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GENERALIZATION AND ROBUSTIFICATION OF THE
COVARIANCE MATRIX

Béla HAJAGOS* and Ferenc STEINER*

After some unavoidable simplifications in Section 1 typical instances as well as
problematic examples are given for the use of the inverse covariance matrix of the classical
statistics for weighting. Because of the limited applicability of this matrix, in Section 2 a
generalized version of the covariance matrix is introduced; its applicability is mostly
shown using P-algorithms, i.e., weighted most fregent value calculations. The generalized
inverse covariance matrix turned out to be valid also in the case of small samples if we

use P-algorithms.

In Section 3 the method for determining this generalized covariance matrix is given
as the robustification of the classical one; this determination is (from the viewpoint of the
computation technique) consistent with the basic algorithms of the most frequent value

procedures.

Keywords: correlation coefficient, asymptotic variance, general covariance matrix,
robustification, most frequent value, dihesion

1. Introduction

1.1 Some definitiofis ofclassical statistics

The probability theory defines the covariance au, of the random
variables Cand r) well known as
(1

(E denotes the expected value). If the common density function is denoted
byf(x,y), the covariance is to be calculated as the following integral:
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°xy=i 1 (x~Ex) (y-Ey)f(xj) dxdy, ©@)

and if n pairs of data (x;,y() are given, a very simple expression corresponds
to Eq. (2):

PE (xr*) bry); 3)

the arithmetic means x and y are the estimates of the expected values Ex
and Ey, respectively.

The degree of stochastic connection between Cand q is measured by
the correlation coefficient px:

Pry @)

ax and Oy denote the corresponding scatters, i.e., the square roots of the
variances, consequently the integral formula for prvis

J f(x—-Ex) (y-Ey,f(x,y) dxdy

“xy ®)
(x-Ex) 2f(x) dx -Ey) zf(y) dy

and the estimate of this value is calculated clearly as

£ (xrx)«(yry)

= =il
ry= - In---------- ©)
VExXx)2e £ (yry)2
=1 H
In the case of J random variables CI5 the notations pg and

Ok represent the correlation coefficient and the covariance of the variables
and Lk. If, similarly, ayand ok represent the corresponding scatters, the

matrix of all covariances, i.e., the so-called covariance matrix S, can be
written as
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This way of presentation of the covariances— used also in the famous
article of INMAN [1975]— clearly shows their meaning and suggests that
the interpretation of the correlation coefficients, presented in the correlation
matrix

1 P12 P13 = Pu
P21 1 P23 e P2

(8)

Pn PJ2 PJ3 mm 1

is much more a primary quantity than that of the covariances, although the
latter can directly be calculated according to Egs. (2) or (3) and seemingly
(see Eqg. 4) the correlation coefficient is the secondary (inasmuch as it is
derived) quantity.

1 2 Simplifications

The significance of the correlation matrix of the errors in respect of
inversion algorithms lies in the fact that its inverse can be appropriately
used for weighting, see e.g. the already cited paper of INMAN, where a well
defined geophysical inversion task is thoroughly treated (including the
way of linearization, ridge regression, etc.). In contrast to this way of
treatment, in the present paper from the point of view of the possible
geophysical tasks only the simplest situation is supposed: direct measure-
ments are made for the same quantity, say, for the rock porosity n, but not
all data are characterized by the same probable error and/or by the same
type of the error distribution. After this simplificaton we can pay full
attention to problems of generalization and robustification.

For the clearest presentation of our trains of thought leading to the
necessary generalization and robustification of the covariance matrix,
however, some further simplifications are unavoidable. In all cases dis-
cussed in the present paper the inverse of the covariance matrix shall give



114 B. Hajagos —F. Steiner

the same weight, for na data another weight, for the remaining nb data
(nb =n-na)i.e., nadata will have equal weights and this is true for the
remaining ones, too.

Consequently, if we give the weight w (0 <w < 1) for the n statisti-
cally equally behaving data and the weight (1-w) for the nb (from the
statistical aspect similarly equal) data, the error-curve of the results obtain-
ed by statistical algorithm as a function of w will have its minimum place
wopt determined by the inverse of the covariance matrix.

In this Introduction the ‘statistical algorithm’ mentioned above refers
to the classical one, i.e., the minimization of the L2-norm, — which is here
simply the calculation of weighted means as according to our supposition
direct measurements are made for the unknown geophysical quantity (say
for the porosity of the rock at a given depth level).

Our simplifications enable us to write the variance Oqof the result x0
in a simple analytical form, on the basis of the well known general
expression

n
d ai + Jj gckpk Qg ok ©)

LJK;%
which belongs to the random variable

20=10", . (10)
=1

(In Eg. (9), instead of the often used notations VAR (C,) and COV(Cy,") 0j
and pk § ok, respectively, are written in accordance with the notations already

used in Eq. (7).)
If the random variables are pair-wise independent, Eq. (9) reduces

to

ok =, cf of (11)

i=1
and this is to be written as

(h(w):[naw+nb(l-w)] NrtaWw2oa2+nb(l-w)2ol4 (12
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if (as was agreed earlier),

1
naw +nb(l-w) _ (13)
1=1 i=n,,+1

In Eqg. (12) oa and abrepresent the scatters (i.e., the square roots of

the variances) of the naand nb data.
The minimum place ag(w) (see Eq. 12) is

\/ot

14
vei +1/al 14

wopt

(which is simply to verify by differentiation). This is in accordance with
the following general form of the inverse of the covariance matrix valid for
pair-wise independence of the random variables:

1 /ctj 0 0 . 0
0 1/02 0 0
0 0 1/ 03 . 0
5 - (15)
0 0 0 .. 1/02

The general form of matrix S' 1in the case of different mutual depend-
ences of the random variables cannot be given in a simple way.

We shall discuss, however, only such cases when only nb random
variables are pair-wise dependent for the neighbouring indices character-
ized by the same correlation coefficient p. (Naturally nb must now be an
even number). Otherwise the simplification made in the independent case
remains, i.e., there exits only two different variances and &, conse-

qguently the covariance matrix will have the following form:
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cl1 00 0
0 <0 0
0 =m0 0 o on 0 0
S = b P°b (16)
O . 0 O Pob ob O O
0 0 oB P°h
0 0 pctE
/la columns nb columns
In this special case S'lalso has a simple form: (17)
1/®2 0 0
0 .. 0 YVat
0 0
cT|(1-p2) ab(1-p2)
s'1= 0 .. 0 0 - 0
ab(l_p2) «*(1-p2)
0 e, . 0
(1-P2) 1-P2)
0 e .. 0 -

cT|(1-p2) aB(1-p2)

(the product of both matrices in Egs. (16) and (17) should result in the unity
matrix).

Now, the ‘proposal’ of the matrix S '1for the weights to be applied is:
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1
for na data
o
(18)
1
for nb data
<$(1+P)

In our simplified case the notations of Inman [1975] correspond to the following:
M=1and P°=0 therefore [, P=x0\ A =1 (the unity matrix); [4 G],= g ;N “1=S'1. Conse-
quently, the expression to be minimized (see Eq. (8) in the just cited article) simplifies to

M

[o4] :|IR- 1ai* xi - x0) (4 - *0) (19

(in our notations) having clearly the minimum place defined by
----- @)

(compare our Eqg. (10); o,k represent an element of the inverse covariance matrix s’
The same ci-s are the results of course if we minimize the expression in our Eq. (9).) The
weights in Eq. (18) clearly correspond to the general expression in Eq. (20), taking the

actual s" 1 (see Eq. 17) into consideration.
Expressing the results in Eq. (18) by the earlier introduced variable

weight w,

Wopt 1 1 (21)

G2  og(1+p)

(and this clearly reduces to the form given in Eq. (14) if p =0). The same
result is reached if the general expression in Eqg. (9) is concretized to our

actual case to get the analogue of Eq. (12):

RN () ——— fi2jparca M 1“7)20+P) 4}, (22)

and we look for the minimum place of this function by differentiation.
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It is instructive to show in figures the variation of the error committed
by the statistical algorithm used for the whole range of w (0< w <1). The
‘probable error’ (defined by Bessel) and denoted by q is frequently used
by engineers: if Fis the probability distribution function and F 1lits inverse,

F=7 [F 1(3/4)-F 1(1/4)]

and therefore it is also called ‘semi-interquartile range’. The ‘semi-inter-
sextile range’ Q is similarly defined:

C=" [F-1(5/6) - F-1(1/6)] . (24)

It is obvious that it is twice as probable that absolute errors are less than
Q, than greater than Q whilst these probabilities are equal using g as the
error characteristic: one half of the errors are expected inside the interquar-
tile interval, the other half outside of it. We shall use throughout the
probable error g, which is to be calculated for a Gaussian error distribution
well known as

q=0.6745 +a (25)

Sometimes the curve of the semi-intersextile range Q in function of w will
be also shown; for the Gaussian case

Q =0.9674 +a (26)

holds.

Our demands for accuracy are less rigorous in the case of the errors than in the case
of the geophysically important quantities (depths, porosities, etc.) to be determined. If,
say, by a geophysical depth-determination the relative error is 4%, this is meant as an
error-range between 3.5% and 4.5 %, consequently the relative error of the error is here
accepted to be 25 %. Indeed, the relative error of a simple determination of the scatter a
is 100/72 n %even in the least problematic case: when the data have Gaussian distri-
bution. For example, ifn=8, this error is obviously 25 %. (Thejust cited formula is a special
variant of the expression in Eq. (55), namely for a—#°°, viz, this limiting case corresponds
to the Gaussian distribution of the errors.) Consequently, the difference between Q and
a of only some per cent for the gaussian distribution (see Eq. 26) can be neglected in nearly
all practical cases. By theoretical investigations, however, naturally the exact connection
given by Eq. (26) is to be taken into consideration.
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1.3 Examples, problems, meditations

It is time to show some examples of classical fashion: firstly for
Gauss-distributed data. Although on the grounds of Egs. (22), (25) and (26)
both theoretical curves g(w) and Q(w), respectively, are easy to construct
for various situations, we also show Monte Carlo results for w =0; 0.1; 0.2;
..., 0.9; 1.0. More exactly, for all situations random numbers in question
N=1000 times were generated and the just investigated statistical algorithm
applied in all investigated cases of this paper (this algorithm is, in the first
examples, simply the calculation of the weighted average according to Eq.
(13), i.e., an L2-norm algorithm,) and the empirical g-value (sometimes also
the Q-value) of these 1000 results were determined. For information about
the statistical fluctuation of these probable errors, the whole procedure was
repeated three times, and the values obtained were, on the one hand,
separately demonstrated in all Figures, and on the other hand, also the
interval of the actual fluctuation was indicated as short perpendicular
straight line for all w-values. The self-consistence belonging to this dem-
onstration of our Monte Carlo results throughout the paper proved to be
fruitful.

In the first example are only (pair-wise) independent errors, all have
Gaussian distribution but nb=4 of them are characterized by ob =/2" and

na=4 by oa= 1 (As random variables here and later have the meaning of

error, the parameter of location will always be equal to zero.)

Fig. 1 shows that Monte Carlo results are in full agreement with the
theoretical curve based on Eqg. (12), including naturally the fact that wopt is
the same both for theoretical and Monte Carlo results. (The theoretical
value of the wopt in question will always be indicated on such Figures,
sometimes the theoretical ~-values for w=0 and 1, will be indicated too0.)

In our second example all n=9 data have standard Gaussian distribution
but only na=3 are independent, G4 and C5, @ and C7, and 9 are
correlated with a correlation coefficient of p =0.6. (This is in full agree-
ment with our simplification in Section 1.2 and therefore it would have
been enough to write nb=6 and p =0.6.) The Monte Carlo results and the
theoretical curve g(w) based on Egs. (22) and (25) are shown in Fig. 2; the
conclusions are the same as for Fig. L (The p-scale also shown in Fig. 2
indicates the w”-values for the corresponding p-s on the ground of
Eqg. (21) which simplifies in this concrete case to woxr = (1+p) /(2+p). )

It is illusory, however, always to expect such excellent agreement
between theoretical and Monte Carlo results, e.g., if nqdata are Gauss-dis-
tributed characterized by aG= 3 and nbhave the density distribution

FT(x) =(1-p) fG(V,x)+p fG(oc:x), (p<0.5), (273)
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Fig. 1. Error-curve of the results from the conventional /.2-algorithm, using different weights.
The data are independent and Gauss-distributed; na=nb=4. The best choice corresponds to the
covariance matrix of classical statistics

1 abra. A hagyomanyos /~-algoritmussal nyert eredmények hibagorbéje kiilonb6z6 sulyok
alkalmazasakor. A primer adatok fiiggetlenek és Gauss-eloszlastak ; ma=nb=4. Az a legjobb
sulyvélasztas, amely a klasszikus statisztika szerinti kovarianciamatrixnak felel meg

Puc. 1 KpuBasi NOrpeLHoCcTU pe3ynbTaToB, NoAyUYeHHbIX NpU TPaguLMOHaNLHOM
anbropudgmMe Lj npy npumeHeHUM pasHbIX BecoB. [MepBblUYHble AaHHbIE HE3aBUCbIMbIE U
numeloT ayccoBCKoe pacnpeseneHue,na=nb=4. Jlyylwinm BbIGOPOM Beca siBfisieTcA TOT,
KOTOPbI/i 0TBEYaeT KOBapMaLMoOHHOW MaTpULLe K1acCUYeckoi CTaTUCTUKM
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Fig. 2. Error-curve of the results from the conventional ~-algorithm, using different weights
(na= 3, nb= 6; rtrue=p=0.6). The best choice corresponds to the covariance matrix of classical
statistics
2. dbra. A hagyomanyos ~-algoritmussal nyert eredmények hibagorbéje kiilonbézé stlyok
alkalmazéasakor (na= 3, nb= 6; MNrue=p=0,6). Az a legjobb silyvalasztas, amely a klasszikus
statisztika szerinti kovarianciamatrixnak felel meg
Puc. 2. KpuBasi norpewwHocT! pesynbTaTtoB, MONyYeHHbIX NPU TPaguLMoHanbHOM
anropugme Li npy npumeHeHUM pasHblix BecoB (Ma= 3, nu=6; r,lb=p= 0,6). Jlyywnum
BbI6OPOM Beca AB/seTCA TOT, KOTOPbIA 0TBeYaeT KOBapMaLMOHHOW MaTpuLie Knaccn4eckoi
CTaTUCTUKM
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i.e., nb data are Tukey-distributed. (See Eg. (83) in STEINER [1988]; in
Eqg. (27a)f Grepresents the Gaussian density function

. 1 _Xi/l1a2
l'a (97) = Gef2n (27b)

In the monograph just cited the density function of arithmetic means for
Tukey-distributed data is also given analytically, see Eq. (85).)
The scatter of the Tukey distribution is obviously

or=/ (1-p) +P «o0R2 (27c)

and this means a value of oT=67.09 if we take p=0.2 and ac=150 (this

case is separately discussed in STEINER [1988]). As independence is also
supposed, Eq. (14) would yield the appropriate wopt-value but we have in
this way wap[ ~ 0 in contradiction to the Monte Carlo results for na=nb=1
shown in Fig. 3a where the choice w=0.9 seems the best (both g(w) and
Q(w) curves are presented in the figure). Seemingly — at least belonging
the minimum place — the Monte Carlo results correspont to the ‘theoreti-
cal’ expectations if na=nb=4 (see also Fig. 3a) but this is not true for the
whole range of w: we see in Fig. 3b (where other ordinate scaling is used)
that the g-value from Monte Carlo calculations for w=1is only a small
fraction of the ‘theoretical value’ according to Eq. (12) which is to be
calculated in this case simply as 0.6745 oT7/4".

The foregoing calls attention to the fact the scatters in the covariance
matrix would be misinterpreted as the minimum of the L2 norm of the
differences (x~x0) for the other distribution: they are to be understood, on

the contrary, as asymptotic scatters of the arithmetic means.

The asymptotic scatter is defined for estimates as

A =1limVvIiTmo,,,
(28)

where aest is the empirical scatter of the estimates. As the estimates frequently approximate
Gaussian distribution [see e.g. HUBER 1981] if n -* °° the approximation
g =0.6745 A//7TorC =0.9674 vt//Tfcan be adequately used (see also Eq. (25) and (26)).
If we say only ‘variance’, it means the asymptotic variance of the arithmetic averages.

The foregoing means that the weigthing given by the inverse covari-
ance matrix is to be understood asymptotically, — but what about small
samples? In the extreme case na=1shown in Fig. 3a for the weight w=1 is
clearly the semi-intergartile range of the mother distribution and it is
authentic and not the value 0.6745 aT; the former is about an order less

in the cited case than in the latter. This means that acceptable results by
using the inverse covariance matrix for weighting are to be expected for
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semi-interquantile

ranges

Fig. 3a. Error-curve of the results from the conventional ~-algorithm, using different weights.
The best choice for na=nb=1 does not correspond to the classical covariance matrix: wopt can be
calculated from the g- and Q-values, respectively, of the mother distributions

3a. dbra. A hagyomanyos ~-algoritmussal nyert eredmények hibagérbéje kilonb6z6 stlyok
alkalmazésakor. Az na=nb=\ esetben a legjobb stlyvalasztas nem felel meg a klasszikus
kovarianciamatrixbol kovetkez6knek: wop, az anyaeloszlasok - ill. C-értékeibdl szamithat6

Puc. 3a. KpuBas norpewHocTy pesynbTaToB, NONYYEHHbIX NPU TPagMLMOHHbI anropudme
2 npu npumeHeHnn pasHbIX BecoB. B ciyyae nu=rm*=1 Nyywinii BbIGOp Beca He OTBEYaeT
CNEATCTBUSIM K/1ACCMUECKOM KoBapuaLuMOHHOW MaTPULM : WOP, BbIUYUCSIETCSA MO 3HAYEHUAM
gun QmaTepHbIX pacnpeaeneHui
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semi-interquantil*

Fig. 3b. Error-curve of the results from the conventional /~-algorithm, using different weights
(na=mb=4). The error-value at w=I is only a small fraction of the value calculated on the basis of
the variance

3b. dbra. A hagyomanyos Zz2-algoritmussal nyert eredmények hibagérbéje killonb6z6 stlyok
alkalmazasakor (na=nb=4). A w=1-nél csak egy tértrésze az eredmény hibaja a szorasbol
szamithatonak

Puc. 3b. KpuBas norpewHoCTW pe3yibTaToB, NOyYeHHbIX NPU TPAAULNOHHbIM anropugme
L2 npn npyMeHeHUN pasHbIX BecoB (Na=nb=4). Mpu w=1 NorpewHoCcTb pe3ynbTaTa siBASeTCS
NVWb APO6HON YacTbio BeIMUYMHBI
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small samples only if the g- and/or the Q-values of the mother distribution
do not differ significantly from 0.6745 a and 0.9674 -a, respectively. If
this is not the case, n must be large for the adequate use of S"1for weighting.

In the next example the samples are not yet small: na=n*=100 holds.
Two types of the/,,/xj-supennodel were chosen (see Eq. (143) in STEINER
[1988]), namely, for the type parameter values m=1and m-0.5, leading on
the one hand to the well known Laplace distribution characterized by the
density function

= |
f) =z X! (29)
and, on the other hand, to a very peaky density function

fnem =e~ 2r’r\ (30)

and therefore it seems to be appropriate to call this latter ‘needle distribu-
tion’.

Both density functions are shown in Fig. 4. The flanks of the needle
distribution are heavier than those of the Laplace distribution, therefore also
the scatter (one = 2.7386) is significantly greater than that of the Laplace
distribution (oL=f1) vyielding, according to Eq. (14), a wopt-value of
0.2105.

The Monte-Carlo results for the weighted means are near to the
theoretical ones (see Fig. 5); the just given value of w tis fully satisfactory
but some differences still exist in the neighbourhood of w=I (i.e., na=100
is not yet enough in this case to speakjustifiably about the practically ‘total
fulfilment’ of the asymptotic rule, see the Z*-curve in Fig. 5, because of the
long tails of thef ne distribution).

In Fig. 5 Monte-Carlo results for weighted medians are also demonst-
rated (see the Lr curve); the optimum value of w for this case (=0.8) has
really nothing to do with the yet known value wopt=0.2105 which applies
to the conventional statistical algorithm (i.e., with the minimization of the
Z™-norm, which is in our simplified situations nothing more than weighted
mean-calculations). — This curve will be discussed later more thor-
oughly; we indicate here only the important fact that the optimum values
of the weights strongly depend upon the statistical algorithm used and
therefore appropriate generalization of the covariance matrix is unavoidab-
le. This generalization must also be able to solve the problem that scatters
(figuring in the covariance matrix of Eq. (7)) are often, i.e., for very many
type-models of probability distributions, infinite, and also the primarily
given definition of a” (in Eq. (2)) can lose completely its meaning, e.g., if
f(x,y) is the density function of a two-varibale Cauchy distribution. As also
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Fig. 4. Probability density function of the Laplace and the so-called ‘needle’ distribution; the
latter is very peaky as well as having much heavier flanks than the Laplace distribution

4. dbra. A Laplace- és az un. “t("-eloszlas s(r(ségfuiggvénye. Az utdbbi egyrészt nagyon
hegyes, masrészt viszont jelent6sen stlyosabbak a szarnyai, mint a Laplace-eloszlasnak

Puc. 4. ®yHKLMS NAOTHOCTW pacnpejeneHuns Jlannaca U Ur0BOro pacnpeseneHus.
MocnefHOe ¢ OAHOI CTOPOHbI CAIULLIKOM OCTPOE, OAHAKO ero Kpunsi UMerT 60/blle Becos,
Yyem pacnpegeneHue Slannaca
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L 12 ok
v Wt L~dAALMIAT Y 4%
215

e i} =0,2105
L2 4= 78] vag U  2/15+1/2

Flg. 5. Error-curves of the results from the /~-algorithm and the L\-algorithm, respectively
(na=nb=\00). The minimum place of the Ti-curve has nothing to do with the conventional
covariance matrix but it is easy to interpret on the basis of the generalized one

5. abra. Az Lj- ill. L\-algoritmusokkal nyert eredmények hibagérbéi (na=nb=100). Az Li-gorbe
minimumbhelyének semmi koze sincs a hagyomanyos kovarianciamatrixhoz, de kénnyen
magyarazhat6 az altalanositott kovarianciamatrix alapjan

Puc.5. KpuBbie NorpewHocTn pesynbTaToB, NosyyeHHbIX o anropugpmam Li n L\
(na=n*=100). MuHMUMYM KpuBoW L\ He nMeeT HMYEro o6ULEro ¢ TPAAULNOHHOWA
KOBapuaunoHHON MaTpuLeid, HO nerko o6bsAcHAeTCS No 0606LeHOl KoBapuaLoHHOMA
mMaTpuLe
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pxy in Eq. (4) has no meaning in these cases, obviously the correlation
matrix must also be generalized.

2. Generalizations

2.1 Generalization ofthe covariance matrix ifthe errors are independent

Letf(x) be the density function of the actual but unknown probability
distribution. If we choose instead off(x) a well defined density function
g(x) as ‘substituting distribution’, the so-called /-divergence I,,(f) is de-
fined as

- <31)

(see HAJAGOS [1982] or STEINER [1988]). As the /-divergence can be
interpreted as a measure of the information loss, that I'-value of the location
parameter figuring in g can be with reason accepted as the most characte-
ristic value forf which minimizes the information loss, i.e., for them the

relations

dL(f
-fj(r):o (32)
and
AW >0 (33
a

are simultaneously fulfilled. It is easy to verify (see either of the just cited
papers,) that both demands are fulfilled if the following integrals result in
zero values:

J IZ_Tf(X) dx =0 (34)
8

—O00

and
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J agTZfix)dr:o (35)

These equations define the statistical algorithm: Eq. (34) gives the algo-
rithm for the determination of the location parameter T, Eq. (35) defines
that of the parameter of scale (5). For example, ifg is the Gaussian density
function, Eq. (34) defines the formula for the expectant value E as the
location parameter, Eq. (35) defines the formula for the variance a2;ifg is
the Cauchy density function, the Egs. (34) and (35) define the twofold
iteration for determining the most frequent value (as T) and the
dihesion e (as 5); etc.

If the following integral denoted by 8l is calculated such T and S
simultaneously satisfy Eqgs. (34) and (35), we get the ‘developed informa-
tion’ using the statistical algorithm defined originally by the substituting
distribution g:

s2
(ES.
T wi(x) dr (36)
g

(Another name for”/is ‘relative information’, see HAJAGOS [1982] where
the definition of 8Lis first given.) The maximum value / of #/presents itself
in the case of g=f, I is the well known Fisher-information. In this case the
whole information is exhausted and therefore the straightforward definition
of the efficiency e of the statistical algorithm defined by g is

e =8I/l ; (37)

and it also seems appropriate to use 8l as weights. HAJAGOS [1985] has
shown that

S -Tf2<38>

where 8A2is the asymptotic variance of the estimates ifg defines (by means
of Egs. (34) and (35)) the statistical algorithm. Substituting the expression
of 81 given by Eqg. (38) in Eq. (37), and taking also into considetarion that
I = 1/d ~in, we in fact get the well known formula fot the efficiency
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If Eq. (38) defines the weights for data characterized by different error
distributions, the diagonal matrix of these weights can be considered as the
inverse (8A~*) of the following general covariance matrix:

0 .. 0
0 82
0 (39)
0 .. 0 B8AR

8A2means here the asymptotic variance if the estimates concern the random
variable G- From the general covariance matrix 8A for independent random
variables obviously follows the classical one if g is Gaussian:

Cli o0 0
0 o2
(40)
0
0 0

(the inverse of S was given in Eqg. (15)), as the expected value E is defined
by Eq. (34) if g is Gaussian, and the asymptotic variance of the estimates
for E is well known the variance itself (i.e., oj in case of ). — It is
convenient to denote also by an arbitrary statistical algorithm the asymp-
totic scatter 8A by the characteristic itself which is estimated, e.g., if g is
the Laplace distribution, the median (med) of Cis estimated (as it can easily
be verified on the ground of Eq. (34)), therefore medA is written in this case
(and eA = o evidently holds). The only exception is the standard version of
the most frequent value calculations, i.e. if the theoretical value of M is
estimated: simply A is written instead of 44 and thus the covariance matrix
has the form, in case of independence if the P-norm is minimized:

A2 0 .. O
0 A\

A - » u 4.
0 ... 0 A,

Instead of citing many papers we prefer to give in brief here the basic definitions and
relations belonging to the P-norm, tne standard version of the most frequent value
calculations, etc.
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The P-norm is defined as

P=Eexp Jin 1 X;:O f(x) dr (42)

where for e (i.e., for the so-called dihesion)

If< (~)2 f11
*0)2] 2
(43)

°0 |
£rE2 (g 1O

must hold iteratively. The minimum P-value is reached if xo=M is defined by

J.v (x) xfix) dr
Y J— . (44)
Jps(.r) f(x) dr

M is called the most frequent value (in standard version); the functions s(x) is defined by

. 4 e2
= 45
SIX) 4e2+(r-Al)2 (49)

Egs. (44) and (43) simultaneously define M and e (in Eq. (43) naturally xo=M must be
substituted); in the case of a homogeneous sample xj, ....,X,, the estimates for M and e are
calculated (by means of a twofold iteration) on the ground of the sum-counterparts of Egs.
(43) and (44). These equations are easy to get if we substitute

n
fix) =£ X5 (x-x,) (46)
i-i
into Eqgs. (43) and (44); for more details see the summarizing tables at the end of STEINER [1990]
and [1991].

The asymptotic variance of the most frequent values is to be calculated according to
(x-M) 2
Jp [4e2+(r-m)214
A2- 47)
| 4e2 -3 jx-M) Zfix) dr
[4e2+(r-M)2]3

fix) dr

(see e.g. Eq (134) with k=2 in STEINER [1988]).
The most important question in respect of the inverse algorithms is the
following: Do the basic statements concerning the optimum weighting
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discussed in Section 1remain after this generalization of the covariance
matrix? In particular if our independent data are distributed according to
two different ways (we have agreed that this simplification is consequently
used in this paper), does the analogue of Eq. (14), i.e.,

1/8Aa
1/8A2 /A

wopt (48)

really give the optimum weight? For example, for LI-norm algorithms (i.e.,
for calculation of sample medians) really

\/" edAl

49
WOPL /v edAd + I/medA i (49)

in the case of the P-norm (i.e., for calculations of the most frequent values) is

114
W opt (50)
1/4+1/4

really the best choice?

We have seen the Monte Carlo results from calculating medians in
Fig. 5 (see once more the Lj-curve). The asymptotic scatter of the sample
medians can be expressed (see e.g. CRAMER [1946]) simply as

tned, _ 1

A=t (med) (1)
for the distributions defined in the Egs. (29) and (30). The wopt=0.8 value
calculated according to Eqg. (49) fully corresponds to the Monte Carlo
results. In addition, the following analogue of Eq. (12) also seems to be
valid for independent cases

. 2\ W2 o* b 2 e* , 2
s4  (w) [naw+nh(| w1 2 fa 4 +nb(1-W) 4] (52)

as by substituting ".edA instead of the general gA two times in Eq. (52), the
theoretical q(w) calculated as 0.6745. medAQ (w) is near to the Monte Carlo

results.

Two remarks: a/ theoretical curves are drawn in the overwhelming majority of our
figures with dashed lines; b/ as far as the applied constant 0.6745 is concerned, we refer
once more to the fact that estimates very often have (but not always) Gaussian distribution
(see Huber [1981]).
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The small departures between the theoretical curve and the Monte
Carlo results in the neighbourhood of w=I are similar using the L"norm
as in the discussed case of the /*-algorithm because na=100 is not enough
to get complete accordance with the asymptotic rules. The reasons, how-
ever, are quite different: the flanks of Le are very elongated and therefore
the sample size must be very large if we wish the averages to behave
according to the asymptotic rule, the behaviour of the central zone has
hardly any influence; — on the contrary: the calculation of the sample
medians is extremely sensitive in the case of symmetrical and unimodal
distributions to the data around the maximum place of the density curve if
the latter has a peaky maximum but in the case of the extreme pointedness
of/,,e-curve (see Fig. 4) na=100 is really not yet enough to detect accurately
this feature of the density curve on the basis of the sample (it is completely
indifferent in respect of the sample medians if the flanks are heavy or not).

In Fig. 1we saw in the case of na=nb=4 full agreement between Monte
Carlo results and the theoretical curve expressing primarily asymptotic
behaviour. The first example for the eventual discordance was shown on
the right hand side of Fig. 3a: the Monte Carlo results have expressed well
the characteristic of the mother distribution itself, — but this was veryfar
from the theoretical value calculated according to the asymptotic rule,
namely, on the ground of the asymptotic scatter (EA = §) of the averages.
The just discussed departures in Fig. 5 are traceable to similar origin, not
only for L} but also for Lx, too.

From the viewpoint of geophysical practice it is very important that
small samples also behave at least approximately according to the asymp-
totic rule and this is achieved if some significant characteristic of the mother
distribution, say, g or Q, is near to the asymptotic scatter of the estimates
obtained by the statistical algorithm in question. As according to Eq.(26),
Q ~ EA =a holds for the very classical, namely for the Gaussian case, we
should see whether the intersextile range Q is far from or near to the
asymptotic scatter of the standard most fregent value calculations (i.e., of
the characteristic of the algorithms based on the P-norm, denoted by A) for
frequently occuring mother distribution types.

The distribution types of the 7iW-supermodef defined by

rf
fa V\# M ! @a>1) (53)

/T T 0 <+2al2

proved to be adequate for modelling actual error distributions which occur
in geophysical practice. Introducing p=10\{a-I) as parameter of type it can
be proven thatp 2~Pi well approximates the type-distance of the correspond-
ing distributions (defined by a2and a”. Consequently it is straightforward
to show all important characteristics as a function of p for a great type
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interval, mostly from the Gaussian (p=0) to the Cauchy distribution (p=1;
for more details about the supermodel fa(x), e.g. Cramér-Rao bounds,
efficiencies, etc., see STEINER [1988]).

In our case in Fig. 6 the curve of the quotient A/Q was drawn as a
function of p\ for comparison the 0/Q curve is also shown in the same
figure.
Our conclusion on the ground of the A/Q-curve of Fig. 6 is that A~Q
is satisfactorily fulfilled for a very broad type interval (from the Gaussian
type at least to the Cauchy-distribution); consequently, it is justifiable to
expect that asymptotic rules are applicable (with the demanded accuracy)
alsofor small samples ifalgorithms based on the P-norm are used. As a
lower limit four data in a sample can be expected because for only three data
the notion ‘most frequent value’ is hard to interpret adequately (and for two
data all algorithms investigated — based on Lr, L"- or P-norm — give the
same estimate).

Fig. 6. Relation A - Q holds for a large
type interval; o * Q is valid only for the
immediate neighbourhood of the Gaussian

6. dbra. Az A +Q kozelité egyenléség
széles tipustartomanyra érvényes; a “ Q
csak a Gauss-eloszlasra és kozvetlen
kornyezetére teljesul

Puc. 6. MpubnunxeHHoe paBeHcTBO A aQ
felicTBYeT ANS LWMPOKOro AnanasoHa
TMNoB; 0 6 Q BbIMOMHAETCS NNLLb ANA

rayccoBCKMX pacnpeieneHunin n ux
HenocpeACTBEHHOI 61130CTU

10
AIQ

0,5

05
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The cr/Q-curve of Fig. 6 shows that 0~Q holds only for a surprisingly
small type interval in the very neighbourhood of the Gaussian distribution;
the problems shown in the Introduction are therefore to be understood
without any difficulty. As

f1 it a>3

(54)
if a<3

holds for fa distributions, a is infinite for a great variety of probability
distribution types. In addition, it can be proved, that the asymptotic scatter
of empirical scatters divided by the true value of o is to be calculated
according to the formula

o1, if @b

Aal o (55)
if a5

It means that in the case of the very often occuring a=5 (see the density
curve of the type-occurence in Fig. 19) the determination of the elements
of the covariance matrix becomes problematic (at least from the in point of
view of acceptable accuracy).

Let us look at some examples. But first of all a remark which belongs
to all the examples shown in this Section: to tell the truth, it would really
be necessary to discuss in detail an enormous number of variants but if we
were to do this, there would be the danger of losing the clarity of the present
paper. The most essential things, however, can be shown, too, if we restrict
ourselves to Cauchy-distributed data: the classical covariance matrix is not
even defined in this case and therefore these examples stress best of all the
importance and necessity of the generalized covariance matrix. In some
cases the sample will consist of Cauchy- as well as of Gauss-distributed
data. The calculations were made on the ground of the generally applicable
P-norm.

Curiously enough also the theoretical q(w)-curve of the Z~-results can be S|mg
given if the sample contains only Cauchy-distributed data but naof them have a probable
error of gaand nbare to be characterized by gb:

1
DM " na b (1-w) \naw ga+nb{l-w)- gb\ (56)

The validity of Eq. (56) can easily be proven on the basis of the Cauchy distribution
being a so-called stable one (see Subsection 2.2). The q(XV\? function in Eq. (56) is
evidently a monotonous one and therefore no minimum exists for O<u><1.
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Fig. 7 shows the theoretical g(w) and Cfwj-curves, respectively, as
0.7645 and 0.9674 times (see Egs. (25) and (26)) of the AO(w)-values
calculated according to

e"na ""Al +nb(l-w)2-AB , (57)

which is clearly a special variant of Eq. (52) for P-algorithms. (The
numerical values of A obtained by using Eq. (47) are given for some
distribution types in STEINER [1990], e.g., A=1.5 holds for the standard
Cauchy distribution and A=1.0466 is valid for the standard Gaussian
distribution. If the parameter of scale S differs from unity, A (being valid
for the standard case) isto be multiplied by the actual value ofS. The Monte
Carlo results agree satisfactorily with the theoretical ones in the case of
Fig. 7 although only a small sample was investigated (na=nb=4). The same
is true for the P-curve of Fig. 8; in this case samples contained data of
Cauchy type as well as of Gaussian type. Consequently, the inverse of the
generalized covariance matrix informs us adequately about the best weight
wopt to be used.

2. 2 Generalization ofthe correlation matrix

The elements of the classical correlation matrix p (see Eq. 8) are
defined by Egs. (4) and (5) and calculated on the ground of data pairs
according to Eqg. (6). These matrix elements, i.e., the correlation coeffi-
cients, are used popularly in practice (it is certain that one of the reasons
for this is that — < p < lalways holds), — although their definition do not
make possible a plausible interpretation of this notion for appliers.

An obvious interpretation of p, however, can be simply given in the
special case if C, q and C have equally standard Gaussian distribution C
and Care independent and the relation

q=p-C +C-VI-p2 (58)

holds. Namely, it can be proven (see e.g. CRAMER [1946]) that in this case
Eqg. (5) results really in the correlation coefficient p having, according to
Eg. (58), an immediate meaning: the random variable g ‘contains’ the
random variable Cto the extent of the proportionality factor p.

As Eg. (58) gives an obvious and simple connection of random
variables, this relation should be regarded by our generalizing as a primary
definition of a value which measures the closeness of the connection
between random variables Cand g. In the general case we shall denote this
proportionality factor by rtrue, — but how can Eq. (58) itselfbe generalized?
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Fig. 7. Error curve of the results from the P-algorithm (na=nb=4). The best choice of the weights
corresponds to the generalized covariance matrix

7. dbra. P-algoritmussal nyert eredmények hibagorbéje (na=nb=4). A stlyok optimalis valasztasa
az altalanositott kovarianciamatrixnak felel meg

Puc. 7. KpuBasi norpewHocTeli pe3ynbTaToB, NoAyyYeHHbIX No anropudmy P(na=nu=4).
OnTManbHbI BbIGOP BeCOB 0TBeYaeT 0606LLeHHOM KOBapnaLnoHHOW MaTpuLe
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?
P: gt = UA? 11.82 —0327A
1/A2¢ 1/A2 ' 1/1.52* 1Y¥1.04662
o VR o
1/EA? ¢ 1/EA)

Fig. 8. Error curve of the results from the /’-algorithm (na=4 data are Cauchy-distributed, n*=4
are Gaussian). The best choice of the weights corresponds to the generalized covariance matrix

8. abra. P-algoritmussal nyert eredmények hibagérbéje (na=4 adat Cauchy-, nb=4 adat pedig
Gauss-eloszlasu). A sulyok optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 8. KpuBas norpewHocTeli pe3ynbTaToB, NoAyUYeHHbIX Mo anbropugmy P ( gaHHble no=4
UMeloT pacnpegeneHne Kowu, a jaHHble *=4 raycCoBCKOe pacrnpeseneHue).
OnTuManbHbIii BUGOP BeCOB 0TBeUaeT 06061 eHHO KOBapMaLMoOHHO MaTpuLe
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In the first step the premise of the Gaussian distribution of the proba-
bility distributions should be given up. The supposition of the Gaussian
type of all three random variables was convenient in respect of Eq. (58)
because of the so-called stability of the Gaussian distributions: the sum of
two Gaussian random variables is also Gaussian. There are, however,
plenty of stable and symmetrical distributions besides the Gaussian, namely
the types of the/a(x)-supermodel defined by

o @)= fexpineie )ecos () d (0<a<2) (59
0

(for more about this supermodel see in STEINER [1990]; fa(x) is the

Gaussian density function if a =2 , and in the case of a = 1 we get the
Cauchy distribution). Our generalization is simple: a should have all its
possible values, not only the value 2. In this case the following generalized

version of Eq. (58) is needed:
M=rtrue' *+C'O" Kue I)17* (60)

(see Eg. (3) in HAJAGOS and STEINER [1989b]) and this corresponds to the
following density function:

y~rtrue x .
fa (*(1)2 ) i ta M ta (GI)
a-iw ia)lla a-iw ia)lla
With a =2 this expression clearly gives the well known formula for the
two-variable Gaussian distribution.

Thefa and/adistributions are very similar, see e.g. Fig. 9, — but this
close connection can also be demonstrated theoretically (based on the
investigation of efficiencies, see again the just cited paper. The following
empirical formula yields that value of a for a given type parameter a; in
such cases fa is most similar to/a:

a (a) =2-0.92 merc tan a1.91 62)

see Fig. 10). Consequently, the two-variable//.*,y) can be written as

y~rirue
fa (*Co = o A o (63)
( O- kme Ia)\lla ! ! O" Itrue " )" *
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where the a-value is defined by Eq. (62).
After the foregoing the generalized correlation matrix can be written
as

1 rtrue; 1,2 rtrue\i,n
rtrue\2,1 1 rtrue\2,n
rtrue (64)
rtrue\n, 1 1

(rtrue;ik characterizes the closeness of the statistical connection between
and ). Nothing was said, however, till now about the determination of

the rtrue ik -values; this will be treated from the point of view of practice in
Subsection 3.1.

To have some idea about the error committed if we regard the expres-
sion for p in Eg. (6) as an estimate of rtrue, see the curves for different
a-values in Fig. 11 (reprinted from HAJAGOS and STEINER [1989Db]). For
a = 1.5, which often occurs p is greater by nearly 0.1 for a large rtrue-in-
terval, and for a = 1the difference can be 0.25, too, — and this value is a

Fig. 11. Value of correlation coefficient p defined in classical statistics is systematically larger
than rtrue if the distributions in question are stable distributions characterized by a<2 (a=2 is the
Gaussian case)

11. dbra. A klasszikus statisztika altal definialt p korrelaciés egyttthatd szisztematikusan
nagyobb, mint rtrue, ha a<2 (a=2 esetén Gauss-eloszlassal van dolgunk)

Puc. 11. KoahuuymeHT Koppensaunum p, AeUHMPOBaAHHbIMA MO KNaCCUYECKOWN CTaTUCTUKe
cucTeMaTuyecku Bblle, Yem Tne, ecnn a<2. (B cnyvae a=2 MMeeM fieN0 C raycCOBCKUM
pacnpegeneHmem)
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guarter of the whole |rmJ-range. No wonder that practicians mostly believe

in the existence of any correlation only if p is greater (or even significantly
greater) than 0.5 (it should not be forgotten that a=1 means the Cauchy
distribution type — and this type can be utilized for modeling the unavoid-
able outliers, too, in the case of error distributions originally having not
such heavy flanks, see TARANTOLA [1987]).

2. 3 Generalization ofthe covariance matrix

The elements of the classical covariance matrix are to be written as
pik Of ok, see Eqg. (7). We have seen, however, that rtrue;ik is the proper

generalization of pit, on the one hand (see Subsection 2.2), and on the other

hand, the asymptotic scatter M, can in every respect be regarded as the
generalization of the scatter a( (see Subsection 2.1). The straightforward

generalization of the covariance matrix results therefore in

i r 8 A 8 A 8 A
8A j 'lrue—,l,z. n 1- % - rrtrue;l,n m /1T 1 m 0o
r 8 A
‘true,2,1 m g 2 % S4 -
8a = 1 (65)
8A % - 8AR

r 8 A
“true;n,l m n n % rlrue—,n,z e nn

if all rtrue are zero we get the already known form of 8A given in Eq. (39)
for the case of independent random variables. If P-norm algorithms are
used (i.e., most frequent values are calculated), the covariance matrix A
clearly has the form

2
Al rtrue, 12 mA |l A2 m rtrue\\,n *A1l<An

A = rtrue;2,1 mA2 <A1l (66)
rtrue;n,! MAne<A 1l rtrugn2 cAn A2 oo Ar

(this is, formally regarded, very nearly the same as Eq. (65): the only
difference is that no ~-indices figure in Eq. (66)).
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The examples (Figs. 12-18) for showing the influence of various
weighting and especially the a priori weighting according to A'1in the case
of P-algorithms demonstrate not only Monte Carlo results for small sam-
ples but also the corresponding theoretical curve, too. These curves were
calculated according to

gM =nav M~ L ) 7ny ‘Al +4 (6702 (1l+rtrue)Ab (67)

(this expression is clearly the analogue of Eq. (22) taking also Eq. (25) into
consideration). Is was really unavoidable to show these empirical and
theoretical g(w)-curves (the latter always with dashed line) for some
situations to be able to draw important conclusions but the detailed discus-
sion of the shown seven examples were superfluous. The reader will be
satisfied in all cases with the agreement between the theoretically obtained
(asymptotic) wopl-value calculated on the ground of the corresponding A 1
which means in our simplified cases

Wopt (68)

Ab (1+rtrue(

and the optimal w shown by the Monte Carlo results for small samples.

Departures between theoretical and Monte Carlo curves can be really
significant if there are only three data (see the neighbourhood of w=I in
Figs. 13, 15, 16, 17) but minimum places coincide very well also in these
cases. If four data are present the departures became insignificant; this was
already known, however, on the basis of Figs. 7 and s.

The error of an inversion is to be calculated also on the ground of the
covariance matrix which is to be interpreted asymptotically. Therefore it is
important to investigate the departures between the asymptotic and the
Monte Carlo values of q(wopt), too, but this question is not treated in the
present paper in detail. If we remember, however, our train of thought
concerning the customarily demanded accuracy of the errors (see the
paragraph after Eq. (26)) and we also take into account Figs. 20 and 21
from the next Section, the differences between the asymptotic and the
empirical g(wQJf)-values can be regarded in all shown cases to be accept-
able; in some cases the agreement is excellent.
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Fig. 12. Error curve of the results from the E-algorithm (Gauss-distributed data; na=3, nb=6;
Ime=0.6). The best choice of the weights corresponds to the generalized covariance matrix

12. &bra. P-algoritmussal nyert eredmények hibagérbéje (az adatok Gauss-eloszlastiak; na-3,
rtft=6; rtrue=0,6). A sulyok optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc.12. KpuBble NOrpewwHOCTH pe3ynbTaToB, NOAYYEHHbIX anbropudmom P (gaHHble nMetoT
rayccoBckoe pacnpegeneHue, na=3, m*=6; rivr0.6) OnTuManbHbIN BbIGOP BECOB
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Fig. 13. Error curve of the results from the E-algorithm (na=3, nb=6; rtlk=0.6). The best choice
of the weights correspontds to the generalized covariance matrix (the theoretical curve itself
differs significantly on both sides)

13. a&bra. E-algoritmussal nyert eredmények hibagérbéje (na=b, nb=6; rtrue=0,6). A sulyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg (noha az elméleti gérbe
mindkét széle szignifikans eltérést mutat)

Puc.13. KpuBble NOrpewHocTM pe3ynbTaToB, NoAyYeHHbIX anbropugmom P (na=1, nu=6;
rrn/r=0.6). ONTUManbHbIi BbIGOP BECOB COOTBETCTBYET 0606 EHHO KOBapuaLnoHHOW
mMaTpuue (HeCMOTPSA Ha TO, 4YTO 06e Kpasi TEOPeTUYECKON KPUBOW NoKasblBaT
pacxoxgeHue)
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Fig. 14. Error curve of the results from the S-algorithm (na=6, nb=12; rtme=0.6). The best choice
of the weights corresponds to the generalized covariance matrix

14. abra. d-algoritmussal nyert eredmények hibagorbéje (na=6, nb=12; rtrue~0,6). A sulyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 14. KpuBble NOrpewwHoOCTM pe3ynbTaToB, NOAyUYeHHbIX anropudmom A (na=6, n*=12;
Mnur0.6). OnTuManbHbIY BbIGOP BECOB COOTBETCTBYET 0606LEeHHON KoBapuaLnoHHOWA
maTtpuue
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Fig. 15. Error curve of the results from the E-algorithm (na=3, nb=6; r,Ak=-0.6). The best choice
of the weights corresponds to the generalized covariance matrix. The error curve of the results
from the classical /~-algorithm is also shown

15. abra. P-algoritmussal nyert eredmények hibagorbéje (na=3, nb=6; rm,f=-0,6). A stlyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg. A klasszikus statisztikai
algoritmussal szamitott eredmények hibait az /.2-vel jelélt folytonos gérbe mutatja

Puc. 15. KpvBble MOrpewHocTA pe3ynbTaToB, NoNyUYeHHbIX anbropupmom P(na=3, nu=e;
rrue= - 0.6). ONTUManbHbIN BbIGOP BECOB COOTBETCTBYET 06061 eHHO KOBapuaLnoHHO
mMaTpuue. MorpewHoOCTN pe3ybTaToB, NOAYYEHHbIX albFropUEMOM Knaccu4eckKoi
CTAaTUCTUKM NOKasaHbl HENPepbIBHOW KpnBoW Li



148 B. Hajagos - F. Steiner

Fig. 16. Error curve of the results from the H-algorithm (na=3, n*=6, rtrue=-0.6; the scale
parameters of the mother distributions are: Sa=S2 and S*=1). The best choice of the weights
corresponds to the generalized covariance matrix

16. abra. A-algoritmussal nyert eredmények hibagorbéje (na=3, nb=6, rtrue~-0,6; az
anyageloszlasok skalaparaméterei: Sa=/T és Sb=1). A sulyok optimalis valasztasa az
altalanositott kovarianciamatrixnak felel meg

Puc.16. KpvBble NOrpewiHoCcTy pesynbTaToB, MNOYYeHHbIX anbropugmom P (Ma=3, n*=6,
raw3 - 0.6; napameTpbl WwKanu pacnpegenedma Sa=fl and Sb-1). OnTuManbHbIN BbIGOP
BECOB COOTBETCTBYeT 0606LLeHHO/ KOBapMaLnoHHON MaTpuLe
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Fig. 17. Error curve of the results from the E-algorithm if na=3 data are Cauchy-distributed and
independent, Nb=6 Gaussian data are pair-wise correlated: rtrue--0.6. (Both mother distributions
have the same probable error.) The best choice of the weights corresponds to the generalized
covariance matrix

17. abra. S-algoritmussal nyert eredmények hibagérbéje, ha n0=3 adat Cauchy-eloszIlasu és
fuggetlen, az nb=6 db adat Gauss-eloszlasu és paronként korreldlt: rime=-0,6. (A két
anyaeloszlast azonos valdszind hibajellemzi.) A sulyok optimalis valasztasa az altalanositott
kovarianciamatrixnak felel meg

Puc. 17. KpuBble NOrpelwHoCT pe3ybTaToB, NoyUYeHHbIX afNbropupmMom $, ecnu AaHHble
na=3 He3aBUCMMble 1 OTBeYaloT pacnpegeneHnto Kown, a N6 faHHbIX UMEIT rayccoBCKoe
pacnpefgeneHuie 1 NoNapHO KOPPenMpoBaHsbl : rinl?=-0.6. (McxofHble pacnpegeneHuns
XapaKTepusylTcsl TaKol e BePOSITHOCTHON NOrpeLHOCTbI0.) ONTUMabHbIA BbIGOP BECOB
COOTBETCTBYET 06061 eHHOIN KOBapuaLUOHHOW MaTpuLe
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Fig. 18. Error curve of the results from the P-algorithm. The mother distribution types are
changed, otherwise the samples were generated very similar to the case of Fig. 17. The best
choice of the weights corresponds to the generalized covariance matrix

18. abra. P-algoritmussal nyert eredmények hibagorbéje. A mintdk képzésénél az
anyaeloszlas-tipusokat megcseréltiik, egyébként a 17. dbra felirata szerint jartunk el. A stlyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 18. KpvBble NOrpeLIHOCTU Pe3ynbTaToB, NOyYeHHbIX anbropugmom P. Mpu 3agaBaHnm
06pasLoB TUM UCXOLHbIX pacnpefeneHnii MOMeHSNN, NpoUKe YCNOBUSA Te Xe, Kak Ha
puc. 17. ONTUManbHbIl BbIGOP BECOB COOTBETCTBYET 06061 eHHON KOBapuaLMoHHO

maTpuLe
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3. Robustification

In Section 2 the covariance matrix was always regarded — as is usual
— as ‘a priori’ given. In practice, however, the expression ‘a priori’
generally means nothing more than that these matrix elements were deter-
mined at an earlier stage of the work. In this Section we treat how these
determinations are performed.

3.1 Robustification ofthe correlation matrix

In the literature of robust statistics it is customary to make robustifica-
tions of ad hoc type; this can be sanctioned by practice even if there is no
satisfactory theoretical background. Let us now make such robustification
of the formulae in Egs. (5) and (s), forgetting for a moment the results of
Section 2. Denoting the robustified by nr, our definitions are the

following:

No (%) «(x-Mfi <[s(y) m(y-My)] f(x,y) dxdy

Xy (69)
(0 *(x-Mx)2-F(x) dx WY IV (y) *iy-My)2 -(y)dy
iff(x,y) is known. If data-pairs are given,
Mn
£ [s(X)r(xr M) 1[s(y,) *yr MY)]
b m7 n = r. . <0)
VE s205)mxr MX)2 -V £ (%) *(yt-My)2
(=1 i=I

the s-values are calculated according to Eq.(45) with Mxand in the case
of s(x) and with My and eyin the case of s(y).

The question rightfully arises whether the re values, calculated on the
ground of Eq. (69), really do not differ significantly from the AHr,e-values
defined in Subsection 2.2. As practical cases can be well modelled by
A-distributions, calculations for checking purposes were made for some
values of the type parameter a. (By choosing these values, we also took
into account the probability density function of the occurrence of different
a-values in Fig. 19; see STEINER [1990]). After this choice, thef(x,y) in
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Fig. 19. Density function modelling the occurrence probabilities of different probability
distribution type intervals of the/a(x)-supermodéi
19. abra. Sdr(iségfuggvény, amely az/,(x)-szupermodell kilonb6z6 valészintiségeloszlas
tipus-intervallumainak eléfordulési valészin(iségét modellezi
Puc. 19. ®yHKUMSA NAOTHOCTW, MOAENNPYIOLLAA BEPOSITHOCTb HabNOAeHNA pasHbIX
WHTEPBa/IoB TUMNa pacnpesesieHns BeposTHocTy cynepmogennmfa(x)

Eqg. (69) was taken according to Eqg. (63); Table I. shows the differences
xy~"\true)’

! The )maximum difference is 0.071 (see the row for the Cauchy distri-
bution); ifa > 3 can be supposed in an actual case, all absolute differences
are less than 0.05.

These differences (of the character of bias) can be neglected by
comparison with the expected statistical fluctuations. To have some idea
about the measure of the latter; for n=100, pairs of data (of different
probability distribution type) were generated according to Egs. (60) and
(62) in the first step; on the basis of these data-pairs r,,-values were
calculated according to Eqg. (70) (for comparison the values were also

determined, see Eq. (6)). This procedure was repeated N=200 times for each
type investigated, consequently the interquartile- (full line), the intersex-
tile- (dashed line) and the whole range (thin line) of the data were easy to
construct (see Fig. 20 where also the medians were indicated). The shifts
correspond to the already known bias (see Table I) being in general less
than the probable error even in the investigated case of n=100. (This
statement does not hold for the values of pry,— except the very classical

but seldom if ever occuring Gaussian distribution.) A further consequence
can be made on the basis of Fig. 20: the statistical fluctuation of rxy is nearly



rtrue

Gauss (a-*co)

a*10 )
>Jeffreys-interval

a=6 )

geostatistical (a»5)

midway (a=3)

Cauchy (a=2)

Table /. The differences (rxy-r,rue) for different values of rtrlk and for various probability

I tablazat. Az (r¥-rlive) kilonbségek r,ve kilonbozo értékeire és néhany
valészin(iségeloszlastipusra
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0 0.1

0 -0.008
0 -0.006
0 -0.002
0 0

0 0.011
0 0.029

0.2

-0.016

-0.010

-0.003

0.001

0.023

0.050

0.3

-0.023

-0.014

-0.003

0.003

0.033

0.064

-0.029

-0.016

-0.003

0.005

0.041

0.070

-0.032

-0.017

-0.002

0.007

0.047

0.071

distribution types

-0.035

-0.016

0.009

0.049

0.067

-0.033

-0.014

0.002

0.011

0.048

0.057

0.8

-0.028

-0.009

0.005

0.013

0.043

0.041

0.9

-0.017

-0.004

0.007

0.012

0.026

0.029

Tabn. I. PasHuubl (Ny-r,ne) ANa pasHblX 3HAYeHWUI rilk 1 NpyM U3MeHeHMK Tmna

CAUCHY

MIDWAY

GEOSTA-
TISTICAL

GAUSS

Fig. 20. Statistical fluctuations of the 'xy- and p.”-values in the case of ti=100

pacnpezeneHuns BeposiTHOCTU

20. dbra. Az I'yy- és p.v-értékek statisztikus ingadozdsa n=100 esetén
Puc. 20. CtaTuctnyeckoe kone6aHue 3HaveHnin yw p*y npu n=100
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independent of the distribution type; on the contrary, that of pr=strongly
depends on itand, in addition, we can state that the measure of the statistical
fluctuation is also in itself fully unacceptable in the case of the Cauchy
distribution (a similar statement characterizes the midway distribution), to
say nothing about the great shifts (obtained in full agreement with Fig. 11,
see e.g. curve ‘a=TI).

Concerning statistical fluctuations it is perhaps not superfluous to
reprint two figures from CRAMER [1946] (see Fig. 21): in the frequently
occuring cases of n=50 and n=10 the density functions of the pxy-values
show that unexpectedly large statistical errors occur even in the least
problematic case: if the data are Gauss-distributed; this is closely linked
with the fact that any kind of correlaton coefficient is characteristic of a
two-varibale distribution. It can be stated as a conclusion that the statistical
fluctuation o/pIvin the very negihbourhood ofthe Gaussian as well as that

ofthe revalues in a broad type interval is significantly greater at sample
sizes used in the overwhelming majority of cases than the bias of the
revalues. Consequently, the robustified correlation matrix defined by

"1 rlLh2 rl,3 e rln

r2,l 1 r23 mm r2n
r= (71)

can be regarded as a satisfactory approximation ofthe generalized corre-
lation matrix r(rue. As for the computing techniques: the calculation of rxy
organically and simply joins with the basic algorithms of the most frequent
value procedures (no special programs are needed).

3.2 Robustification ofthe covariance matrix

The meaning of the word ‘robust’ involves not only the applicability
on a broad type interval but often the resistance, i.e., the insensitivity to
outliers, too. In actual fact, the s-functions figuring in Egs. (69) and (70)
(i.e., in the formulae of the robust correlation coefficient) guarantees the
resistance, too.

The s-function, however, is a basic function of the most frequent value
calculations, and if we intend to robustify the scatter by means of this
function, in a self-consistent way we can only set the aim that the A,-values
should be approximated by the robustified scatters.

A possible robustified form of the scatter is the following:
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8- Tlixyi
rtru«=
6
rtrue’'0b
Dru«*Q

ity

Fig. 21. Density functions of pry (from CRAVER [1946]) for n=10 and n=50 if the random variables
have Gaussian distribution
21. abra. A pxy strGségfliggvényei Gauss-eloszIlast valészin(iségi valtozok esetén, ha az adatparok
szama n=10 illetve n=50
Puc. 21. KpuBble NAOTHOCTU p. ANSi BEPOATHOCTHbLIX NePeMEHHbIX C raycCOBCKUM
pacnpefeneHnemM, ecnm KonmM4yecTBo nap faHHbix n1=10, n=50

A=Y jjs (M) e(x-M)2f(x) A : (72)

-0

its estimate is clearly

A=Y . (73)

The notation A anticipates that A~A is valid (it is clear that a notation
Jwould equally bejustifiable). Table Il. gives the values A and A for some
probability distribution types and the departures, too (in per cent).

A A 100.(A-A)/A
Gauss 1.0466 1.0369 -0.93 X
a=10 0.3694  0.3666 -0.76 X
a= 6 0.5173  0.5150 -0.44 X
geostatistical 0.5917  0.5904 -0.22 X
midway 0.9236  0.9350 +1.23 X
Cauchy 1.5000 1.5492 +3.28 X
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As_the fulfilment of A~J1 is satisfactory, the robustified covariance
matrix A (which gives nearly A, see Eq. (66)) can be written as follows:

A ri,2 M1 -A2 rin -Al-An
r2,1 -A2-Al
A= (74)
rn,I-An-Al rn,2-An-A2 %

Thorough investigation of the determination errors of the matrix
elements is beyond the scope of the present article (e.g., whether the method
given in HAJAGOS and STEINER [1989a] for extraordinary outliers is to be
applied or not). Such investigations should preferably be made parallely
with the study of practical cases.

The authors are indebted to L. FERENCZY, consultant (Geophysical
Exploration Co., Budapest) for having initiated this work, and to their
colleagues L. CSERNYAK, A. GYULAI and T. oRMOS for fruitful discus-
sions .
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A KOVARIANCIAMATRIX ALTALANOSITASA ES ROBUSZTIFIKALASA

HAJAGOS Béla és STEINER Ferenc

A dolgozat elsd része az egyszer( szemléltethet6ség érdekében néhany elkeriilhetet-
len egyszer(sitést vezet be. Ezutan a klasszikus statisztika kovarianciamatrixanak inver-
zével valo sulyozas optimélis voltdt mutatja meg a cikk Gauss-eloszlasu hibékra,
ugyanakkor példakkal hivja fel a figyelmet arra, ho?(y ettdl eltér6é hibaeloszlasoknal, kis
mintaelemszam esetén, az optimalis stlyozast nem okvetleniil ez a megoldas szolgaltatja.

A maésodik rész a kovarianciamatrix altalanositott, az alkalmazott statisztikai algo-
ritmusnak megfelel6 alakjat definiélga; példakat zémmel F-algorimust alkalmazd eljara-
sokra, azaz sulyozott leggyakoribb érték-szamitdsokra mutat be. Kiderult, hogy az
altalanositott kovarianciamatrix inverze kis mintaelemszamok esetén is alkalmazhato, ha
a leggyakoribb értékek szerinti algoritmusokkal dolgozunk.

A harmadik rész ezen 4ltalanositott kovarianciamatrixot a klasszikus eset robusztifi-
kalasaval javasolja egyszerliség kedvéért meghatarozni. Ez a meghatarozas ui. szamitas-
technikai szempontbdl szorosan illeszkedik a leggyakoribb érték szerinti szamitasok
alapvetd algoritmusaihoz.

OBOBLULEHVE N POBYCTUOUKALNA KOBAPUALIMOHHON
MATPWLbI

bena XAAIOLL, depeHL, LUTENHEP

B nepBoii yacTu cTaTbi BBOAATCS HEKOTOPbIE HEOGXOANUMbIE A HArNs4HOCTY
ynpouieHuns. Mocne 3TOro MokasbiBaeTCs ONTUMaNbHOCTb B3BELUMBAHMS 06paTHOM
KOBapMalLLMOHHOW MaTpuLbl KMacCUMYecKO CTaTUCTUKWM [N NOTrpelHoCTel
FaycCOBCKOro pacnpefeneHus, u o6paljaeTcs BHUMaHUe Ha TO, 4YTO MNpw
0T/IMYaloLLeMcs oT [aycCOBCKOro pacnpeeneHne norpeliHocTe n Npu He6onbLWOoM
KonuyecTBe 06pasLyoB ONTUMaNbHOE B3BELIMBAHWE MOMY4YaeTCs Heo6s3aTenbHO
AaHHbIM CMOCOGOM.

Bo BTOpoii uyacTu faetca onpefeneHve 0606LEHHOT0, MOAXOASLLEr0 ANs
MPMUHEHHOTO CTATUCTUYECKOTO anbropugma BWA KOBAapMaLMOHHOW MaTpuubl.
MpuMepbl MOKa3bIBAOTCA NPEX/E BCEro ANs CNOCO60B, MPUMEHAIOWMUX anbropugm
P, TO ecTb MOKa3blBalOTCA pacyeTbl B3BELIEHHOW Hambonee 4acToil BenMYMHbI.
BbisiBUMIOCL, 4YTO 06paTHyald MaTpuuy 0606LieHHON KOBapUaLMOHHOW MOXHO
NMPUMEHSTbL U B clydae He6OMbWOro KonuyecTsa 06pasyoB, ecim paboTaTb C
anbropugpmMamMy No HamGonee YacTbiM BeMUMHAM. B TpeTbeii YacTu peKomMeHgyeTcs
ANs npocTaTbl OMpeAenuTb 9T 0606LeHHble KOBapualWOHHbIe MaTpuLbl Mpu
pob6ycTUdUKALWNK KMacCUUYecKoii, BBMAY TOro, 4TO Takoe onpejefieHue
HEernocpeaCcTBEHHO CBS3aHO C OCHOBHLIMU anbropuMamy pacuyeToB Mo Hambonee
YacTbIM BEIMYMHAM.






