: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)

According to literature, there is a good overall correlation between
CEC and the specific surface of clays [PATCHETT 1975 , STEWARD and
BURCK 1986]. In the present case the dominant clay mineral is presumed
to be kaolinite which has a distinct narrow range of CEC values (Table IV).
Figure 6 shows the correlation between CEC and weight percent of the
< 2 pm fraction for 27 samples. The relationship can be approximated by
the empirical equation

X =0.021 CEC (13)

where CEC is in meq /100 g, A is the weight proportion of the clay size
(< 2 pm) fraction, determined from semiquantitative XRD [GRAVESTOCK,
ALEXANDER 1988]. I shall assume that in the Eromanga Basin samples the
greatest part of the clay size fraction actually consists of clay minerals (as
found in other parts of the world [KUKAL, HILL 1986]) and that it is
predominantly kaolinite as indicated by the CEC and XRD data. Also, as
there is only a slight difference between the densities of quartz
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Fig. 6. Correlation between cation exchange capacity (CEC) and weight percent (X) of the
< 2 pm fraction. Equation of the straight line is X =0.021 CEC. The Xvalues were determined
[by Gravestock, Alexander 1988] from semiquantitative XRD

6. dbra. Korrelacio a kation csere kapacitas (CEC) és a < 2 pm frakcio stlyaranya (X) kozétt. A

regresszios egyenes egyenlete X = 0.021 CEC. A Xértékek meghatarozas [Gravestock,
ALEXANDER 1988] fél-kvantitativ rontgendiffrakcion alapult

Puc.6. Koppensiuns mexay eMKocTblo o6mMeHa kKaTuoHoB (CEC) n BecoBoro cogepxxaHus (X)
(hpakumy MeHblUe 2 MKM. YpaBHeHne nuHum perpeccun X =0.021 CEC. OnpegeneHue
BE/IMYNHbI X 0CHOBAHO Ha AaHHbIX NOMYKONNUYNECTBEHHOTO PEHTreH-4UPaKLMOHHOT0

cnocoba [Gravestock, Alexander 1988]

[SERRA 1984] and kaolinite [GRIM 1968], | shall identify the Xin Eq. (13)
with the volume fraction of kaolinite.

Previous studies of GRAVESTOCK, ALEXANDER [1988] have already
indicated that CEC values can be used to judge reservoir quality: good
reservoir sandstones (k >100 md) have CEC values less than 3.0 meq /100 g
whereas fine grained, shaly sediments with fair to nil reservoir quality have
higher CEC % (Fig. 7). The main task of the next section will be to develop

this empirical observation into a physical theory of the permeability of
kaolinite bearing sandstones.
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Fig. 7. Cation exchange capacity distribution with visual grain-size (A); and CAP and RES trend
distribution with CEC (B) (CAP=caprock, RES“reservoir, sc=clean sand, sm=medium sand,
sf=clean fine sand, sf*=shaly fine sand, si=siltstone, mu=mudstone) [from GRAVESTOCK
Alexander 1988]

7. dbra. Kation csere kapacitas (CEC) eloszlasa kilénboz6 szemcseméretekre (A); és a fed6kbzet
ill. tarolokézet trendek eloszlasa kiilénbézé CEC értékekre (B). (CAP=fed6kézet,
RES=tarolékézet, sc=tiszta homokkd, sm=kdzepes szemcseméretli homokkd, sf“finomszemcsés
tiszta homokkd, sf*=agyagos finomszemcsés homokkd, si=homokliszt, mu=agyagpala).
[Gravestock, Alexander 1988]

Puvc. 7. PacnpegeneHne emkocTu o6meHa KaTuoHoB (CEC) ansi pasHbix pasmepoB 3epeH (A) u
pacnpefeneHne TPeHA0B MOKPbIBAKOLWMX 1 BMeLLaloLWMX 06pa3oBaHnii Npu pasHbIX
3HauveHuax CEC (B). (CAP “nokpbiBawlyne obpasoBaHus, EE8=BMeLLaloLLe NOpoabl,
sc=4HCTbie necyaHUKN, sm=cpefjHe3epHUCTble NecHaHUKN, 3 =MesIKO3ePHUCTbIe YNCTbIe
necyaHmKu, S5M*=TIMHUCTbIE MeIKO3ePHUCTbIe NnecyaHWKW, si=nedaHbie Unbl, TU=TNNHUCTbIE
cnaHupl). [Gravestock, Alexander 1988]
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3. The percolation model

3.1 Theoretical derivation

In order to describe the permeability of the Eromanga Basin reservoir
sandstones I start out from the formula [WALSH, BRACE 1984]:

(rhyd t™"7)2

K [rad = MR o D" ieg (©)

and express the hydraulic radius R"yd ar|d tortuosity T in terms of grain
radius (r), porosity (®) and kaolinite content (X).

As we assume cylindrical tubes, b is taken as 2 [WALSH, BRACE
1984]. In a simplified rock model where the <2 pm fraction consists of
kaolinite, a volume VOof the rock will consist of:

W=ko(1-®)(1-X) quartz (14a)
V2=V0(1-®)\ kaolinite (14b)
VI =Vo® pore (14c)

It is assumed that the volume fraction \ of kaolinite can be expressed
in terms of CEC by the empirical equation (13). If the average radius of a
quartz grain is r, the total quartz volume Vj contains

e (-e)(-x)

43 r3 7t
surface of quartz grains is:

grains, that is in a volume VO of rock the total

31q(1- @) (1- A)
Rtot, quartz N ~ T2 K (15)

If (in thought) we remove all clay particles, an increased space
V2 +V3=Vq[(1 - ®) X+ ®] will be available for fluid flow.

As a cylinder of length h and radius R has a volume V =R2nh and
surface area (without the bases) 5 =2 Rnh, thatisR = (2 V)/S; we find from
Egs. (14 and 15) that the space V2 + V3 can be considered as a very long
cylinder of average radius:

2(Y2+f3) 2 d+(1- D)A

(16)
r2= S[atquatz =3 1-P)(1- X"
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If we put back again the kaolinite particles the radius of the cylinder
will be reduced to rh rl <r2because kaolinite sticks to the walls. As all the
pore space is contained within the long cylinder of radius r, and all the clay
particles are dispersed within the ring rx <r <r2we can write:

n_ ®V
[OK+(1-D)XW]

that is

r.©«,/"«.*(r-o)x 'rz27? @
where we have introduced the notation

® "3
P [®+(1-®)FA] (V2+\3) (18a)

Obviously, 0 <p <1;p has a simple physical meaning: it is the ratio
of open pore space to the total space filled by pores or clays. We shall also
need the proportion of clay in this space, it is

M |-0) 2
I ~[® +(1-DH]  (V2+V3) (18b)

As in Darcy’s Law [DULLIEN 1979] the hydraulic radius R”"yd is
defined as the flow cross sectional area divided by the wetted perimeter, in
Eq. (3) we shall use

fjn g
Tt 2r,« ' 2 (,9)

If we assume a constant tortuosity and substitute Egs. (16-19) into
Eqg. (2) we find that for any given kaolinite volume fraction X the perme-
ability would tend to zero as a power of ® and that it is impossible to have
zero permeability for finite (non zero) porosities. To be able to explain the
experimental data (viz. the very low or zero permeabilities above a certain
clay content, see Fig. 7) I shall transform the continuous Darcy flow to a
lattice percolation problem. Let us make the pores of the rock correspond
to the nodes of a discrete lattice, throats will correspond to the bonds (Fig. 8,
where the symbolic ‘current’ represents hydraulic flow). If a given throat
is completely blocked by kaolinite the corresponding bond will be consid-
ered as ‘cut’ otherwise it is ‘uncut’, independently of the actual radius of
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Fig. 8. Fluid transfer through kaolinite-bearing sandstone (a) and the corresponding lattice
percolation model (b). Nodes correspond to pores, uncut bonds to open throats, cut bonds to
throats blocked by kaolinite particles. The symbolic ‘current’ can be an arbitrary transfer process

8. abra. Folyadék-aramlas kaolinit-tartalm(i homokkdévein keresztil (a), és a megfelel6 diszkrét
perkolaciés model (b). A pérusoknak csomépont, nyilt toroknak elvagatlan él, a kaolinit
részecskék altal eltorlaszolt toroknak elvagott él felel meg. A szimbolikus “a4ram” tetszéleges
atviteli folyamat lehet

Prc.8. Murpauus XnaKocTu Yepes KaoSMHUT-COAepXKallnii NecyaHuK (a) 1 oTBevaroLas ei
AUCKPEeTHas NepKonsiuMoHHast Mogens (b). Mopam cOOTBETCTBYET TOUKA, OTKPbITbIM
ropfioBMHaM - HenepecevyeHHasi rpaHb, a 3aKpPbITbIM FOPMOBMHAM- NepeceveHHast rpaHb.
CUMBONNYECKOMY TOKY MOXEeT 0TBeuaTb /1060i npoLecc nepeHoca

the throat. The coordination number Z of the network depends on the
original packing of the quartz grains and on subsequent compaction and
diagenesis history. As the number of long-, concavo-convex and sutured
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contacts between grains increases with depth and age of the rock [TAYLOR
1950, SMALLEY 1967], the coordination number Z will generally decrease
with increasing compaction (note the missing bond in Fig. sb between
nodes A and F, because of the concavo-convex contact between the
adjacent grains). Generally, Z ranges between 1and e for sandstones. Using
the empirical rule [VYSSOTSKY et al. 1961]:

d
ZPC:id_ 1) (6)

and assuming a 3-dimensional lattice, the bond percolation threshold
probability becomes

Because kaolinite is distributed as discrete book-like clusters (Fig. sa),
| assume that any given throat connecting adjacent pores is open with
probability p and blocked by kaolinite particles with probability q (Egs.
18a,b). In the equivalent lattice percolation problem (Fig. sb) a fraction q
of the bonds are randomly cut, and a fractionp =1 - g are left intact.

By the definition of the percolation threshold, the fluid cannot flow
through the sample for p <pcand percolation only starts for p >pc. Gen-
erally, the fluid particles will follow complicated zig-zag paths, the closer
isp topc, the greater will be the length L(x) of a typical flow path between
two nodes, which are in a geometrical sense only a distance x apart.

As it was shown in Section 1.2, for p -» pc the tortuosity tends to

infinity as
T~{p—pcT o83 [‘' 4 (11)

that is — of the permeability equation (2) or (3) will tend to zero as

\={p-polMla~i] 21

In Egs. (11 and 21) a (a > 1) is the fractal dimension [RITZENBERGER
and COHEN 1984] of the percolation path for small distances. Let us define
a percolation function PERC as

fo ifPAPC
PERC ip) = 22)
CO(p-po)L66[a- I] =CO(p-pcf EX  jfp> Pc
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where PEX (percolation exponent) is defined as
pex = 1.66 (a - 1) (23)

and the normalizing constant Co is chosen as to make PERC(1)=1, thatis

(24)
" (1-PQPEX
We still have to find the constant factor « 0 in the tortuosity function
\ =\ PERC(p) (25)

T To

For clean sandstones X =0, consequently p=1and PERC(1)=1, that is
for - 0we must choose some average tortuosity value which is characteristic
to clean sands in the ambient pressure range of the Eromanga Basin
reservoir rocks [GRAVESTOCK and ALEXANDER 1988] (12,500-
22,000 kPa). According to high-pressure studies [VOLAROVITCH et al.
1968] 10 = 4 seems a reasonable choice.

Combining Egs. (3, 13 and 16-25) the final expression for « becomes

PEX
RHYD cl)10g(P-Pc)PEX ifPAPC
K- b4 a - Pc)
ifp< Pc (26a)
with
b-2 r0-4 (26b)
1O+@L-P)X r-
. 26

RHvD (1) 1_4) (26c)
K =0.021 CEC (26d)

()
P=lo+1-0) XN (26¢)
| 15 (260

p' m~z
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Equation (26) is the main result of the present paper. In the actual
application of these expressions to Eromanga Basin sandstones, the coor-
dination number Z and the percolation exponent PEX were determined
numerically. 1 assumed various Zand PEX values (1<Z <6; 1<PEX <s),
computed the permeabilities kcomp(Z,PEX) for all samples and then minimi-
sed the error

DEV (Z, PEX) =£ [log kmeas - log kcomp(Z, PEX)]2 27)

with respect to Z and PEX.
Note that Eq. (26) has the same form as the Katz-Thompson [1986]
percolation equation

*=P®/Tax Wm-J-Pc)? (12)
even the constant factors are the same ( B =7 in Eqg. (12) and

AT A TE Y(260.

Equation (26) of the present paper, however (which strictly speaking
only applies to kaolinite-bearing sands) has been derived using quite
different arguments, and the percolation factor (p - pc)PEX corresponds to
the normalized reciprocal squared tortuosity of the fluid paths near the
percolation threshold.

3.2 Application to the Eromanga Basin reservoir rocks

I applied the percolation model of Egs. (26a-f) to compute the permea-
bilities of 229 sandstone samples from Eromanga Basin reservoirs. In the
computations | used measured values of porosity and of cation exchange
capacity (CEC), and visual grain size estimations. | assumed that the clay
size (< 2 pm) fraction behaves as kaolinite for all samples, in the sense that
the permeability reduction is due to the blocking of a part of the throats by
discrete clusters of clay particles. The clay volume content was estimated
from the measured CEC using Eq. (13). The percolation parameters Z and
PEX had been numerically optimised for each lithology class. The main
problem in applying Eqgs. (26) to the real data has been that in Eq. (26¢) we
need a numerical value for the mean grain radius r. First, | identified the
gualitative lithologic classes with the Wentworth size classes [PETTIJOHN
et al. 1972] (see Table V) and defined Fas the radius of a particle at the
middle of the corresponding size range, that is r~=0.375; 0.1875; 0.094;
0.094; 0.02 for the respective lithologies 1, 2, 3, 4 and 5 (Table V). As this
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Lithol- Code Name Wentworth  r  No. of ®TT drax Zopt PEXop,

og)é Size Range samp-
Number (mm) les
1 O Coarse 1-0.5 0375 31 011 0.24 25 15
sandstone
2 (o) Medium 0.5-0.25 0188 57 0.06 0.25 25 3.0
sandstone
3 n High Kk 0.25-0.125 0.094 37 0.0 026 - 0
(clean) fine
sandstone
4 Low K 0.25-0.125 0.094 74 0.0 0.26 6.0 5.5
(shaly) fine
sandstone
5 A Silstone 0.0625- 0.02 30 0.0 0.18 6.0 2.0
0.0039

Table V. Summary of data used to construct Figure 9
V tablazat. A 9. abra szerkesztéséhez felhasznalt adatok
Tabn. V. flaHHble, 1CMOMb30BaHHbIE NPK COCTaBNeHUM puc.9.

resulted in an unreasonable large scatter in kcomp, | decided to estimate
graintsize within the allowed range by assuming some smooth dependence
on porosity. After many trials and errors | have found that the best way for
approximating the grain size of any sample of a given lithology i (i=1, 2,...,
5) is to linearly interpolate the logarithm of the grain size between the

Wentworth limits as & varies between the measured bounds ®”~nand

L d - (DT,,,( o
log2r(o =logzrniax(i) + ----—— r— — [log2rmax(i) - log2 rmin(i)]

(i=12,..5 (28)

(The grainsize-porosity dependence of Eq. (28) is in accord with the results
of HAMILTON [1972] for recent marine sediments.)

The optimal coordination number Zopt and percolation exponent
PEXopr were separately determined for each lithology. | computed k from Eqgs.
(26a-r) and Eg. (28) for different values of Z and PEX (2 <Z <s;
1 <PEX <6) and determined Zopt and PEXop, as to minimise the error
between the logarithms of the measured and computed permeabilities.
Using the optimised values of Z and PEX (compiled in Table V) a fair
agreement was obtained between measured and computed permeabilities
over seven orders of magnitude (Fig. 9). The optimisation of expression
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(27) with respect to Z and PEX was not unambiguous: as shown in Fig. 10
for each lithology there are distinct clusters of suboptimal parameters (Z,
PEX) around the optimal (ZopP PEX,,pt) which were found almost as
effective in optimising the error, apart from insignificant digits.

Fig. 9. Crossplot of
measured vs.
computed
perméabilités

9. bra. Meért
permeabilitds —
szamitottt
permeabilitéas crossplot

Puc. 9. Cesisb mexay
N3MEpPEHHO ©
BbIYNCNEHHO

NPOHMLAEMOCTbI0

4. Discussion and conclusions

Using the optimised percolation parameters (Table V) I could keep the
deviation between measured and computed permeabilities within order of
magnitude limits, except for a few fine-grained samples (Fig. 9). The
scatter is due to three factors:

a) visual, rather than quantitative, average grain-size estimation; samp-
les frequently displayed a range of grain sizes of several phi units;

b) difficulties in measuring very low permeabilities; and

c) using an insufficient number of semiquantitative XRD data to express
kaolinite volume content in terms of CEC (Eq. 13).

As by Egs. (26a,c) permeability is proportional to the squared radius of

quartz grains, if grain size is only known qualitatively to belong to a given

Wentworth scale class this involves a scatter of £log1022 = +0.6 in logkcomp.
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Fig. 10. Optimal percolation parameters Z and PEX for the different lithologies (/*coordination
number, ££X=percolation exponent, a “fractal dimension of the tortuous flow path)

10. abra. Optimalis perkolaciés paraméterek killonboz6 litologidkra (Z=koordinaciés szam,
££X=perkolaciés hatvany kitevd, a=a tekervényes folyadékpalya fraktal-dimenzi6ja)

Punc.10. OnTumanbHble NEPKONSALMOHHbIE NapamMeTpbl A5 PasHOro NTOIOrMYeCKOoro
cocTaBa (Z= KOOpAUHALWOHHOE Ymncno, /AXANepKoNALNOHHAA CTeneHb,
a=(hpakKTan-n3mepeHne TpaeKTopun XnULKocTun

The grain-size of ‘siltstone’ can be anywhere between 0.0625-
0.0039 mm which implies a scatter of more than two orders of magnitude
in kc Also, the fine sandstones with k <100 md very likely spread over
2 or 3 Wentworth classes (judged from the range of their permeabilities)
which explains the large scatter for this lithology.

The scatter of fine-grained samples is further increased by the less
reliable measurement of very low permeabilities.

In spite of the known difficulties (m1AN, HiLcHIE 1982] of the mea-
surement of CEC, Gravestock, Altexander [1988] found very good
correlation between CEC values and semiquantitative X-ray diffraction
analysis of the <2 pm size fraction. They were, however ‘cautious of
accepting semiquantitative XRD data on the standard against which to
calibrate wireline logs’ [GRAVEsTock, ALEXANDER 1988, p. 75] and,
obviously, the same criticism applies to the calibration involved by Eq. (13)
of the present paper.

I am convinced that unless one can estimate the grain-size distribution
and sedimentary fabric from digital image analysis of thin sections
[BERRYMAN, Brair 1986] it is hopeless to aim at a better than order of
magnitude agreement between experimental and computed permeabilities
over a large porosity and grainsize range. The same conclusion has been
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drawn by BERRYMAN and BLAIR [1986] when reviewing recent theories
of permeability.

Obviously, the double logarithmic plot of Fig. 9 does not contain those
data for which either one or both of kmeas and kcomp are zero. There were
only five such cases: for a ‘shaly fine sandstone’ sample | had kmeas=0 and
k@mnp=fy there were 3 ‘siltstone’ samples and a ‘shaly fine sandstone’
sample with 0 < kmeas <0.004 md and kcomp- 0.

It is possible to deduce the experimentally known interdependences
between pressure, permeability and shaliness from a mathematical analysis
of Egs. (26a-f). For increasing pressure porosity will exponentially de-
crease [HEDBERG 1926], this leads to a decrease in hydraulic radius
(Eg. 26¢) and in the value ofp (Eqg. 26e). As some of the throats will close
up under pressure, the average coordination number Z will also decrease,
that is the percolation thresholdpcbecomes larger (Eq. 26f). Consequently,
both factors Rhyd and (P ' Pc) Eq. (26a) are decreasing with increasing
pressure whicn leads to an overall permeability decrease with increasing
pressure.

Compaction has a similar effect: besides the reduction of porosity, the
number of long, concavo-convex and sutured contacts between quartz
grains would generally increase with depth and age [TAYLOR 1950, SMAL-
LEY 1967], this reduces the average number of bonds belonging to a node
in the corresponding percolation lattice (Fig. 8b). The coordination number
Z decreases, that is the percolation threshold pc increases (Eq. 26f). The
percolation model also predicts — at least for kaolinite bearing sandstones
— that the permeability reduction with increasing compaction is much
more serious than porosity reduction.

An increase in kaolinite content X slightly reduces the hydraulic radius
(according to Eqgs. 26c¢,e) but its permeability reducing effect is mainly due
to the increased tortuosity described by the percolation function
T2~ (p - per PEX

Figure 10, showing the optimum percolation parameters (Zopt, PEXapt)
for the different lithologies, deserves a closer lock. Observe that there are
two horizontal scales: the percolation exponent PEX and the fractal dimen-
sion of the percolating fluid path a. The two values are related by:
PEX = 1.66 (a - 1) for 3-dimensional percolation [RITZENBERGER,
Cohen 1984]

For “clean fine sands’ (lithology 3, k >100 md) PEX=0, that is there is
no percolation transition and tortuosity is constant independently of ka-
olinite content. ‘Siltstones’ (lith. 5) and ‘shaly fine sand’ (lith. 4,
K <100 md) have a more complicated pore network (Z=5-6) than ‘coarse
sands’ and ‘medium sands’ (liths. 1and 2) where Z=2-4.

The optimal percolation exponent is PEX=0 (no percolation) for ‘clean
fine sands’; PEX=1.5-2.5 for ‘coarse sands’and ‘siltstone’, PEX=3-5.5 for
‘medium sand’ and PEX=4.5-5.5 for ‘shaly fine sand’. This seems to settle
the controversy [THompPsoN et al. 1987] which is the ‘correct’ percolation
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exponent: 1.9 found by KATZ, THOMPSON [1986] or the ‘Swiss cheese’
model percolation exponent 4.4 of Halperin’s group [HALPERIN et al.
1985]. In the present example, ‘siltstones’ and ‘coarse sand’ are closer to
the KATZ and THOMPSON [1986] model, while ‘medium sand’and the low
permeability ‘shaly fine sand’ to the ‘Swiss cheese’ model [ELAM et al.
1984, HALPERIN et al. 1985]. In general, different percolation exponents
can be expected for sands of different grain-size and different clay mor-
phology.

Ibe percolation exponenthas asimple physical meaning [RITZENBER-
GER and COHEN 1984]2 by Eq. (23) PEX is connected to the fractal
dimension of the fluid paths near the percolation threshold.

For the high permeability ‘clean fine sand’, where there is no percola-
tion transition, the fluid path is one-dimensional. For ‘coarse sand’ and
‘siltstones’a « 2 which is the fractal dimension of Brownian motion in the
3-dimensional Euclidian space (Table Il). This corresponds to the model
of MmosoLov, bINARYEV [1987] who assumed the transfer of fluid partic-
les in a porous rock as a random Brownian motion. For ‘medium sands’
a = 1.8-4.3, for ‘shaly Fine sand’ (« <100 md) a =3.7-4.3.

According to the Alexander-Orbach conjecture [STANLEY 1986] the
fractal dimension of a random walk over a dj--dimensional fractal structure
IS:

dw~2/f (29)

Thus, the tortous fluid paths in ‘medium sands’ and low permeability
‘shaly fine sands’ can be visualized as random walks over 1.9-2.9-dimen-
sional and 2.5-2.9-dimensional fractal pore-spaces, respectively. The high
fractal dimensionality of the pore space of these sandstones is in conformity
with published results of small angle neutron scattering experiments
[WONG 1988] where for certain sandstones fractal dimensions as high as
2.96 have been reported.

Equations (26a-f) only apply for sandstones containing ‘discrete par-
ticle’ type clay (NeasHam 1977], for example, kaolinite. The empirical
equation (13) has been established for the Eromanga Basin samples, for
any other region similar calibration should be sought between kaolinite
content and CEC, or between kaolinite content and wireline logs.

The most important finding of the present paper is that the vanishing
permeability at and below the percolation threshold can be ascribed to the
divergence of tortuosity. I expect this conclusion to remain valid for other
clay morphologies, though different percolation models would describe the
effect of pore lining (chlorite) and pore bridging (illite) clays. Mixed clay
morphologies (as e.g. the Permian sandstones from the Cooper Basin,
South Australia, where the illite/kaolinite ratio has been found [scHuLz-
ROJAHN, PHILLIPS 1989] to depend on the grainsize of the host rock) pose
an intriguing, if not intractable, challenge.
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KAOLINIT TARTALMU HOMOKKOVEK PERMEABILITASANAK
PERKOLACIOS MODELLJE

KORVIN Gabor

A pordzus kdzetek permeabilitasara vonatkozo korszer( elképzelések, és a Perkola-
cios Elmélet aIaPJalnak rovid ismertetése utan G4j modellt vezetek le a diszkret agyagré-
szecskeket (kaolinit) tartalmazo agyagos homokkovek permeabilitasara. A kiserletileg
tapasztalt permeabilitas-csokkenés elegendéen nagy agyagtartalom és alacsony, de nem
zérd porozitds esetében perkolacios jelenség, annak kovetkeztében, hogy a kaolinit
_rélfzecskék a porusok kozotti ateresztd nyilasok (“torkok™) kritikus hanyadat eltorlaszol-
ak.
J A f6 eredmény (26a-f egyenletek) a permeabilitas kifejezése a szemcseméret,
porozitas és a kaolinit térfogathanyad segitségével. Szerepel a képeletben a (pc - p)PE*
perkolaciés faktor, amely a tortuozitas divergenciajaként értelmezhet6 a perkolaciés
kiiszob kozelében. A PEX perkolacios hatvanykitevo egyszer(i kapcsolatban all a teker-
vényes folyadékpalya fraktal-dimenziojaval.

A modellt 229 db, jara - korai kréta kor(i, az Eromanga medence (Dél-Ausztralia)
folyami és tavi eredet(i tarol6ibol szadrmazo, kaolinittartalmu homokkd minta permeabili-
tdsanak kiszamitasara alkalmaztam. A kozelit6 diszkrét perkolaciés racs koordinacids-
szamat és a perkolacios hatvanykitevot szamitogépes optimumkereséssel hataroztam meg,

ezenkivil nem volt mas illesztési paraméter,

Jo egyezest kaptam a meért és szamitott permeabilitasok kozott, tobb mint hét
nagysagrenden at. Kilonboz8 perkoléaciés hatvanykitevdk feleltek meg az egyes Etoldgi-
aknak: 0 a nagy permeabilitasu tiszta homokkének, 1,5-2 a durvaszemcsés homokkdének
és a homoklisztnek, 3-5,5 a kdzepes szemcseméret(i homokkdnek és 4,5-5,5 az alacsony
permeabilitasi (k < 100 md) finomszemcsés homokkének.

MEPKONTAUMOHHAA MOJAE/b MPOHULIAEMOCTU
KAOIMHNT-COAEPXALWNX MECYHAHNKOB

Fa6op KOPBUVH

Mocne onucaHWs COBPEMEHHbIX MPeACTaBIEHUA O NPOHULLAEMOCTU MOPUCTbIX
MOPOAL M OCHOB MePKO/ALMOHHOW TeopuMu AaeTcsi HOBas MOAeNb MPOHULLAeMOCTH
FMIMHUCTbIX NECYaHUKOB, COAePXaLLMX AUCKPETHbIE TAMHUCTbIE 3epHa (KaoMHUTA).
YCTaHOBNEHHOE OMbITHbIM MYTEM YMEHbLUEHWe MNPOHMULAEMOCTU NpWU LOCTATOUYHO
BbICOKOM COAEPXXaHWUMW [INHbI U HWU3KON, HO OT/INYatoLLeiics OT Hys, MOPUCTOCTK
ABNAETCSA MepPKONALUOHHLIM SBMEHWEM B CBA3M C TEM, YTO 3€pHa Kao/AMHUTa
3aKpbIBAOT KPUTUYECKYH) YaCTb MEXMOPOBbLIX OTBEPCTUI (FTOP/OBHUH).

[NaBHbIM pe3ynbTaToM paboTbl ABAAKTCA ypaBHeHUs 26a-f, Bbipaxkatoline
3aBMCMMOCTb MPOHMLAEMOCTU OT pas3mepa 3epeH, MOpPUCTOCTU U 0O6BLEMHOIO
cogepXaHus kaonnHuta. B popmyne numeetca nepKonsuMOHHbIA dakTop (pc- p/
KOTOPbIA MOXHO MOHMMAaTb KakK [AUBEPreHUU0 TOPTYOCHOCTU BOGAU3M
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NepKoNAUMOHHOrO nopora. MNepkonsiyMoHHas cTeneHs PEX nMeeT npocTyto CBA3b C
(hpakTan-agnuMeHcHein TpaeKTopumn XNAKOCTHU.

Mogenb Oblna NPUMEHEHA A5 BbIYUCNEHUA NpoHMLaemMocTn 229 o6pasyos
KaoNIMHUT-CoAepiKaLlux nec4aHMKOB IOPCKOro U MefloBOro Bo3pacTta 0TOBPaHHbIX U3
pe3epByapoB PEYHOro M 03epPHOro MpomucxoxaeHus bGacceliHa dpomeHmx (KO>kHasa
ABcTpanus). MepKoNALMOHHASA CTeNeHb U KOOPAUHALUOHHOE YNCI0 NPUBAMKEHHOW
OVCKPETHOM NepKONALUOHHOW peweTKM Oblnn onpefeneHbl KOMMbHOTEPHbLIM
cnoco6om onTuMU3aLUnM (4pyrux napameTpoB COMPSHXKEHUN He ObINO).

Mexay W3MepeHHbIMW W PacYeTHbIMW 3HAYEHUAMW MPOHULAEMOCTHU
HabntofaeTcAd Xopolwee CcOBMafeHWe nNpu AuanasoHe 7 NOPALKOB BefNYMHbI.
MepKonsLuMOHHAA cTeneHb 3aBUCUT OT IMTONOrMYECKOro coctaBa obpasua : 0—an4a
YMCTbIX MNEecYaHWKOB BbLICOKOW nNpoHuuaemocTn, 1.5-2—Ana rpy603epHUCTbIX
necyaHUKoB W necyaHoro wuna, 3-5.5—Ana cpefHe3epHUCTbIX MeCYaHUKOB W
4.5-5.5—AN9 MeNKO3ePHUCTbIX Nec4YaHWKOB HWU3KON MPOHULLAEMOCTMN.






