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FAST COMPUTING OF TRANSIENT ELECTROMAGNETIC
FIELD ON THE SURFACE OF A LAYERED HALF-SPACE

Erné PRACSER*

Time domain electromagnetic fields can be computed by the spectral technique, viz.
using the inverse Fourier-transform applied to frequency domain, or by solving Maxwell’s
equations in the time domain. For a layered half-space and for the total time domain,
accurate computations for the latter method are very time consuming because of the
presence of a partial differential equation in the derivation of the formulae determining
the transient field that cannot be solved by analytical functions. The numerical solution of
partial differential equations is very time consuming. On the other hand, the differential
equation that arises in the frequency domain can be expressed by analytical functions. If
we do not require an accurate solution to the total time domain, then the solution of the
partial differential equation occurring in the time domain can be computed by analytical
functions, too. The paper discusses a case which is valid for a non-conducting basement
and is based on an asymptotic solution that is valid at late times.

Keywords: transient methods, electomagnetic field, half-space, dipole, computer
programs

1. Introduction

In most cases the interpretation of the transient and other electromag-
netic measurements is based on assuming a layered half-space at the site
ofthe measurement and we try to determine the parameters of the half-spa-
ce, from which a conclusion can be drawn on the geoelectric structure. In
order to determine the layer parameters that belong to the measured curves
a direct problem solving program is needed for computing the theoretical
curves from optional layer parameters. Though in the case of the transient
method there are many computational methods for solving the problem,
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none of them is so fast that it would not be worth the effort of increasing
the speed of computation. The speed is especially important when applying
a curve computating program for curve fitting. On a 12 MHz IBM PC/AT
equipped with a coprocessor the computation of the direct problem by the
spectral method takes about 10 s/layer and it gives accurate results at early
and at late times [PRACSER 1986]. The transient electromagnetic field takes
the form ofa Hankel transform of a kernel function as a result of the solution
of the Maxwell’s equations in the time domain. This kernel function is the
solution of a partial differential equation that can be solved by the finite
difference method [GOLDMAN 1983]. Computation based on this theory is
much slower than the spectral technique. If we accept that for the early
times we do not get accurate transient field values then the kernel function
in the time domain can be generated in the form of a series expansion. In
that case the computation requires much less time than by the finite
difference method. In the Soviet literature we find that this method used to
be applied to two- and three-layered halfspaces [TIKHONOV, SKUGAREVS-
KAYA 1950]. At late times even the first term of the series gives an accurate
result; at early times we have to take more terms into consideration. Even
though this method was known as far back as 1950, at that stage of
computational techniques it probably could not be applied in practice and
once computers had come into general use in geophysics the spectral
method was preferred in transient calculus. In the following we show the
computation based on the series expansion of the kernel function for an
n-layered model.

2. Transient field of an electric dipole at the surface of a layered
half-space

Let us examine the electric dipole on the surface of a layered half-space
when the current flowing in a conductor of elementary length is turned off
at time t=0 and the effect of the displacement current is negligible. The
induced electromagnetic field is defined by Maxwell’s equations:

rot H=0E +J divH =0 @
rot E=-u —H divE=0
r dt

where;
E — electric field vector
H — magnetic field vector
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|i — magnetic susceptibility
t — time
I(t) dI 5(z) 5(r)
2nr
r — length between the dipole and the measuring point

— exciting current

J7o t<o N .
I{t) = — current flowing in the dipole

dl — length of the electromagnetic dipole

0(z), 5(r) — Dirac-delta functions

a — conductivity function depending only on the z coordinate that is
defined as follows:

0 7>79=0
a(z2) =wj Z-1>2>7 j=1..,n-1

n=o0 r <2zn-i

Zj — coordinates of the layer boundaries
n — number of layers

We shall briefly discuss the most important steps of the derivation of
Eqg. (1) that defines the transient field. As can be seen from the definition
of a we deal only with that case when the conductivity of the n-th layer is
zero. One of the disadvantages of the computation based on the theory in
question is that the n-th layer has to be a non-conductor or an ideal
conductor. Here we discuss only the case of on =0 because it has much

greater importance in practice than the case of on= °°. With the spectral

technique there is no need for such a restriction. We start to solve the system
of equations (1) in the usual way by introducing the A vector potential.

H =rotA , A =(Ax,0A2 )

The A vector potential, as can be derived from Maxwell’s equations,
satisfies the following partial differential equation:

A=-]
()

Bearing in mind that in most cases in transient measurement only the
vertical component of the time derivative of the magnetic field vector is
measured it is enough to determine the horizontal component of the vector
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potential because HP does not depend on Az (Eq. 2). From Eq. (3), written
in cylindrical coordinates, the integral representation of Ax can be derived
by the separation of variables:

Ax =e Jj O(Xr)X(X,z,t)dX
0

where:

JO — Bessel function of the first kind, zero order

X(X,z,t) — kernel function in time domain
Constant c can be obtained if we compare the magnetic field of an electric
dipole in vacuum, expressed by vector potential, with the law of Biot-
Savart, by which we get:

_lod

So the formula defining the g component of the vector potential is:

i0di
AX =-T— jJO(Xr) X(X,z,t) dX
a1 0 @

3. Determination of the kernel function X(X,z,t)

From Eq. (3) it follows that the X(X,z,t,) kernel function satisfies the
following partial differential equation:

A2X(Xz21) xzcs((x,z,t) '=pa ¢ X(X,z,t)
dt

©)

For the uniqueness of Eq. (5) it is necessary to satisfy certain boundary
conditions. The electromagnetic components and their time derivatives
have a continuous transition through layer boundaries. For t >0 it is valid
for the kernel function X (X,z,t) and for its time derivatives too. If we take
it into consideration that for z >Zgand z <z the conductivity of the
medium is equal to zero then from Eq. (5) it follows that the kernel function
X (X,z,t) has the form of c0 and cne Xz where c0 and cnare constants.
So at the uppermost and at the lowest layer boundaries Eq. (5) has to be
complemented with the following boundary conditions:
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dXjXAt) | B B
dZ XX(X,Z,t) =0 z=20 (6 a)
& XX(X,z,t) =0 Z~7Zn-1 (6b)

For t <0 current flows at a constant /o current intensity, viz. the time
derivative is equal to zero in Eq. (5). Because of this the Ax component of

the vector potential is the same as it should be in a vacuum from which we
get the boundary condition at t=o:

X(\&OTe**  t=0, z<0 @)

Partial differential equation (5) defining the kernel function X(X,z,t)
can be solved by the finite difference method, too [GOLDMAN 1983] but
this method is very time consuming. Here we would comment that the
frequency domain form of Eq. (5) will be simpler because instead of time
derivation there is conjunction /co, where i =/-T is the imaginary unit and
ois the radian frequency. So the exact solution can be expressed by a linear
combination of exponential functions.

In this paper the solution of Eq. (5) is sought by separating the variables
in the form of an infinite series:

X(Xz) =£ Pk/A2)aki{t) =1, 01 (8)
- 1

If the expansion in series (8) of kernel function X(X,z,t) is substituted into

Eqg. (5) we get the differential equation defining functions Rk'j and ak ein
they-th layer:

©
¢ aklt)

o . -

PR aki VK] (10)

The solution of Eqg. (10) is:

akj(t) =cke ™o HD
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From the continuity of functions akj in direction z it follows that the
exponents have to be independent ofj. Because of this the vkj separational
constants can be determined as a function of conductivity:

vicj =wj Xk
where w, = —, and Xt is a constant that will be determined later.

1 G

Knowing vkj let us rearrange differential equation (9) determining
Bj. j in they-th layer:

zhj&X):—p’\/X,z)(Wij-XZ) Zj-i >2> 7

dz (12

Depending on the sign of the cy% - X2 function, Bkj is a linear
combination of trigonometric or hyperbolic functions:

B =akj cos pk,M ~7-0 +bkj sin pk,M ~2J-0
pk,j=7W Xk- X2 if wjxk>X2 (13q)

Pk,B j) =akd ch Pk,M ~z~1) + bkJ sh pk,M ~z~I)
pkd =7 X2-wj xk if  2>wjXk (13b)

The values of Xk have to be chosen in such a way that the kernel

function X(X,z,t) and its derivative in direction z should be continuous
through the layer boundaries and satisfy Eq. (6). According to the series
expansion (8) functions Rkj have to satisfy the same conditions. In

consequence of Eq. (sa) at the surface:

kak,l +pk,i bk\ = o (14a)

At they-th layer boundary in consequence of the continuity of $kj :

akJ cos @k ] + bk j sin ®k] - akj+I =0 (14b)
At they-th layer boundary in consequence of the continuity of J- Ry :

~akJ pkj sin ®/cj + bk j Pkj cos ®k] - bkj+I Pkj+l =0 (140)
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At the lowest layer boundary in consequence of Eq. (sb):

~ak, -1 Pk, n-1sin ®k n-1 - ak n-imcos ¢k, n-1 +

+h, n-1Pk n-1cos ®* n-1- bk -1 Xsin gk n-1=0 (14d)

where;

®f) Pkf?-j Zj-1) Y 1.7 1

Equations (14) are valid in the case of Wj Xk > X2 in every layer, viz.
PkjiKz) is generated by linear combination of sine and cosine functions
(13a). Formulae similar to Eqs. (14) are valid even if function  j(X,z) is
a linear combination of functions that are hyperbolic in one layer or some
layers only (13b). Thus coefficients akj and bkj are determined by the
homogeneous system of linear equations (14). In the case of n layers the
number of equations and unknowns is 2(n-I). It is necessary that the
determinant of the system of equations be zero in order to have a solution
of this system in addition to the solution that is identical with zero. This
can be achieved by choosing Xk properly. Bearing in mind that only the
proximal elements of the main diagonal are not equal to zero, the value of
the determinant can be computed by a relatively simple algorithm. Hereaf-
ter %will be marked with index k occurring in the expansion of Eq. (8)
when it de facto indicates a number for which the system of equations (14)
can be solved. Let us show as an example the determinant of the system of
equations (14) for a four-layer case for every x where condition xwj ~ X2 >Q

is satisfied in every layer:

D{Xx) =

X, pI> o, o, 0, 0,
cosOj, a1, o, 0, 0,

-PAT® p PjCOS«ixl, o, ~po 0, 0,

o, 0, cos<t>2, sin<t>2, o1, 0,

o, o, -p 2sin$>2, P 2COS<i>2, 0, -pa

o, o, o, 0, -P357® 3-Xco5dP3, P3e03d3-X3TP

where:

P ="Xw ~ X2, o @ Z-)Pj
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Now we show the determinant-computing algorithm taking into
account the case of both Eqg. (13a) and Eqg. (13b). Let Djj and DjH j

denote minor determinants. Djj consists of the firsty lines and columns of
D(X,x) but in the case of Dj+l j instead of7-th lines of D(X,x), (/+1)-th lines
will occur. Let p-denote the solution of the system of equations (12) in the
7-th layer for arbitrary % The minor determinants that correspond to the
first layer are:

Dj 2=k sinQj -
d32=XPpIicos(I>i +p\&napl (15a)
Or if Rj(X,z) is generated by hyperbolic functions:
Dj 2=k sh ®1- Pjch ®!
D32=X A i01®1" pishd1 (15b)
Computation of minor determinants belonging to the (/+1)-st layer on the

basis of the minor determinants of the y-th layer is carried out in the
following way:

D 2(j+1), 2(7+]) = b 2, 2 Pj+ 1coad/+1+ D2Hulj BTOY+L

°2(/+D)+1, 2(3+1) =~D 2j,2j Pj+1 SiN<i>7+| + D 2j+1, 2j cos&j+1 (16a)

The same expression when Ry+1(A.2) is a linear combination of hyperbolic
functions follows:

D23 +D, 2(/+1) = D2j,2 Pj+1ch ®7+1 + D 2j+\, 2j sh ®;+1
D 2(/+1)+1, 2(/+1) = D 2j, 2j Pj+1sh dy+1+ D jjru 2y ch d7+1 (16b)

Finally the total determinant based on the minor determinant corresponding
to the (n-2)-nd layer is:

D(X,X) =D 2(n-2), 2(«-2) (~pN-1sin<iV | - Pn-l  cos<IV I) +
+ 0 2(n-2)+, 2(n-2) (Pn-1CO5¢y+-1 “ ~ S™, _j) (17a)

If Bn_j(A,2z) is a linear combination of hyperbolic functions the same
expression will be:
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D(Kx) D2n-2),2(n-2)('I'l sh*»-i Pn\N  O/1-]) +
+D2(n-2)H, 2(n-2) (P,,-l chpnr _~sh o, 1 (17b)

Henceforth if function 8 has only one index then it denotes a function
that is defined in every layer, viz:

BAV) =R*,/M) if Zj-i >2>7j

Let us see whether function $k(X,z) that belongs to any root Xk of
equation D(X,x) =o is generated by sine and cosine functions in at least
one layer, viz. in at least one layer Wj Xk > X2. This is important because it
ensures the existence of a smallest Xb viz. series (8) is actually an infinite

sum in only one direction and the first term of the series will be determinant
for late times. Assume that contrary to our statement $k{X,z) is a linear

combination of hyperbolic functions in every layer which means that Egs.
(15b), (16b) and (17b) are valid when determinant D(X,x) is computed. As
0j< 0, 222<0 and 232>0 follow from Eq. (15b). Taking ®y+1<0 into

account it results from Eq. (16b) that this property is hereditary from layer
to layer, viz. DJ 2< 0 and D2y+1 2> 0 if O<j< n-1. Finally taking it into
consideration that ®,, 1< 0, 2)(X,%)> 0 is also true according to (17b), which

means that equation D(X,x) =0 has no root. In consequence a function
fik(X,z) belonging to any Xk root °f the equation is a linear combination of

sine and cosine functions in at least one layer.
The computation of kernel function X(X,z,t) has to be started with the
determination of roots Xk °f equation DCk,x) =o, which is the most crucial

part of the process. A numerical method is required that makes it unnec-
essary to compute determinant D(X,x) too many times in which case one
of the advantages of the method, viz. the speed, could be lost. With the
knowledge of Xk we have to compute values Pkj in Eqg. (13), then to solve
the linear system of equations (14). Since function ak j{t) Eq. (11) contains
a constant that will be determined later, constant bk x can be chosen to
equal 1in the system of equations (14) and ak j can be expressed by Eg.
(14a). Knowing cikj-i and bkj 1 Egs. (14b) and (14c) make it possible to
determine akj and bkj. Constants ck can be determined by applying
condition (7) after substituting formula (s8) into (7) with t=0.

[e0]

£ KP*(") =er (18)
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Formally, Eq. (18) is the series expansion of function e” in term of
functions *X,z). Before determining constants ck on this basis we have to

prove the orthogonality of functions PA(Xr). For a given layered model the
definition of the scalar product defined in interval (zn_i, o) in the space of
continuously differentiable functions can be given as:

n-17-1
<f8=£ J1/z)g(z) Wdz (19)

i-1 7z

For the computation of the scalar product of functions (A,z) and
Rfr.,z) (Eq. 19) belonging to different roots Xk and Xi °f equation
D(X,x) = o let us take the integral that is valid for the ¥-th layer:

jy
\] [3* w*) Pl;/X,z) wj dz =
2 (20)

> 1 -1\
1

Xk- X dzh 3 Aj NJdzhj

Integral (20) can be obtained by partial integration by considering
differential equation (9) relating to function 3* j. During the computation

of scalar product (19), as integrals (20) corresponding to the layers are
summed up, terms Rt(X,z) and p Rt(X,z) that belong to inner layer bound-

aries will cancel out because of the continuity. However terms correspon-
ding to the surface and to the lowest layer boundary will cancel out owing
to boundary conditions (6). Thus the system of functions R”X,z) is orthog-

onal to the scalar product definied by formula (19). As R*(X,z) is only
orthogonal but not orthonormal, normalization is required to compute

expansion coefficients ck.
< >
3
>
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When we compute the numerator of fraction (21) only the term that
corresponds to the surface will not cancel out when integrals are summed

up.

n-1 Z-1 2 %

<ey Rk>=£ Je te BkjiKz) wj dz = (22)
3 X

Calculation of the denominator of (21) is a little more complicated but
as in this case there are integrals of analytical functions and those can be
computed by partial integration there is no need for numerical integration.

Tables I and 11 contain values of kernel function X(X,z,t) for different
time values that were computed by the finite difference method and by
formula (8).

time X(X.2.t)
finite difference series expansion
method

0.15020E-04 0.506120E-07 0.466440E-07
0.18399E-04 0.456334E-07 0.433343E-07
0.2214E-04 0.414997E-07 0.402167E-07
0.26659E-04 0.377440E-07 0.370948E-07
0.32391E-4 0.34207 1E-07 0.339257E-07
0.39050E-04 0.310262E-07 0.309217E-07
0.47310E-04 0.281279E-07 0.280964E-07
0.57072E-04 0.255988E-07 0.255910E-07
0.68712E-04 0.234067E-07 023405 LE07
0.82980E-04 0.215164E-07 0.215161E-07
0.99876E-04 0.200088E-07 0.200087E-07
0.12015E-03 0.188494E-07 0.188494E-07
0.14456E-03 0.180045E-07 0.180046E-07
0.17384E-03 0.174167E-07 0.174168€E-07
0.20914E-03 0.170042E-07 0.170043€E-07
0.25156E-03 0.166867E-07 0.166871E-07
Q3000CEG 0.164108E-07 0.16411307

Table /. Computational results of kernel function X(X,z,t) by finite difference method (second
column) and by formula (8) (third column). Parameters: pi=10 fim, p2=100 fim, p3=°° fim,
di=50 m, di=50 m, X =0.001
I. tablazat. Az X{X,zj) magfliggvény szamitasa a véges differencidk modszerével (2. oszlop) és a
(8) képlettel (3. oszlop). Paraméterek: pi=10 fim, p2=100 fim, p3=°° fim, r/i=50 m, dz=50 m,
X=0.001
Tabn. |. PacueT agpoBoii dyHKunn X(X,z,t) METOAOM KOHEUHbIX pasHocTen (cTonbew 2) 1 no
dopmyne (8) (cTonGey, 3). MapameTpbl: pi=10 omm, P2=KO omm, p3= omm, N=6 m, d2=50 m,
X=0.001
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It can be seen that for early times the results given by the two methods are
different while for late times the difference between the two columns is less
than 0.1%. Computations were made by taking into account the first three
terms of series expansion (8). The running time applying equation (8) is at
least two orders less than in the case of the finite difference method. Taking
into consideration that vkj =W xk and numbers Xk form an ascending
monotone series keeping to an infinite limit, from Eq. (11) it can be seen
that for late times it is enough to compute only some of the first terms of
series (8). Namely according to the effect of the exponential function
further terms of the series are several orders less.

time XX D
finite difference series expansion
method

0.15020E-04 0.133314-07 012271 IE-07
0.18399E-04 0.111302E-07 0.104967E-07

[ 0.22154E-04 0.929339E-08 0.893233E-08
0.26659E-04 0.766964E-08 0.748458E-08
0.32291E-04 0.623251E-08 0.615204E-08
0.39050E-04 0.505931E-08 0.502986E-08
0.47310804 0.411569E-08 0.410739E-08
0.57072E-04 0.339869E-08 0.339722E-08
0.68712E4 0.285418E-08 0.285443E-08
0.82980E-04 0.24341 IE-08 0.243465E-08
0.99876E-04 0.212551E-08 0.212607E-08

; 0.12015E-03 0.190150E-08 0.190205E-08
0.14456E-03 0.174634E-08 0.174690E-08
0.17384E-03 0.164559E-08 0.164618E-08
0.20914E-03 0.158266E-08 0.158331E-08
0.25156E-03 0.154206E-08 0.154277E-08
Q30 EG 0.151244E-08 0.151324E-08

Table Il. Computational results of kernel function X(Xj,t) by finite difference method (second
column) and by formula (8) (third column). Parameters: pi=100 fim, p2=10 fim, p3=0° fim,
di=50 m, <72=50 m, X=0.001
Il. tablazat. Az X(Xj,t) magfliggvény szamitasa a véges differencidk médszerével (2. oszlop) és
a (8) képlettel (3. oszlop). Paraméterek: pi=100 fim, p2=10 fim, p3=°° fim, di=50 m, dz=50 m,
X=0.001
Tabn. Il. PacueT sigpoBoit dhyHKUMM X[X,z,t) MeTOAOM KOHEUHbIX pasHocTeli(cTonbey 2) 1 no
dopmyne (8) (cTonbeu, 3). MapameTpbl: pi=100 omm, p2=kO omm, p3=°° omm , di=50 m,
~2=50 m, X=0.001
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4. Computing of the vertical component of the magnetic field
strength at the midpoint of a circular induction loop

In consequence of the definition of vector potential (2) in the case of
electric dipole:

Applying this to generate integral Ax of Eq. (4) we get the vertical
component of the magnetic field strength:

00

H3t) =48 L £IFX) XX(X2) dX

For a circular transmitter loop of radius r and with the receiver in the
centre of the circle:

Hz{t) =4~-"Ji{Xr) XX{X" t)dX
lo

Let us substitute its series form (Eq. 8) for kernel function X(X,z,t):

Xk

(23)
-1

As in practice the time derivative of the magnetic field strength is
commonly measured let us derive equation (23) in terms of time and let us
put the value given by formula (21) in the place of ck:

HE Vitkryke, 2 PRL TS 24
dt HED - 2wy DT KOKE x con g © Mai X (24)

Thus transient curves measured by a central induction loop (CIL) array
can be calculated by formula (24). We would mention that if we apply
kernel function X(X,z,t), that can be obtained by formula (8), the transient
field of a vertical magnetic field can be calculated, too. The integral that
contains the Bessel function can be computed by filtering [ANDERSON
1979]. In Table IIl. we show the comparison of field values computed by
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different methods for a three-layered model. Henceforth we denote by ns
the number of terms that will be taken into account from series (8). The
second column of the table contains (d Hz(t) /dt ) values computed by the

time H/dt apparert dH/dt apparent
resistivity resistivity
0.89000E-04 -0.22504E+01 66.086 -0.18666E+01 75.449
0.11204E-03 -0.1634E+01 55.917 -0.14925E+01 59.449
0.14106E-03 -0.11949E+01 47120 -0.11521F+01 48351
0.17758E-03 -0.86452E+00 39976 -0.86540E+00 40.242
0.22356E-03 -0.61163+00 A1 -0.61191E+00 34432
0.28144E-03 -0.41838E+H00 30371 -0.41966E+00 30.306
0.35432E-03 -0.2751E+0 27510 -0.27602E+00 27.447
0.44606E-03 -0.17535E+00 25.627 -0.17406E+00 25573
0.56155E-03 -0.10498E+00 24.545 -0.10526E+00 24.499
0.70695E-03 -0.60949E-01 24.153 -0.61099E-01 24.113
0.89000E-03 -0.34005E-01 24.3%4 -0.34081 E01 24.357
0.11204E-02 -0.18264F-01 25253 -0.18299E-01 25220
0.14106E-02 -0.94625E-02 26.760 -0.94779E-02 26.730
0.17758E-02 -0.47401E-02 28.980 -0.47463E-02 28.955
0.22356E-02 -0.23014E-02 32028 -0.23041E-02 32.002
0.28144E-02 -0.10859E-02 36.057 -0.10872E-02 36.027
0.35432E-02 -0.49945E-03 41.274 -0.50012E-03 41.237
0.44606E-02 -0.22459E-03 47.947 -0.22489E-03 47.904
0.56155E-02 -0.99026E-04 56421 -0.99134E-04 56.379
0.70695E-02 -0.42929E-04 67.133 -0.42952E-04 67.110

Table I1l. Comparison of (d H/,t) /dt ) values computed by the spectral technique (second
column) and by formula (24) (fourth column). Layer parameters: n=3, pi=100 flm, p2 =10 flm,
P3=00 £2m, d [=50 m, 02=50 m
I1l. tablazat. Spektral médszerrel (2. oszlop) és a (24) képlettel (4. oszlop) szamitott (g 114t) /dt)
értékek dsszehasonlitasa. A rétegparaméterek: n=3, pi=100 i2m, P2=10 fim, p3=°° fim, di=50 m,
2=0m
Tabn. 11l. CpaBHeHue 3HauveHuid (6 HA) /dt), nonydyeHHbIX cneKTpanbHbIM CNOCO6GOM
(cTtonb6ey 2) n no hopmyne (24) (ctonbey 4). MapameTpbl: N=3, pi=100 oMM, p2=10 oMM,
p3=°° oMM, di=50 m, d2=50 m

spectral method and in the fourth column values computed by formula (24)
in case of ns=1 are. At early times there is a little deviation but from the
fourth time value it is less than 0.5 %. The speed of computation is one
order greater than that of spectral technique. If u5>l then the accuracy
improves even for early times, but it proportionally increases the running
time. The third and fifth columns of Table Ill. contain apparent resistivity
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values near (d/ dt) Hz values. In Fig. 1 a comparison can be made between

results computed by ns=I, 2 and 4 and by the spectral technique. For early
times the apparent resistivity curve corresponding to ns=1 is above the
resistivity value of the first layer (30 fim). The curve o/ns=4 is almost equal
to the curve computed by the spectral technique. In the time interval
corresponding to the measuring range of the transient equipment the
applicability and values ns of the described method depend on the layer
parameters. For thick and conductive layers only the greater values of ns
can give adequate results whereas in the case of thin and non-conductive
layers even ns=1 gives an accurate result. If the layer parameters are such
that in the major part of the measuring interval even with ns=4 we cannot
get an acceptable result then it is only worth applying the spectral technique.
Fig. 2 shows what restriction it means that the described computation
method works only in the case of a non-conductive basement. The com-
puted apparent resistivity curves of a three-layered model are drawn on
each other and the resistivity of the basement changes (500 Qm, 1000 fim,

Pa

Fig. 1. Transient curves computed by spectral technique (lowest curve) and on the basis of
formula (24). Layer parameters: n=3, pi=30 fim, P2=100 fim, p3=°° fim, di=200 m, di =600 m,
r=50 m. The curves from top to bottom were computed by taking into account terms 1, 2 and 4 of

series (24)

1 abra. Spektral modszerrel (legalsé gorbe) és a (24) képlet alapjan szamitott tranziens gorbék.
A rétegparaméterek: n=3, pi=30 fim, p2=100 fim, p3=°° fim, zii=200 m, di =600 m, r =50 m. A
kilonb6z6 gorbék felulrdl lefelé a (24) sor 1, 2, illetve 4 tagjanak figyelembevételével késziltek

Puc.l. KpuBble nepexofHOro npotecca, Nosy4yeHHble CNEKTPanbHbIM CNOCO6OM 1 NO
thopmyne (24). MapameTpbl cnoes: N=3, pi=30 OMM, p2=100 OMM, p3=°° OMM, ¢=200 M,
d2=600 M, r= 50 M. Pa3Hble KpVBble MoflyYeHbl Npu ydeTe 1, 2 1 4-0ro YneHa Gopmynbl (24)
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Fig. 2. Curves computed by spectral technique to demonstrate the effect of a non-conductive
basement. Layer parameters: n=3, pi=30 m, p2=100 Sim, p3=500, 1000, 2000 and °° Sim,
di=200 m, d2=600m
2. abra. Spektral médszerrel szamitott tranziens gorbék a rosszul vezetd aljzat hatdsanak a
szemléltetésére. A rétegparaméterek: n-3, pi=30 Sim, p2=100 Sim, p3=500, 1000, 2000
és °° Sim, di =200 m, d2=600m
Puc.2. KpuBble nepexofHOro npouecca, pacinTaHHble CNeKTpasibHbIM Cnocobom, Ans
UNNIOCTPaL MK BAVAHUS M0XONPOBOAALLEro dyHAaMeHTa. MapameTpbl cnoes: M=3,
p1=30 omm, p2=100 omm, p3=500, 1000, 2000 u °° omM, di=200 m, d2=600 m

2000 Qm and non-conductive basement). For the given model deviations
between the curves even for late times are small.

Conclusions

Formula (23) makes it possible to compute transient curves faster than
till now, which essentially makes it quicker to interpret measured curves
by curve fitting. Though the applicability of the method is restricted by
assuming a non-conductive basement, and that for certain models it is
inaccurate for early times, for most of the models that occur in practice it
can be applied. One of the possible procedures of interpretation is to apply
this computational method at the beginning, and when we only have to fit
that part of the curve that belongs to early times we can change to the curve
computation spectral technique.
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RETEGZETT FELTER FELSZINEN KIALAKULO TRANZIENS
ELEKTROMAGNESES TER GYORS SZAMITASA

PRACSER Erné

Az id6tartomanybeli elektromagneses terek spektral médszerrel, azaz a frekvencia-
tartomanybeli értékekre alkalmazott inverz Fourier transzformaélttal, vagy a Maxwell
egyenletek idétartomanybeli megoldasaval szamithatok. Az utobbi elven alapuld, aréteg-
zett féltér esetére érvényes és a teljes id6tartomanyban pontos szamitasok altalaban
id6igényesek. Ennek az az oka, hogy a tranziens teret meghatarozé képletek levezetésekor
olyan parcialis differencialegyenlet is fellép, amelynek a megoldasa nem allithat6 eld
analitikus flggvények segitsegével. A parcialis differencialegyenletek numerikus megol-
désa viszont rendkivil idGigényes. Ezzel szemben a spektral médszerrel térténd szamita-
sok soran a frekvenciatartomanyban felmeruld differencidlegyenlet megoldasa
kifejezhetd analitikus fliggvényekkel. Abban az esetben azonban, amikor nem toreksziink
a teljes id6tartomanyban pontos megoldasra, az id6tartoméanyban fellépé parcialis diffe-
rencialegyenlet megoldasa is el6allithato analitikus fliggvények segitségevei. Egy ilyen
esetet ismertet a cikk, amely szigetel§ aljzat esetére érvényes és a késoi id6kre pontos,
aszimptotikus megoldason alapuk
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BbICTPOE BbIYNC/IEHWUE S/IEKTPOMATHUTHOI O MOJA
MEPEXOAHOIO NMPOLEECCA HA NMOBEPXHOCTW CNIONCTOIO PA3PE3A

OpHé NMPAYEP

JNeKTPOMarHUTHbIE MOMA BO BPEMEHHOW 061acTM MOryT 6biTb paccuuTaHbl
CneKTpanbHbIM CNOCO60M, — TO €CTb NpM MOMOLM- 06paTHOro npeobpa3oBaHus
dypbe, NPUMEHEHHOTO ANA BENUYUH 3afjlaHHbIX B YAaCTOTHON 06M1acTu, UM MNyTem
peweHnsa ypaBHeHuii MakcBenna. Crnocobbl pacyeToB, OCHOBAHHbIE Ha MOCNELHEM
npuHLUMNe, NpUMeHsieMble A8 CMOWCTOrO MOYMNpOCTPaHCTBA M TOYHbIE BO BCEM
fnanasoHe BpeMEHM, KakK MpasBuio, TpebytT MHOr0 MALWHHOrO BpPEMEHU. 3TO
CBf3aHO C TeM, YTO NpW BbIBEAEHWM POPMYS, ONpefenstolnx nose NepexofHoro
npouecca, UMeeTcsa U Takoe 4yacTHOe AuddepeHuuMansHOe ypaBHEHMe, peLleHue
KOTOPOTrO0 HENb3s HANTK C MOMOLLBI0 aHAMTUYECKUX (DYHKLNIA, @ YNCNOBOE peLleHne
TakWX YpaBHeHWi aBnseTca Tpygoemkum. Haob6opoT, guddepeHumnanscHble
ypaBHEHUS, BO3HUKaKOWMe MpU peLleHnM 3agavynm B 4YaCTOTHOW 06/1acTh, MOXHO
BblpaXaTb aHAMTUUYECKUMUN YHKLMSMU. Ecnin He TpebyeTcs TOUHOE peLleHue BO
BCeli BpPEMeHHON o6nactn, To M AuddepeHuManbHble ypaBHEHWUS, 3afaHHble BO
BPEMEHHOW 06nacTu, MOryT pellatbCs Npu NOMOLWM aHANUTUYECKUX (YHKLUIA. B
CTaTbe U3naraeTcs TakoW cnyyaid, KOrga Npu Haauumm yHAaMeHTa-n3onaropa ans
MO34HUX BPEMEH MOAYYMM TOUYHOE pELUEHMEe acCUMMTOTUYECKMM CMOCO6OM.



