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races, planning of bank filtered well sys-
tems,

thermal water exploration for use as an
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munity utilization,

cold and warm karst water prospecting,

water engineering problems, water con-
struction works

Field work with ELGI's 24-channel
portable seismograph

The Maxi Probe electromagnetic sounding and mapping

system - produced under licence by Geoprobe Ltd Cana-
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mum depth 0f30 m - on the strength, sand/shale ratio and
density without costly drilling

ELGI offers contracts with co-operat-
ing partners to participate in the whole
complex process of exploration-
drilling-production.

For further information ask for our
booklets on instruments and applica-
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will select the appropriate method and
the best instrument for your purpose.
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GENERALIZATION AND ROBUSTIFICATION OF THE
COVARIANCE MATRIX

Béla HAJAGOS* and Ferenc STEINER*

After some unavoidable simplifications in Section 1 typical instances as well as
problematic examples are given for the use of the inverse covariance matrix of the classical
statistics for weighting. Because of the limited applicability of this matrix, in Section 2 a
generalized version of the covariance matrix is introduced; its applicability is mostly
shown using P-algorithms, i.e., weighted most fregent value calculations. The generalized
inverse covariance matrix turned out to be valid also in the case of small samples if we

use P-algorithms.

In Section 3 the method for determining this generalized covariance matrix is given
as the robustification of the classical one; this determination is (from the viewpoint of the
computation technique) consistent with the basic algorithms of the most frequent value

procedures.

Keywords: correlation coefficient, asymptotic variance, general covariance matrix,
robustification, most frequent value, dihesion

1. Introduction

1.1 Some definitiofis ofclassical statistics

The probability theory defines the covariance au, of the random
variables Cand r) well known as
(1

(E denotes the expected value). If the common density function is denoted
byf(x,y), the covariance is to be calculated as the following integral:

University of Miskolc, H-3515 Miskoc-Egyetemvaros
Manuscript received: 10 January, 1991
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°xy=i 1 (x~Ex) (y-Ey)f(xj) dxdy, ©@)

and if n pairs of data (x;,y() are given, a very simple expression corresponds
to Eq. (2):

PE (xr*) bry); 3)

the arithmetic means x and y are the estimates of the expected values Ex
and Ey, respectively.

The degree of stochastic connection between Cand q is measured by
the correlation coefficient px:

Pry @)

ax and Oy denote the corresponding scatters, i.e., the square roots of the
variances, consequently the integral formula for prvis

J f(x—-Ex) (y-Ey,f(x,y) dxdy

“xy ®)
(x-Ex) 2f(x) dx -Ey) zf(y) dy

and the estimate of this value is calculated clearly as

£ (xrx)«(yry)

= =il
ry= - In---------- ©)
VExXx)2e £ (yry)2
=1 H
In the case of J random variables CI5 the notations pg and

Ok represent the correlation coefficient and the covariance of the variables
and Lk. If, similarly, ayand ok represent the corresponding scatters, the

matrix of all covariances, i.e., the so-called covariance matrix S, can be
written as
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a\ p120J 2 Pi3 Clj a3 P1Y al

2
Pl2 al c2 cr2 P23 02 CB P2y °2 °J

(7)

PN CrL°J PJ2°2 °J Pj3 C3al

This way of presentation of the covariances— used also in the famous
article of INMAN [1975]— clearly shows their meaning and suggests that
the interpretation of the correlation coefficients, presented in the correlation
matrix

1 P12 P13 = Pu
P21 1 P23 e P2

(8)

Pn PJ2 PJ3 mm 1

is much more a primary quantity than that of the covariances, although the
latter can directly be calculated according to Egs. (2) or (3) and seemingly
(see Eqg. 4) the correlation coefficient is the secondary (inasmuch as it is
derived) quantity.

1 2 Simplifications

The significance of the correlation matrix of the errors in respect of
inversion algorithms lies in the fact that its inverse can be appropriately
used for weighting, see e.g. the already cited paper of INMAN, where a well
defined geophysical inversion task is thoroughly treated (including the
way of linearization, ridge regression, etc.). In contrast to this way of
treatment, in the present paper from the point of view of the possible
geophysical tasks only the simplest situation is supposed: direct measure-
ments are made for the same quantity, say, for the rock porosity n, but not
all data are characterized by the same probable error and/or by the same
type of the error distribution. After this simplificaton we can pay full
attention to problems of generalization and robustification.

For the clearest presentation of our trains of thought leading to the
necessary generalization and robustification of the covariance matrix,
however, some further simplifications are unavoidable. In all cases dis-
cussed in the present paper the inverse of the covariance matrix shall give
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the same weight, for na data another weight, for the remaining nb data
(nb =n-na)i.e., nadata will have equal weights and this is true for the
remaining ones, too.

Consequently, if we give the weight w (0 <w < 1) for the n statisti-
cally equally behaving data and the weight (1-w) for the nb (from the
statistical aspect similarly equal) data, the error-curve of the results obtain-
ed by statistical algorithm as a function of w will have its minimum place
wopt determined by the inverse of the covariance matrix.

In this Introduction the ‘statistical algorithm’ mentioned above refers
to the classical one, i.e., the minimization of the L2-norm, — which is here
simply the calculation of weighted means as according to our supposition
direct measurements are made for the unknown geophysical quantity (say
for the porosity of the rock at a given depth level).

Our simplifications enable us to write the variance Oqof the result x0
in a simple analytical form, on the basis of the well known general
expression

n
d ai + Jj gckpk Qg ok ©)

LJK;%
which belongs to the random variable

20=10", . (10)
=1

(In Eg. (9), instead of the often used notations VAR (C,) and COV(Cy,") 0j
and pk § ok, respectively, are written in accordance with the notations already

used in Eq. (7).)
If the random variables are pair-wise independent, Eq. (9) reduces

to

ok =, cf of (11)

i=1
and this is to be written as

(h(w):[naw+nb(l-w)] NrtaWw2oa2+nb(l-w)2ol4 (12
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if (as was agreed earlier),

1
naw +nb(l-w) _ (13)
1=1 i=n,,+1

In Eqg. (12) oa and abrepresent the scatters (i.e., the square roots of

the variances) of the naand nb data.
The minimum place ag(w) (see Eq. 12) is

\/ot

14
vei +1/al 14

wopt

(which is simply to verify by differentiation). This is in accordance with
the following general form of the inverse of the covariance matrix valid for
pair-wise independence of the random variables:

1 /ctj 0 0 . 0
0 1/02 0 0
0 0 1/ 03 . 0
5 - (15)
0 0 0 .. 1/02

The general form of matrix S' 1in the case of different mutual depend-
ences of the random variables cannot be given in a simple way.

We shall discuss, however, only such cases when only nb random
variables are pair-wise dependent for the neighbouring indices character-
ized by the same correlation coefficient p. (Naturally nb must now be an
even number). Otherwise the simplification made in the independent case
remains, i.e., there exits only two different variances and &, conse-

qguently the covariance matrix will have the following form:
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cl1 00 0
0 <0 0
0 =m0 0 o on 0 0
S = b P°b (16)
O . 0 O Pob ob O O
0 0 oB P°h
0 0 pctE
/la columns nb columns
In this special case S'lalso has a simple form: (17)
1/®2 0 0
0 .. 0 YVat
0 0
cT|(1-p2) ab(1-p2)
s'1= 0 .. 0 0 - 0
ab(l_p2) «*(1-p2)
0 e, . 0
(1-P2) 1-P2)
0 e .. 0 -

cT|(1-p2) aB(1-p2)

(the product of both matrices in Egs. (16) and (17) should result in the unity
matrix).

Now, the ‘proposal’ of the matrix S '1for the weights to be applied is:
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1
for na data
o
(18)
1
for nb data
<$(1+P)

In our simplified case the notations of Inman [1975] correspond to the following:
M=1and P°=0 therefore [, P=x0\ A =1 (the unity matrix); [4 G],= g ;N “1=S'1. Conse-
quently, the expression to be minimized (see Eq. (8) in the just cited article) simplifies to

M

[o4] :|IR- 1ai* xi - x0) (4 - *0) (19

(in our notations) having clearly the minimum place defined by
----- @)

(compare our Eqg. (10); o,k represent an element of the inverse covariance matrix s’
The same ci-s are the results of course if we minimize the expression in our Eq. (9).) The
weights in Eq. (18) clearly correspond to the general expression in Eq. (20), taking the

actual s" 1 (see Eq. 17) into consideration.
Expressing the results in Eq. (18) by the earlier introduced variable

weight w,

Wopt 1 1 (21)

G2  og(1+p)

(and this clearly reduces to the form given in Eq. (14) if p =0). The same
result is reached if the general expression in Eqg. (9) is concretized to our

actual case to get the analogue of Eq. (12):

RN () ——— fi2jparca M 1“7)20+P) 4}, (22)

and we look for the minimum place of this function by differentiation.
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It is instructive to show in figures the variation of the error committed
by the statistical algorithm used for the whole range of w (0< w <1). The
‘probable error’ (defined by Bessel) and denoted by q is frequently used
by engineers: if Fis the probability distribution function and F 1lits inverse,

F=7 [F 1(3/4)-F 1(1/4)]

and therefore it is also called ‘semi-interquartile range’. The ‘semi-inter-
sextile range’ Q is similarly defined:

C=" [F-1(5/6) - F-1(1/6)] . (24)

It is obvious that it is twice as probable that absolute errors are less than
Q, than greater than Q whilst these probabilities are equal using g as the
error characteristic: one half of the errors are expected inside the interquar-
tile interval, the other half outside of it. We shall use throughout the
probable error g, which is to be calculated for a Gaussian error distribution
well known as

q=0.6745 +a (25)

Sometimes the curve of the semi-intersextile range Q in function of w will
be also shown; for the Gaussian case

Q =0.9674 +a (26)

holds.

Our demands for accuracy are less rigorous in the case of the errors than in the case
of the geophysically important quantities (depths, porosities, etc.) to be determined. If,
say, by a geophysical depth-determination the relative error is 4%, this is meant as an
error-range between 3.5% and 4.5 %, consequently the relative error of the error is here
accepted to be 25 %. Indeed, the relative error of a simple determination of the scatter a
is 100/72 n %even in the least problematic case: when the data have Gaussian distri-
bution. For example, ifn=8, this error is obviously 25 %. (Thejust cited formula is a special
variant of the expression in Eq. (55), namely for a—#°°, viz, this limiting case corresponds
to the Gaussian distribution of the errors.) Consequently, the difference between Q and
a of only some per cent for the gaussian distribution (see Eq. 26) can be neglected in nearly
all practical cases. By theoretical investigations, however, naturally the exact connection
given by Eq. (26) is to be taken into consideration.
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1.3 Examples, problems, meditations

It is time to show some examples of classical fashion: firstly for
Gauss-distributed data. Although on the grounds of Egs. (22), (25) and (26)
both theoretical curves g(w) and Q(w), respectively, are easy to construct
for various situations, we also show Monte Carlo results for w =0; 0.1; 0.2;
..., 0.9; 1.0. More exactly, for all situations random numbers in question
N=1000 times were generated and the just investigated statistical algorithm
applied in all investigated cases of this paper (this algorithm is, in the first
examples, simply the calculation of the weighted average according to Eq.
(13), i.e., an L2-norm algorithm,) and the empirical g-value (sometimes also
the Q-value) of these 1000 results were determined. For information about
the statistical fluctuation of these probable errors, the whole procedure was
repeated three times, and the values obtained were, on the one hand,
separately demonstrated in all Figures, and on the other hand, also the
interval of the actual fluctuation was indicated as short perpendicular
straight line for all w-values. The self-consistence belonging to this dem-
onstration of our Monte Carlo results throughout the paper proved to be
fruitful.

In the first example are only (pair-wise) independent errors, all have
Gaussian distribution but nb=4 of them are characterized by ob =/2" and

na=4 by oa= 1 (As random variables here and later have the meaning of

error, the parameter of location will always be equal to zero.)

Fig. 1 shows that Monte Carlo results are in full agreement with the
theoretical curve based on Eqg. (12), including naturally the fact that wopt is
the same both for theoretical and Monte Carlo results. (The theoretical
value of the wopt in question will always be indicated on such Figures,
sometimes the theoretical ~-values for w=0 and 1, will be indicated too0.)

In our second example all n=9 data have standard Gaussian distribution
but only na=3 are independent, G4 and C5, @ and C7, and 9 are
correlated with a correlation coefficient of p =0.6. (This is in full agree-
ment with our simplification in Section 1.2 and therefore it would have
been enough to write nb=6 and p =0.6.) The Monte Carlo results and the
theoretical curve g(w) based on Egs. (22) and (25) are shown in Fig. 2; the
conclusions are the same as for Fig. L (The p-scale also shown in Fig. 2
indicates the w”-values for the corresponding p-s on the ground of
Eqg. (21) which simplifies in this concrete case to woxr = (1+p) /(2+p). )

It is illusory, however, always to expect such excellent agreement
between theoretical and Monte Carlo results, e.g., if nqdata are Gauss-dis-
tributed characterized by aG= 3 and nbhave the density distribution

FT(x) =(1-p) fG(V,x)+p fG(oc:x), (p<0.5), (273)
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Vil 1 2
a = 1U\+V6] ' 1*12 " 3

R booeeen =0.27Sk
KIVi]* Vil]
Fig. 1. Error-curve of the results from the conventional /.2-algorithm, using different weights.
The data are independent and Gauss-distributed; na=nb=4. The best choice corresponds to the
covariance matrix of classical statistics

1 abra. A hagyomanyos /~-algoritmussal nyert eredmények hibagorbéje kiilonb6z6 sulyok
alkalmazasakor. A primer adatok fiiggetlenek és Gauss-eloszlastak ; ma=nb=4. Az a legjobb
sulyvélasztas, amely a klasszikus statisztika szerinti kovarianciamatrixnak felel meg

Puc. 1 KpuBasi NOrpeLHoCcTU pe3ynbTaToB, NoAyUYeHHbIX NpU TPaguLMOHaNLHOM
anbropudgmMe Lj npy npumeHeHUM pasHbIX BecoB. [MepBblUYHble AaHHbIE HE3aBUCbIMbIE U
numeloT ayccoBCKoe pacnpeseneHue,na=nb=4. Jlyylwinm BbIGOPOM Beca siBfisieTcA TOT,
KOTOPbI/i 0TBEYaeT KOBapMaLMoOHHOW MaTpULLe K1acCUYeckoi CTaTUCTUKM
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Fig. 2. Error-curve of the results from the conventional ~-algorithm, using different weights
(na= 3, nb= 6; rtrue=p=0.6). The best choice corresponds to the covariance matrix of classical
statistics
2. dbra. A hagyomanyos ~-algoritmussal nyert eredmények hibagorbéje kiilonbézé stlyok
alkalmazéasakor (na= 3, nb= 6; MNrue=p=0,6). Az a legjobb silyvalasztas, amely a klasszikus
statisztika szerinti kovarianciamatrixnak felel meg
Puc. 2. KpuBasi norpewwHocT! pesynbTaTtoB, MONyYeHHbIX NPU TPaguLMoHanbHOM
anropugme Li npy npumeHeHUM pasHblix BecoB (Ma= 3, nu=6; r,lb=p= 0,6). Jlyywnum
BbI6OPOM Beca AB/seTCA TOT, KOTOPbIA 0TBeYaeT KOBapMaLMOHHOW MaTpuLie Knaccn4eckoi
CTaTUCTUKM
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i.e., nb data are Tukey-distributed. (See Eg. (83) in STEINER [1988]; in
Eqg. (27a)f Grepresents the Gaussian density function

. 1 _Xi/l1a2
l'a (97) = Gef2n (27b)

In the monograph just cited the density function of arithmetic means for
Tukey-distributed data is also given analytically, see Eq. (85).)
The scatter of the Tukey distribution is obviously

or=/ (1-p) +P «o0R2 (27c)

and this means a value of oT=67.09 if we take p=0.2 and ac=150 (this

case is separately discussed in STEINER [1988]). As independence is also
supposed, Eq. (14) would yield the appropriate wopt-value but we have in
this way wap[ ~ 0 in contradiction to the Monte Carlo results for na=nb=1
shown in Fig. 3a where the choice w=0.9 seems the best (both g(w) and
Q(w) curves are presented in the figure). Seemingly — at least belonging
the minimum place — the Monte Carlo results correspont to the ‘theoreti-
cal’ expectations if na=nb=4 (see also Fig. 3a) but this is not true for the
whole range of w: we see in Fig. 3b (where other ordinate scaling is used)
that the g-value from Monte Carlo calculations for w=1is only a small
fraction of the ‘theoretical value’ according to Eq. (12) which is to be
calculated in this case simply as 0.6745 oT7/4".

The foregoing calls attention to the fact the scatters in the covariance
matrix would be misinterpreted as the minimum of the L2 norm of the
differences (x~x0) for the other distribution: they are to be understood, on

the contrary, as asymptotic scatters of the arithmetic means.

The asymptotic scatter is defined for estimates as

A =1limVvIiTmo,,,
(28)

where aest is the empirical scatter of the estimates. As the estimates frequently approximate
Gaussian distribution [see e.g. HUBER 1981] if n -* °° the approximation
g =0.6745 A//7TorC =0.9674 vt//Tfcan be adequately used (see also Eq. (25) and (26)).
If we say only ‘variance’, it means the asymptotic variance of the arithmetic averages.

The foregoing means that the weigthing given by the inverse covari-
ance matrix is to be understood asymptotically, — but what about small
samples? In the extreme case na=1shown in Fig. 3a for the weight w=1 is
clearly the semi-intergartile range of the mother distribution and it is
authentic and not the value 0.6745 aT; the former is about an order less

in the cited case than in the latter. This means that acceptable results by
using the inverse covariance matrix for weighting are to be expected for
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semi-interquantile

ranges

Fig. 3a. Error-curve of the results from the conventional ~-algorithm, using different weights.
The best choice for na=nb=1 does not correspond to the classical covariance matrix: wopt can be
calculated from the g- and Q-values, respectively, of the mother distributions

3a. dbra. A hagyomanyos ~-algoritmussal nyert eredmények hibagérbéje kilonb6z6 stlyok
alkalmazésakor. Az na=nb=\ esetben a legjobb stlyvalasztas nem felel meg a klasszikus
kovarianciamatrixbol kovetkez6knek: wop, az anyaeloszlasok - ill. C-értékeibdl szamithat6

Puc. 3a. KpuBas norpewHocTy pesynbTaToB, NONYYEHHbIX NPU TPagMLMOHHbI anropudme
2 npu npumeHeHnn pasHbIX BecoB. B ciyyae nu=rm*=1 Nyywinii BbIGOp Beca He OTBEYaeT
CNEATCTBUSIM K/1ACCMUECKOM KoBapuaLuMOHHOW MaTPULM : WOP, BbIUYUCSIETCSA MO 3HAYEHUAM
gun QmaTepHbIX pacnpeaeneHui
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semi-interquantil*

Fig. 3b. Error-curve of the results from the conventional /~-algorithm, using different weights
(na=mb=4). The error-value at w=I is only a small fraction of the value calculated on the basis of
the variance

3b. dbra. A hagyomanyos Zz2-algoritmussal nyert eredmények hibagérbéje killonb6z6 stlyok
alkalmazasakor (na=nb=4). A w=1-nél csak egy tértrésze az eredmény hibaja a szorasbol
szamithatonak

Puc. 3b. KpuBas norpewHoCTW pe3yibTaToB, NOyYeHHbIX NPU TPAAULNOHHbIM anropugme
L2 npn npyMeHeHUN pasHbIX BecoB (Na=nb=4). Mpu w=1 NorpewHoCcTb pe3ynbTaTa siBASeTCS
NVWb APO6HON YacTbio BeIMUYMHBI



Generalization, robustification ofthe covariance matrix 125

small samples only if the g- and/or the Q-values of the mother distribution
do not differ significantly from 0.6745 a and 0.9674 -a, respectively. If
this is not the case, n must be large for the adequate use of S"1for weighting.

In the next example the samples are not yet small: na=n*=100 holds.
Two types of the/,,/xj-supennodel were chosen (see Eq. (143) in STEINER
[1988]), namely, for the type parameter values m=1and m-0.5, leading on
the one hand to the well known Laplace distribution characterized by the
density function

= |
f) =z X! (29)
and, on the other hand, to a very peaky density function

fnem =e~ 2r’r\ (30)

and therefore it seems to be appropriate to call this latter ‘needle distribu-
tion’.

Both density functions are shown in Fig. 4. The flanks of the needle
distribution are heavier than those of the Laplace distribution, therefore also
the scatter (one = 2.7386) is significantly greater than that of the Laplace
distribution (oL=f1) vyielding, according to Eq. (14), a wopt-value of
0.2105.

The Monte-Carlo results for the weighted means are near to the
theoretical ones (see Fig. 5); the just given value of w tis fully satisfactory
but some differences still exist in the neighbourhood of w=I (i.e., na=100
is not yet enough in this case to speakjustifiably about the practically ‘total
fulfilment’ of the asymptotic rule, see the Z*-curve in Fig. 5, because of the
long tails of thef ne distribution).

In Fig. 5 Monte-Carlo results for weighted medians are also demonst-
rated (see the Lr curve); the optimum value of w for this case (=0.8) has
really nothing to do with the yet known value wopt=0.2105 which applies
to the conventional statistical algorithm (i.e., with the minimization of the
Z™-norm, which is in our simplified situations nothing more than weighted
mean-calculations). — This curve will be discussed later more thor-
oughly; we indicate here only the important fact that the optimum values
of the weights strongly depend upon the statistical algorithm used and
therefore appropriate generalization of the covariance matrix is unavoidab-
le. This generalization must also be able to solve the problem that scatters
(figuring in the covariance matrix of Eq. (7)) are often, i.e., for very many
type-models of probability distributions, infinite, and also the primarily
given definition of a” (in Eq. (2)) can lose completely its meaning, e.g., if
f(x,y) is the density function of a two-varibale Cauchy distribution. As also
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Fig. 4. Probability density function of the Laplace and the so-called ‘needle’ distribution; the
latter is very peaky as well as having much heavier flanks than the Laplace distribution

4. dbra. A Laplace- és az un. “t("-eloszlas s(r(ségfuiggvénye. Az utdbbi egyrészt nagyon
hegyes, masrészt viszont jelent6sen stlyosabbak a szarnyai, mint a Laplace-eloszlasnak

Puc. 4. ®yHKLMS NAOTHOCTW pacnpejeneHuns Jlannaca U Ur0BOro pacnpeseneHus.
MocnefHOe ¢ OAHOI CTOPOHbI CAIULLIKOM OCTPOE, OAHAKO ero Kpunsi UMerT 60/blle Becos,
Yyem pacnpegeneHue Slannaca
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L 12 ok
v Wt L~dAALMIAT Y 4%
215

e i} =0,2105
L2 4= 78] vag U  2/15+1/2

Flg. 5. Error-curves of the results from the /~-algorithm and the L\-algorithm, respectively
(na=nb=\00). The minimum place of the Ti-curve has nothing to do with the conventional
covariance matrix but it is easy to interpret on the basis of the generalized one

5. abra. Az Lj- ill. L\-algoritmusokkal nyert eredmények hibagérbéi (na=nb=100). Az Li-gorbe
minimumbhelyének semmi koze sincs a hagyomanyos kovarianciamatrixhoz, de kénnyen
magyarazhat6 az altalanositott kovarianciamatrix alapjan

Puc.5. KpuBbie NorpewHocTn pesynbTaToB, NosyyeHHbIX o anropugpmam Li n L\
(na=n*=100). MuHMUMYM KpuBoW L\ He nMeeT HMYEro o6ULEro ¢ TPAAULNOHHOWA
KOBapuaunoHHON MaTpuLeid, HO nerko o6bsAcHAeTCS No 0606LeHOl KoBapuaLoHHOMA
mMaTpuLe
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pxy in Eq. (4) has no meaning in these cases, obviously the correlation
matrix must also be generalized.

2. Generalizations

2.1 Generalization ofthe covariance matrix ifthe errors are independent

Letf(x) be the density function of the actual but unknown probability
distribution. If we choose instead off(x) a well defined density function
g(x) as ‘substituting distribution’, the so-called /-divergence I,,(f) is de-
fined as

- <31)

(see HAJAGOS [1982] or STEINER [1988]). As the /-divergence can be
interpreted as a measure of the information loss, that I'-value of the location
parameter figuring in g can be with reason accepted as the most characte-
ristic value forf which minimizes the information loss, i.e., for them the

relations

dL(f
-fj(r):o (32)
and
AW >0 (33
a

are simultaneously fulfilled. It is easy to verify (see either of the just cited
papers,) that both demands are fulfilled if the following integrals result in
zero values:

J IZ_Tf(X) dx =0 (34)
8

—O00

and
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J agTZfix)dr:o (35)

These equations define the statistical algorithm: Eq. (34) gives the algo-
rithm for the determination of the location parameter T, Eq. (35) defines
that of the parameter of scale (5). For example, ifg is the Gaussian density
function, Eq. (34) defines the formula for the expectant value E as the
location parameter, Eq. (35) defines the formula for the variance a2;ifg is
the Cauchy density function, the Egs. (34) and (35) define the twofold
iteration for determining the most frequent value (as T) and the
dihesion e (as 5); etc.

If the following integral denoted by 8l is calculated such T and S
simultaneously satisfy Eqgs. (34) and (35), we get the ‘developed informa-
tion’ using the statistical algorithm defined originally by the substituting
distribution g:

s2
(ES.
T wi(x) dr (36)
g

(Another name for”/is ‘relative information’, see HAJAGOS [1982] where
the definition of 8Lis first given.) The maximum value / of #/presents itself
in the case of g=f, I is the well known Fisher-information. In this case the
whole information is exhausted and therefore the straightforward definition
of the efficiency e of the statistical algorithm defined by g is

e =8I/l ; (37)

and it also seems appropriate to use 8l as weights. HAJAGOS [1985] has
shown that

S -Tf2<38>

where 8A2is the asymptotic variance of the estimates ifg defines (by means
of Egs. (34) and (35)) the statistical algorithm. Substituting the expression
of 81 given by Eqg. (38) in Eq. (37), and taking also into considetarion that
I = 1/d ~in, we in fact get the well known formula fot the efficiency
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If Eq. (38) defines the weights for data characterized by different error
distributions, the diagonal matrix of these weights can be considered as the
inverse (8A~*) of the following general covariance matrix:

0 .. 0
0 82
0 (39)
0 .. 0 B8AR

8A2means here the asymptotic variance if the estimates concern the random
variable G- From the general covariance matrix 8A for independent random
variables obviously follows the classical one if g is Gaussian:

Cli o0 0
0 o2
(40)
0
0 0

(the inverse of S was given in Eqg. (15)), as the expected value E is defined
by Eq. (34) if g is Gaussian, and the asymptotic variance of the estimates
for E is well known the variance itself (i.e., oj in case of ). — It is
convenient to denote also by an arbitrary statistical algorithm the asymp-
totic scatter 8A by the characteristic itself which is estimated, e.g., if g is
the Laplace distribution, the median (med) of Cis estimated (as it can easily
be verified on the ground of Eq. (34)), therefore medA is written in this case
(and eA = o evidently holds). The only exception is the standard version of
the most frequent value calculations, i.e. if the theoretical value of M is
estimated: simply A is written instead of 44 and thus the covariance matrix
has the form, in case of independence if the P-norm is minimized:

A2 0 .. O
0 A\

A - » u 4.
0 ... 0 A,

Instead of citing many papers we prefer to give in brief here the basic definitions and
relations belonging to the P-norm, tne standard version of the most frequent value
calculations, etc.
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The P-norm is defined as

P=Eexp Jin 1 X;:O f(x) dr (42)

where for e (i.e., for the so-called dihesion)

If< (~)2 f11
*0)2] 2
(43)

°0 |
£rE2 (g 1O

must hold iteratively. The minimum P-value is reached if xo=M is defined by

J.v (x) xfix) dr
Y J— . (44)
Jps(.r) f(x) dr

M is called the most frequent value (in standard version); the functions s(x) is defined by

. 4 e2
= 45
SIX) 4e2+(r-Al)2 (49)

Egs. (44) and (43) simultaneously define M and e (in Eq. (43) naturally xo=M must be
substituted); in the case of a homogeneous sample xj, ....,X,, the estimates for M and e are
calculated (by means of a twofold iteration) on the ground of the sum-counterparts of Egs.
(43) and (44). These equations are easy to get if we substitute

n
fix) =£ X5 (x-x,) (46)
i-i
into Eqgs. (43) and (44); for more details see the summarizing tables at the end of STEINER [1990]
and [1991].

The asymptotic variance of the most frequent values is to be calculated according to
(x-M) 2
Jp [4e2+(r-m)214
A2- 47)
| 4e2 -3 jx-M) Zfix) dr
[4e2+(r-M)2]3

fix) dr

(see e.g. Eq (134) with k=2 in STEINER [1988]).
The most important question in respect of the inverse algorithms is the
following: Do the basic statements concerning the optimum weighting
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discussed in Section 1remain after this generalization of the covariance
matrix? In particular if our independent data are distributed according to
two different ways (we have agreed that this simplification is consequently
used in this paper), does the analogue of Eq. (14), i.e.,

1/8Aa
1/8A2 /A

wopt (48)

really give the optimum weight? For example, for LI-norm algorithms (i.e.,
for calculation of sample medians) really

\/" edAl

49
WOPL /v edAd + I/medA i (49)

in the case of the P-norm (i.e., for calculations of the most frequent values) is

114
W opt (50)
1/4+1/4

really the best choice?

We have seen the Monte Carlo results from calculating medians in
Fig. 5 (see once more the Lj-curve). The asymptotic scatter of the sample
medians can be expressed (see e.g. CRAMER [1946]) simply as

tned, _ 1

A=t (med) (1)
for the distributions defined in the Egs. (29) and (30). The wopt=0.8 value
calculated according to Eqg. (49) fully corresponds to the Monte Carlo
results. In addition, the following analogue of Eq. (12) also seems to be
valid for independent cases

. 2\ W2 o* b 2 e* , 2
s4  (w) [naw+nh(| w1 2 fa 4 +nb(1-W) 4] (52)

as by substituting ".edA instead of the general gA two times in Eq. (52), the
theoretical q(w) calculated as 0.6745. medAQ (w) is near to the Monte Carlo

results.

Two remarks: a/ theoretical curves are drawn in the overwhelming majority of our
figures with dashed lines; b/ as far as the applied constant 0.6745 is concerned, we refer
once more to the fact that estimates very often have (but not always) Gaussian distribution
(see Huber [1981]).
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The small departures between the theoretical curve and the Monte
Carlo results in the neighbourhood of w=I are similar using the L"norm
as in the discussed case of the /*-algorithm because na=100 is not enough
to get complete accordance with the asymptotic rules. The reasons, how-
ever, are quite different: the flanks of Le are very elongated and therefore
the sample size must be very large if we wish the averages to behave
according to the asymptotic rule, the behaviour of the central zone has
hardly any influence; — on the contrary: the calculation of the sample
medians is extremely sensitive in the case of symmetrical and unimodal
distributions to the data around the maximum place of the density curve if
the latter has a peaky maximum but in the case of the extreme pointedness
of/,,e-curve (see Fig. 4) na=100 is really not yet enough to detect accurately
this feature of the density curve on the basis of the sample (it is completely
indifferent in respect of the sample medians if the flanks are heavy or not).

In Fig. 1we saw in the case of na=nb=4 full agreement between Monte
Carlo results and the theoretical curve expressing primarily asymptotic
behaviour. The first example for the eventual discordance was shown on
the right hand side of Fig. 3a: the Monte Carlo results have expressed well
the characteristic of the mother distribution itself, — but this was veryfar
from the theoretical value calculated according to the asymptotic rule,
namely, on the ground of the asymptotic scatter (EA = §) of the averages.
The just discussed departures in Fig. 5 are traceable to similar origin, not
only for L} but also for Lx, too.

From the viewpoint of geophysical practice it is very important that
small samples also behave at least approximately according to the asymp-
totic rule and this is achieved if some significant characteristic of the mother
distribution, say, g or Q, is near to the asymptotic scatter of the estimates
obtained by the statistical algorithm in question. As according to Eq.(26),
Q ~ EA =a holds for the very classical, namely for the Gaussian case, we
should see whether the intersextile range Q is far from or near to the
asymptotic scatter of the standard most fregent value calculations (i.e., of
the characteristic of the algorithms based on the P-norm, denoted by A) for
frequently occuring mother distribution types.

The distribution types of the 7iW-supermodef defined by

rf
fa V\# M ! @a>1) (53)

/T T 0 <+2al2

proved to be adequate for modelling actual error distributions which occur
in geophysical practice. Introducing p=10\{a-I) as parameter of type it can
be proven thatp 2~Pi well approximates the type-distance of the correspond-
ing distributions (defined by a2and a”. Consequently it is straightforward
to show all important characteristics as a function of p for a great type
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interval, mostly from the Gaussian (p=0) to the Cauchy distribution (p=1;
for more details about the supermodel fa(x), e.g. Cramér-Rao bounds,
efficiencies, etc., see STEINER [1988]).

In our case in Fig. 6 the curve of the quotient A/Q was drawn as a
function of p\ for comparison the 0/Q curve is also shown in the same
figure.
Our conclusion on the ground of the A/Q-curve of Fig. 6 is that A~Q
is satisfactorily fulfilled for a very broad type interval (from the Gaussian
type at least to the Cauchy-distribution); consequently, it is justifiable to
expect that asymptotic rules are applicable (with the demanded accuracy)
alsofor small samples ifalgorithms based on the P-norm are used. As a
lower limit four data in a sample can be expected because for only three data
the notion ‘most frequent value’ is hard to interpret adequately (and for two
data all algorithms investigated — based on Lr, L"- or P-norm — give the
same estimate).

Fig. 6. Relation A - Q holds for a large
type interval; o * Q is valid only for the
immediate neighbourhood of the Gaussian

6. dbra. Az A +Q kozelité egyenléség
széles tipustartomanyra érvényes; a “ Q
csak a Gauss-eloszlasra és kozvetlen
kornyezetére teljesul

Puc. 6. MpubnunxeHHoe paBeHcTBO A aQ
felicTBYeT ANS LWMPOKOro AnanasoHa
TMNoB; 0 6 Q BbIMOMHAETCS NNLLb ANA

rayccoBCKMX pacnpeieneHunin n ux
HenocpeACTBEHHOI 61130CTU

10
AIQ

0,5

05
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The cr/Q-curve of Fig. 6 shows that 0~Q holds only for a surprisingly
small type interval in the very neighbourhood of the Gaussian distribution;
the problems shown in the Introduction are therefore to be understood
without any difficulty. As

f1 it a>3

(54)
if a<3

holds for fa distributions, a is infinite for a great variety of probability
distribution types. In addition, it can be proved, that the asymptotic scatter
of empirical scatters divided by the true value of o is to be calculated
according to the formula

o1, if @b

Aal o (55)
if a5

It means that in the case of the very often occuring a=5 (see the density
curve of the type-occurence in Fig. 19) the determination of the elements
of the covariance matrix becomes problematic (at least from the in point of
view of acceptable accuracy).

Let us look at some examples. But first of all a remark which belongs
to all the examples shown in this Section: to tell the truth, it would really
be necessary to discuss in detail an enormous number of variants but if we
were to do this, there would be the danger of losing the clarity of the present
paper. The most essential things, however, can be shown, too, if we restrict
ourselves to Cauchy-distributed data: the classical covariance matrix is not
even defined in this case and therefore these examples stress best of all the
importance and necessity of the generalized covariance matrix. In some
cases the sample will consist of Cauchy- as well as of Gauss-distributed
data. The calculations were made on the ground of the generally applicable
P-norm.

Curiously enough also the theoretical q(w)-curve of the Z~-results can be S|mg
given if the sample contains only Cauchy-distributed data but naof them have a probable
error of gaand nbare to be characterized by gb:

1
DM " na b (1-w) \naw ga+nb{l-w)- gb\ (56)

The validity of Eq. (56) can easily be proven on the basis of the Cauchy distribution
being a so-called stable one (see Subsection 2.2). The q(XV\? function in Eq. (56) is
evidently a monotonous one and therefore no minimum exists for O<u><1.
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Fig. 7 shows the theoretical g(w) and Cfwj-curves, respectively, as
0.7645 and 0.9674 times (see Egs. (25) and (26)) of the AO(w)-values
calculated according to

e"na ""Al +nb(l-w)2-AB , (57)

which is clearly a special variant of Eq. (52) for P-algorithms. (The
numerical values of A obtained by using Eq. (47) are given for some
distribution types in STEINER [1990], e.g., A=1.5 holds for the standard
Cauchy distribution and A=1.0466 is valid for the standard Gaussian
distribution. If the parameter of scale S differs from unity, A (being valid
for the standard case) isto be multiplied by the actual value ofS. The Monte
Carlo results agree satisfactorily with the theoretical ones in the case of
Fig. 7 although only a small sample was investigated (na=nb=4). The same
is true for the P-curve of Fig. 8; in this case samples contained data of
Cauchy type as well as of Gaussian type. Consequently, the inverse of the
generalized covariance matrix informs us adequately about the best weight
wopt to be used.

2. 2 Generalization ofthe correlation matrix

The elements of the classical correlation matrix p (see Eq. 8) are
defined by Egs. (4) and (5) and calculated on the ground of data pairs
according to Eqg. (6). These matrix elements, i.e., the correlation coeffi-
cients, are used popularly in practice (it is certain that one of the reasons
for this is that — < p < lalways holds), — although their definition do not
make possible a plausible interpretation of this notion for appliers.

An obvious interpretation of p, however, can be simply given in the
special case if C, q and C have equally standard Gaussian distribution C
and Care independent and the relation

q=p-C +C-VI-p2 (58)

holds. Namely, it can be proven (see e.g. CRAMER [1946]) that in this case
Eqg. (5) results really in the correlation coefficient p having, according to
Eg. (58), an immediate meaning: the random variable g ‘contains’ the
random variable Cto the extent of the proportionality factor p.

As Eg. (58) gives an obvious and simple connection of random
variables, this relation should be regarded by our generalizing as a primary
definition of a value which measures the closeness of the connection
between random variables Cand g. In the general case we shall denote this
proportionality factor by rtrue, — but how can Eq. (58) itselfbe generalized?
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Fig. 7. Error curve of the results from the P-algorithm (na=nb=4). The best choice of the weights
corresponds to the generalized covariance matrix

7. dbra. P-algoritmussal nyert eredmények hibagorbéje (na=nb=4). A stlyok optimalis valasztasa
az altalanositott kovarianciamatrixnak felel meg

Puc. 7. KpuBasi norpewHocTeli pe3ynbTaToB, NoAyyYeHHbIX No anropudmy P(na=nu=4).
OnTManbHbI BbIGOP BeCOB 0TBeYaeT 0606LLeHHOM KOBapnaLnoHHOW MaTpuLe
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?
P: gt = UA? 11.82 —0327A
1/A2¢ 1/A2 ' 1/1.52* 1Y¥1.04662
o VR o
1/EA? ¢ 1/EA)

Fig. 8. Error curve of the results from the /’-algorithm (na=4 data are Cauchy-distributed, n*=4
are Gaussian). The best choice of the weights corresponds to the generalized covariance matrix

8. abra. P-algoritmussal nyert eredmények hibagérbéje (na=4 adat Cauchy-, nb=4 adat pedig
Gauss-eloszlasu). A sulyok optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 8. KpuBas norpewHocTeli pe3ynbTaToB, NoAyUYeHHbIX Mo anbropugmy P ( gaHHble no=4
UMeloT pacnpegeneHne Kowu, a jaHHble *=4 raycCoBCKOe pacrnpeseneHue).
OnTuManbHbIii BUGOP BeCOB 0TBeUaeT 06061 eHHO KOBapMaLMoOHHO MaTpuLe
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In the first step the premise of the Gaussian distribution of the proba-
bility distributions should be given up. The supposition of the Gaussian
type of all three random variables was convenient in respect of Eq. (58)
because of the so-called stability of the Gaussian distributions: the sum of
two Gaussian random variables is also Gaussian. There are, however,
plenty of stable and symmetrical distributions besides the Gaussian, namely
the types of the/a(x)-supermodel defined by

o @)= fexpineie )ecos () d (0<a<2) (59
0

(for more about this supermodel see in STEINER [1990]; fa(x) is the

Gaussian density function if a =2 , and in the case of a = 1 we get the
Cauchy distribution). Our generalization is simple: a should have all its
possible values, not only the value 2. In this case the following generalized

version of Eq. (58) is needed:
M=rtrue' *+C'O" Kue I)17* (60)

(see Eg. (3) in HAJAGOS and STEINER [1989b]) and this corresponds to the
following density function:

y~rtrue x .
fa (*(1)2 ) i ta M ta (GI)
a-iw ia)lla a-iw ia)lla
With a =2 this expression clearly gives the well known formula for the
two-variable Gaussian distribution.

Thefa and/adistributions are very similar, see e.g. Fig. 9, — but this
close connection can also be demonstrated theoretically (based on the
investigation of efficiencies, see again the just cited paper. The following
empirical formula yields that value of a for a given type parameter a; in
such cases fa is most similar to/a:

a (a) =2-0.92 merc tan a1.91 62)

see Fig. 10). Consequently, the two-variable//.*,y) can be written as

y~rirue
fa (*Co = o A o (63)
( O- kme Ia)\lla ! ! O" Itrue " )" *
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where the a-value is defined by Eq. (62).
After the foregoing the generalized correlation matrix can be written
as

1 rtrue; 1,2 rtrue\i,n
rtrue\2,1 1 rtrue\2,n
rtrue (64)
rtrue\n, 1 1

(rtrue;ik characterizes the closeness of the statistical connection between
and ). Nothing was said, however, till now about the determination of

the rtrue ik -values; this will be treated from the point of view of practice in
Subsection 3.1.

To have some idea about the error committed if we regard the expres-
sion for p in Eg. (6) as an estimate of rtrue, see the curves for different
a-values in Fig. 11 (reprinted from HAJAGOS and STEINER [1989Db]). For
a = 1.5, which often occurs p is greater by nearly 0.1 for a large rtrue-in-
terval, and for a = 1the difference can be 0.25, too, — and this value is a

Fig. 11. Value of correlation coefficient p defined in classical statistics is systematically larger
than rtrue if the distributions in question are stable distributions characterized by a<2 (a=2 is the
Gaussian case)

11. dbra. A klasszikus statisztika altal definialt p korrelaciés egyttthatd szisztematikusan
nagyobb, mint rtrue, ha a<2 (a=2 esetén Gauss-eloszlassal van dolgunk)

Puc. 11. KoahuuymeHT Koppensaunum p, AeUHMPOBaAHHbIMA MO KNaCCUYECKOWN CTaTUCTUKe
cucTeMaTuyecku Bblle, Yem Tne, ecnn a<2. (B cnyvae a=2 MMeeM fieN0 C raycCOBCKUM
pacnpegeneHmem)
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guarter of the whole |rmJ-range. No wonder that practicians mostly believe

in the existence of any correlation only if p is greater (or even significantly
greater) than 0.5 (it should not be forgotten that a=1 means the Cauchy
distribution type — and this type can be utilized for modeling the unavoid-
able outliers, too, in the case of error distributions originally having not
such heavy flanks, see TARANTOLA [1987]).

2. 3 Generalization ofthe covariance matrix

The elements of the classical covariance matrix are to be written as
pik Of ok, see Eqg. (7). We have seen, however, that rtrue;ik is the proper

generalization of pit, on the one hand (see Subsection 2.2), and on the other

hand, the asymptotic scatter M, can in every respect be regarded as the
generalization of the scatter a( (see Subsection 2.1). The straightforward

generalization of the covariance matrix results therefore in

i r 8 A 8 A 8 A
8A j 'lrue—,l,z. n 1- % - rrtrue;l,n m /1T 1 m 0o
r 8 A
‘true,2,1 m g 2 % S4 -
8a = 1 (65)
8A % - 8AR

r 8 A
“true;n,l m n n % rlrue—,n,z e nn

if all rtrue are zero we get the already known form of 8A given in Eq. (39)
for the case of independent random variables. If P-norm algorithms are
used (i.e., most frequent values are calculated), the covariance matrix A
clearly has the form

2
Al rtrue, 12 mA |l A2 m rtrue\\,n *A1l<An

A = rtrue;2,1 mA2 <A1l (66)
rtrue;n,! MAne<A 1l rtrugn2 cAn A2 oo Ar

(this is, formally regarded, very nearly the same as Eq. (65): the only
difference is that no ~-indices figure in Eq. (66)).
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The examples (Figs. 12-18) for showing the influence of various
weighting and especially the a priori weighting according to A'1in the case
of P-algorithms demonstrate not only Monte Carlo results for small sam-
ples but also the corresponding theoretical curve, too. These curves were
calculated according to

gM =nav M~ L ) 7ny ‘Al +4 (6702 (1l+rtrue)Ab (67)

(this expression is clearly the analogue of Eq. (22) taking also Eq. (25) into
consideration). Is was really unavoidable to show these empirical and
theoretical g(w)-curves (the latter always with dashed line) for some
situations to be able to draw important conclusions but the detailed discus-
sion of the shown seven examples were superfluous. The reader will be
satisfied in all cases with the agreement between the theoretically obtained
(asymptotic) wopl-value calculated on the ground of the corresponding A 1
which means in our simplified cases

Wopt (68)

Ab (1+rtrue(

and the optimal w shown by the Monte Carlo results for small samples.

Departures between theoretical and Monte Carlo curves can be really
significant if there are only three data (see the neighbourhood of w=I in
Figs. 13, 15, 16, 17) but minimum places coincide very well also in these
cases. If four data are present the departures became insignificant; this was
already known, however, on the basis of Figs. 7 and s.

The error of an inversion is to be calculated also on the ground of the
covariance matrix which is to be interpreted asymptotically. Therefore it is
important to investigate the departures between the asymptotic and the
Monte Carlo values of q(wopt), too, but this question is not treated in the
present paper in detail. If we remember, however, our train of thought
concerning the customarily demanded accuracy of the errors (see the
paragraph after Eq. (26)) and we also take into account Figs. 20 and 21
from the next Section, the differences between the asymptotic and the
empirical g(wQJf)-values can be regarded in all shown cases to be accept-
able; in some cases the agreement is excellent.
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Fig. 12. Error curve of the results from the E-algorithm (Gauss-distributed data; na=3, nb=6;
Ime=0.6). The best choice of the weights corresponds to the generalized covariance matrix

12. &bra. P-algoritmussal nyert eredmények hibagérbéje (az adatok Gauss-eloszlastiak; na-3,
rtft=6; rtrue=0,6). A sulyok optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc.12. KpuBble NOrpewwHOCTH pe3ynbTaToB, NOAYYEHHbIX anbropudmom P (gaHHble nMetoT
rayccoBckoe pacnpegeneHue, na=3, m*=6; rivr0.6) OnTuManbHbIN BbIGOP BECOB
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Fig. 13. Error curve of the results from the E-algorithm (na=3, nb=6; rtlk=0.6). The best choice
of the weights correspontds to the generalized covariance matrix (the theoretical curve itself
differs significantly on both sides)

13. a&bra. E-algoritmussal nyert eredmények hibagérbéje (na=b, nb=6; rtrue=0,6). A sulyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg (noha az elméleti gérbe
mindkét széle szignifikans eltérést mutat)

Puc.13. KpuBble NOrpewHocTM pe3ynbTaToB, NoAyYeHHbIX anbropugmom P (na=1, nu=6;
rrn/r=0.6). ONTUManbHbIi BbIGOP BECOB COOTBETCTBYET 0606 EHHO KOBapuaLnoHHOW
mMaTpuue (HeCMOTPSA Ha TO, 4YTO 06e Kpasi TEOPeTUYECKON KPUBOW NoKasblBaT
pacxoxgeHue)
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Fig. 14. Error curve of the results from the S-algorithm (na=6, nb=12; rtme=0.6). The best choice
of the weights corresponds to the generalized covariance matrix

14. abra. d-algoritmussal nyert eredmények hibagorbéje (na=6, nb=12; rtrue~0,6). A sulyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 14. KpuBble NOrpewwHoOCTM pe3ynbTaToB, NOAyUYeHHbIX anropudmom A (na=6, n*=12;
Mnur0.6). OnTuManbHbIY BbIGOP BECOB COOTBETCTBYET 0606LEeHHON KoBapuaLnoHHOWA
maTtpuue
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Fig. 15. Error curve of the results from the E-algorithm (na=3, nb=6; r,Ak=-0.6). The best choice
of the weights corresponds to the generalized covariance matrix. The error curve of the results
from the classical /~-algorithm is also shown

15. abra. P-algoritmussal nyert eredmények hibagorbéje (na=3, nb=6; rm,f=-0,6). A stlyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg. A klasszikus statisztikai
algoritmussal szamitott eredmények hibait az /.2-vel jelélt folytonos gérbe mutatja

Puc. 15. KpvBble MOrpewHocTA pe3ynbTaToB, NoNyUYeHHbIX anbropupmom P(na=3, nu=e;
rrue= - 0.6). ONTUManbHbIN BbIGOP BECOB COOTBETCTBYET 06061 eHHO KOBapuaLnoHHO
mMaTpuue. MorpewHoOCTN pe3ybTaToB, NOAYYEHHbIX albFropUEMOM Knaccu4eckKoi
CTAaTUCTUKM NOKasaHbl HENPepbIBHOW KpnBoW Li
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Fig. 16. Error curve of the results from the H-algorithm (na=3, n*=6, rtrue=-0.6; the scale
parameters of the mother distributions are: Sa=S2 and S*=1). The best choice of the weights
corresponds to the generalized covariance matrix

16. abra. A-algoritmussal nyert eredmények hibagorbéje (na=3, nb=6, rtrue~-0,6; az
anyageloszlasok skalaparaméterei: Sa=/T és Sb=1). A sulyok optimalis valasztasa az
altalanositott kovarianciamatrixnak felel meg

Puc.16. KpvBble NOrpewiHoCcTy pesynbTaToB, MNOYYeHHbIX anbropugmom P (Ma=3, n*=6,
raw3 - 0.6; napameTpbl WwKanu pacnpegenedma Sa=fl and Sb-1). OnTuManbHbIN BbIGOP
BECOB COOTBETCTBYeT 0606LLeHHO/ KOBapMaLnoHHON MaTpuLe
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Fig. 17. Error curve of the results from the E-algorithm if na=3 data are Cauchy-distributed and
independent, Nb=6 Gaussian data are pair-wise correlated: rtrue--0.6. (Both mother distributions
have the same probable error.) The best choice of the weights corresponds to the generalized
covariance matrix

17. abra. S-algoritmussal nyert eredmények hibagérbéje, ha n0=3 adat Cauchy-eloszIlasu és
fuggetlen, az nb=6 db adat Gauss-eloszlasu és paronként korreldlt: rime=-0,6. (A két
anyaeloszlast azonos valdszind hibajellemzi.) A sulyok optimalis valasztasa az altalanositott
kovarianciamatrixnak felel meg

Puc. 17. KpuBble NOrpelwHoCT pe3ybTaToB, NoyUYeHHbIX afNbropupmMom $, ecnu AaHHble
na=3 He3aBUCMMble 1 OTBeYaloT pacnpegeneHnto Kown, a N6 faHHbIX UMEIT rayccoBCKoe
pacnpefgeneHuie 1 NoNapHO KOPPenMpoBaHsbl : rinl?=-0.6. (McxofHble pacnpegeneHuns
XapaKTepusylTcsl TaKol e BePOSITHOCTHON NOrpeLHOCTbI0.) ONTUMabHbIA BbIGOP BECOB
COOTBETCTBYET 06061 eHHOIN KOBapuaLUOHHOW MaTpuLe
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Fig. 18. Error curve of the results from the P-algorithm. The mother distribution types are
changed, otherwise the samples were generated very similar to the case of Fig. 17. The best
choice of the weights corresponds to the generalized covariance matrix

18. abra. P-algoritmussal nyert eredmények hibagorbéje. A mintdk képzésénél az
anyaeloszlas-tipusokat megcseréltiik, egyébként a 17. dbra felirata szerint jartunk el. A stlyok
optimalis valasztasa az altalanositott kovarianciamatrixnak felel meg

Puc. 18. KpvBble NOrpeLIHOCTU Pe3ynbTaToB, NOyYeHHbIX anbropugmom P. Mpu 3agaBaHnm
06pasLoB TUM UCXOLHbIX pacnpefeneHnii MOMeHSNN, NpoUKe YCNOBUSA Te Xe, Kak Ha
puc. 17. ONTUManbHbIl BbIGOP BECOB COOTBETCTBYET 06061 eHHON KOBapuaLMoHHO

maTpuLe
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3. Robustification

In Section 2 the covariance matrix was always regarded — as is usual
— as ‘a priori’ given. In practice, however, the expression ‘a priori’
generally means nothing more than that these matrix elements were deter-
mined at an earlier stage of the work. In this Section we treat how these
determinations are performed.

3.1 Robustification ofthe correlation matrix

In the literature of robust statistics it is customary to make robustifica-
tions of ad hoc type; this can be sanctioned by practice even if there is no
satisfactory theoretical background. Let us now make such robustification
of the formulae in Egs. (5) and (s), forgetting for a moment the results of
Section 2. Denoting the robustified by nr, our definitions are the

following:

No (%) «(x-Mfi <[s(y) m(y-My)] f(x,y) dxdy

Xy (69)
(0 *(x-Mx)2-F(x) dx WY IV (y) *iy-My)2 -(y)dy
iff(x,y) is known. If data-pairs are given,
Mn
£ [s(X)r(xr M) 1[s(y,) *yr MY)]
b m7 n = r. . <0)
VE s205)mxr MX)2 -V £ (%) *(yt-My)2
(=1 i=I

the s-values are calculated according to Eq.(45) with Mxand in the case
of s(x) and with My and eyin the case of s(y).

The question rightfully arises whether the re values, calculated on the
ground of Eq. (69), really do not differ significantly from the AHr,e-values
defined in Subsection 2.2. As practical cases can be well modelled by
A-distributions, calculations for checking purposes were made for some
values of the type parameter a. (By choosing these values, we also took
into account the probability density function of the occurrence of different
a-values in Fig. 19; see STEINER [1990]). After this choice, thef(x,y) in
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Fig. 19. Density function modelling the occurrence probabilities of different probability
distribution type intervals of the/a(x)-supermodéi
19. abra. Sdr(iségfuggvény, amely az/,(x)-szupermodell kilonb6z6 valészintiségeloszlas
tipus-intervallumainak eléfordulési valészin(iségét modellezi
Puc. 19. ®yHKUMSA NAOTHOCTW, MOAENNPYIOLLAA BEPOSITHOCTb HabNOAeHNA pasHbIX
WHTEPBa/IoB TUMNa pacnpesesieHns BeposTHocTy cynepmogennmfa(x)

Eqg. (69) was taken according to Eqg. (63); Table I. shows the differences
xy~"\true)’

! The )maximum difference is 0.071 (see the row for the Cauchy distri-
bution); ifa > 3 can be supposed in an actual case, all absolute differences
are less than 0.05.

These differences (of the character of bias) can be neglected by
comparison with the expected statistical fluctuations. To have some idea
about the measure of the latter; for n=100, pairs of data (of different
probability distribution type) were generated according to Egs. (60) and
(62) in the first step; on the basis of these data-pairs r,,-values were
calculated according to Eqg. (70) (for comparison the values were also

determined, see Eq. (6)). This procedure was repeated N=200 times for each
type investigated, consequently the interquartile- (full line), the intersex-
tile- (dashed line) and the whole range (thin line) of the data were easy to
construct (see Fig. 20 where also the medians were indicated). The shifts
correspond to the already known bias (see Table I) being in general less
than the probable error even in the investigated case of n=100. (This
statement does not hold for the values of pry,— except the very classical

but seldom if ever occuring Gaussian distribution.) A further consequence
can be made on the basis of Fig. 20: the statistical fluctuation of rxy is nearly



rtrue

Gauss (a-*co)

a*10 )
>Jeffreys-interval

a=6 )

geostatistical (a»5)

midway (a=3)

Cauchy (a=2)

Table /. The differences (rxy-r,rue) for different values of rtrlk and for various probability

I tablazat. Az (r¥-rlive) kilonbségek r,ve kilonbozo értékeire és néhany
valészin(iségeloszlastipusra
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0 0.1

0 -0.008
0 -0.006
0 -0.002
0 0

0 0.011
0 0.029

0.2

-0.016

-0.010

-0.003

0.001

0.023

0.050

0.3

-0.023

-0.014

-0.003

0.003

0.033

0.064

-0.029

-0.016

-0.003

0.005

0.041

0.070

-0.032

-0.017

-0.002

0.007

0.047

0.071

distribution types

-0.035

-0.016

0.009

0.049

0.067

-0.033

-0.014

0.002

0.011

0.048

0.057

0.8

-0.028

-0.009

0.005

0.013

0.043

0.041

0.9

-0.017

-0.004

0.007

0.012

0.026

0.029

Tabn. I. PasHuubl (Ny-r,ne) ANa pasHblX 3HAYeHWUI rilk 1 NpyM U3MeHeHMK Tmna

CAUCHY

MIDWAY

GEOSTA-
TISTICAL

GAUSS

Fig. 20. Statistical fluctuations of the 'xy- and p.”-values in the case of ti=100

pacnpezeneHuns BeposiTHOCTU

20. dbra. Az I'yy- és p.v-értékek statisztikus ingadozdsa n=100 esetén
Puc. 20. CtaTuctnyeckoe kone6aHue 3HaveHnin yw p*y npu n=100
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independent of the distribution type; on the contrary, that of pr=strongly
depends on itand, in addition, we can state that the measure of the statistical
fluctuation is also in itself fully unacceptable in the case of the Cauchy
distribution (a similar statement characterizes the midway distribution), to
say nothing about the great shifts (obtained in full agreement with Fig. 11,
see e.g. curve ‘a=TI).

Concerning statistical fluctuations it is perhaps not superfluous to
reprint two figures from CRAMER [1946] (see Fig. 21): in the frequently
occuring cases of n=50 and n=10 the density functions of the pxy-values
show that unexpectedly large statistical errors occur even in the least
problematic case: if the data are Gauss-distributed; this is closely linked
with the fact that any kind of correlaton coefficient is characteristic of a
two-varibale distribution. It can be stated as a conclusion that the statistical
fluctuation o/pIvin the very negihbourhood ofthe Gaussian as well as that

ofthe revalues in a broad type interval is significantly greater at sample
sizes used in the overwhelming majority of cases than the bias of the
revalues. Consequently, the robustified correlation matrix defined by

"1 rlLh2 rl,3 e rln

r2,l 1 r23 mm r2n
r= (71)

can be regarded as a satisfactory approximation ofthe generalized corre-
lation matrix r(rue. As for the computing techniques: the calculation of rxy
organically and simply joins with the basic algorithms of the most frequent
value procedures (no special programs are needed).

3.2 Robustification ofthe covariance matrix

The meaning of the word ‘robust’ involves not only the applicability
on a broad type interval but often the resistance, i.e., the insensitivity to
outliers, too. In actual fact, the s-functions figuring in Egs. (69) and (70)
(i.e., in the formulae of the robust correlation coefficient) guarantees the
resistance, too.

The s-function, however, is a basic function of the most frequent value
calculations, and if we intend to robustify the scatter by means of this
function, in a self-consistent way we can only set the aim that the A,-values
should be approximated by the robustified scatters.

A possible robustified form of the scatter is the following:
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8- Tlixyi
rtru«=
6
rtrue’'0b
Dru«*Q

ity

Fig. 21. Density functions of pry (from CRAVER [1946]) for n=10 and n=50 if the random variables
have Gaussian distribution
21. abra. A pxy strGségfliggvényei Gauss-eloszIlast valészin(iségi valtozok esetén, ha az adatparok
szama n=10 illetve n=50
Puc. 21. KpuBble NAOTHOCTU p. ANSi BEPOATHOCTHbLIX NePeMEHHbIX C raycCOBCKUM
pacnpefeneHnemM, ecnm KonmM4yecTBo nap faHHbix n1=10, n=50

A=Y jjs (M) e(x-M)2f(x) A : (72)

-0

its estimate is clearly

A=Y . (73)

The notation A anticipates that A~A is valid (it is clear that a notation
Jwould equally bejustifiable). Table Il. gives the values A and A for some
probability distribution types and the departures, too (in per cent).

A A 100.(A-A)/A
Gauss 1.0466 1.0369 -0.93 X
a=10 0.3694  0.3666 -0.76 X
a= 6 0.5173  0.5150 -0.44 X
geostatistical 0.5917  0.5904 -0.22 X
midway 0.9236  0.9350 +1.23 X
Cauchy 1.5000 1.5492 +3.28 X



156 B. Hajagos - F. Steiner

As_the fulfilment of A~J1 is satisfactory, the robustified covariance
matrix A (which gives nearly A, see Eq. (66)) can be written as follows:

A ri,2 M1 -A2 rin -Al-An
r2,1 -A2-Al
A= (74)
rn,I-An-Al rn,2-An-A2 %

Thorough investigation of the determination errors of the matrix
elements is beyond the scope of the present article (e.g., whether the method
given in HAJAGOS and STEINER [1989a] for extraordinary outliers is to be
applied or not). Such investigations should preferably be made parallely
with the study of practical cases.

The authors are indebted to L. FERENCZY, consultant (Geophysical
Exploration Co., Budapest) for having initiated this work, and to their
colleagues L. CSERNYAK, A. GYULAI and T. oRMOS for fruitful discus-
sions .
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A KOVARIANCIAMATRIX ALTALANOSITASA ES ROBUSZTIFIKALASA

HAJAGOS Béla és STEINER Ferenc

A dolgozat elsd része az egyszer( szemléltethet6ség érdekében néhany elkeriilhetet-
len egyszer(sitést vezet be. Ezutan a klasszikus statisztika kovarianciamatrixanak inver-
zével valo sulyozas optimélis voltdt mutatja meg a cikk Gauss-eloszlasu hibékra,
ugyanakkor példakkal hivja fel a figyelmet arra, ho?(y ettdl eltér6é hibaeloszlasoknal, kis
mintaelemszam esetén, az optimalis stlyozast nem okvetleniil ez a megoldas szolgaltatja.

A maésodik rész a kovarianciamatrix altalanositott, az alkalmazott statisztikai algo-
ritmusnak megfelel6 alakjat definiélga; példakat zémmel F-algorimust alkalmazd eljara-
sokra, azaz sulyozott leggyakoribb érték-szamitdsokra mutat be. Kiderult, hogy az
altalanositott kovarianciamatrix inverze kis mintaelemszamok esetén is alkalmazhato, ha
a leggyakoribb értékek szerinti algoritmusokkal dolgozunk.

A harmadik rész ezen 4ltalanositott kovarianciamatrixot a klasszikus eset robusztifi-
kalasaval javasolja egyszerliség kedvéért meghatarozni. Ez a meghatarozas ui. szamitas-
technikai szempontbdl szorosan illeszkedik a leggyakoribb érték szerinti szamitasok
alapvetd algoritmusaihoz.

OBOBLULEHVE N POBYCTUOUKALNA KOBAPUALIMOHHON
MATPWLbI

bena XAAIOLL, depeHL, LUTENHEP

B nepBoii yacTu cTaTbi BBOAATCS HEKOTOPbIE HEOGXOANUMbIE A HArNs4HOCTY
ynpouieHuns. Mocne 3TOro MokasbiBaeTCs ONTUMaNbHOCTb B3BELUMBAHMS 06paTHOM
KOBapMalLLMOHHOW MaTpuLbl KMacCUMYecKO CTaTUCTUKWM [N NOTrpelHoCTel
FaycCOBCKOro pacnpefeneHus, u o6paljaeTcs BHUMaHUe Ha TO, 4YTO MNpw
0T/IMYaloLLeMcs oT [aycCOBCKOro pacnpeeneHne norpeliHocTe n Npu He6onbLWOoM
KonuyecTBe 06pasLyoB ONTUMaNbHOE B3BELIMBAHWE MOMY4YaeTCs Heo6s3aTenbHO
AaHHbIM CMOCOGOM.

Bo BTOpoii uyacTu faetca onpefeneHve 0606LEHHOT0, MOAXOASLLEr0 ANs
MPMUHEHHOTO CTATUCTUYECKOTO anbropugma BWA KOBAapMaLMOHHOW MaTpuubl.
MpuMepbl MOKa3bIBAOTCA NPEX/E BCEro ANs CNOCO60B, MPUMEHAIOWMUX anbropugm
P, TO ecTb MOKa3blBalOTCA pacyeTbl B3BELIEHHOW Hambonee 4acToil BenMYMHbI.
BbisiBUMIOCL, 4YTO 06paTHyald MaTpuuy 0606LieHHON KOBapUaLMOHHOW MOXHO
NMPUMEHSTbL U B clydae He6OMbWOro KonuyecTsa 06pasyoB, ecim paboTaTb C
anbropugpmMamMy No HamGonee YacTbiM BeMUMHAM. B TpeTbeii YacTu peKomMeHgyeTcs
ANs npocTaTbl OMpeAenuTb 9T 0606LeHHble KOBapualWOHHbIe MaTpuLbl Mpu
pob6ycTUdUKALWNK KMacCUUYecKoii, BBMAY TOro, 4TO Takoe onpejefieHue
HEernocpeaCcTBEHHO CBS3aHO C OCHOBHLIMU anbropuMamy pacuyeToB Mo Hambonee
YacTbIM BEIMYMHAM.
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FAST COMPUTING OF TRANSIENT ELECTROMAGNETIC
FIELD ON THE SURFACE OF A LAYERED HALF-SPACE

Erné PRACSER*

Time domain electromagnetic fields can be computed by the spectral technique, viz.
using the inverse Fourier-transform applied to frequency domain, or by solving Maxwell’s
equations in the time domain. For a layered half-space and for the total time domain,
accurate computations for the latter method are very time consuming because of the
presence of a partial differential equation in the derivation of the formulae determining
the transient field that cannot be solved by analytical functions. The numerical solution of
partial differential equations is very time consuming. On the other hand, the differential
equation that arises in the frequency domain can be expressed by analytical functions. If
we do not require an accurate solution to the total time domain, then the solution of the
partial differential equation occurring in the time domain can be computed by analytical
functions, too. The paper discusses a case which is valid for a non-conducting basement
and is based on an asymptotic solution that is valid at late times.

Keywords: transient methods, electomagnetic field, half-space, dipole, computer
programs

1. Introduction

In most cases the interpretation of the transient and other electromag-
netic measurements is based on assuming a layered half-space at the site
ofthe measurement and we try to determine the parameters of the half-spa-
ce, from which a conclusion can be drawn on the geoelectric structure. In
order to determine the layer parameters that belong to the measured curves
a direct problem solving program is needed for computing the theoretical
curves from optional layer parameters. Though in the case of the transient
method there are many computational methods for solving the problem,
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none of them is so fast that it would not be worth the effort of increasing
the speed of computation. The speed is especially important when applying
a curve computating program for curve fitting. On a 12 MHz IBM PC/AT
equipped with a coprocessor the computation of the direct problem by the
spectral method takes about 10 s/layer and it gives accurate results at early
and at late times [PRACSER 1986]. The transient electromagnetic field takes
the form ofa Hankel transform of a kernel function as a result of the solution
of the Maxwell’s equations in the time domain. This kernel function is the
solution of a partial differential equation that can be solved by the finite
difference method [GOLDMAN 1983]. Computation based on this theory is
much slower than the spectral technique. If we accept that for the early
times we do not get accurate transient field values then the kernel function
in the time domain can be generated in the form of a series expansion. In
that case the computation requires much less time than by the finite
difference method. In the Soviet literature we find that this method used to
be applied to two- and three-layered halfspaces [TIKHONOV, SKUGAREVS-
KAYA 1950]. At late times even the first term of the series gives an accurate
result; at early times we have to take more terms into consideration. Even
though this method was known as far back as 1950, at that stage of
computational techniques it probably could not be applied in practice and
once computers had come into general use in geophysics the spectral
method was preferred in transient calculus. In the following we show the
computation based on the series expansion of the kernel function for an
n-layered model.

2. Transient field of an electric dipole at the surface of a layered
half-space

Let us examine the electric dipole on the surface of a layered half-space
when the current flowing in a conductor of elementary length is turned off
at time t=0 and the effect of the displacement current is negligible. The
induced electromagnetic field is defined by Maxwell’s equations:

rot H=0E +J divH =0 @
rot E=-u —H divE=0
r dt

where;
E — electric field vector
H — magnetic field vector
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|i — magnetic susceptibility
t — time
I(t) dI 5(z) 5(r)
2nr
r — length between the dipole and the measuring point

— exciting current

J7o t<o N .
I{t) = — current flowing in the dipole

dl — length of the electromagnetic dipole

0(z), 5(r) — Dirac-delta functions

a — conductivity function depending only on the z coordinate that is
defined as follows:

0 7>79=0
a(z2) =wj Z-1>2>7 j=1..,n-1

n=o0 r <2zn-i

Zj — coordinates of the layer boundaries
n — number of layers

We shall briefly discuss the most important steps of the derivation of
Eqg. (1) that defines the transient field. As can be seen from the definition
of a we deal only with that case when the conductivity of the n-th layer is
zero. One of the disadvantages of the computation based on the theory in
question is that the n-th layer has to be a non-conductor or an ideal
conductor. Here we discuss only the case of on =0 because it has much

greater importance in practice than the case of on= °°. With the spectral

technique there is no need for such a restriction. We start to solve the system
of equations (1) in the usual way by introducing the A vector potential.

H =rotA , A =(Ax,0A2 )

The A vector potential, as can be derived from Maxwell’s equations,
satisfies the following partial differential equation:

A=-]
()

Bearing in mind that in most cases in transient measurement only the
vertical component of the time derivative of the magnetic field vector is
measured it is enough to determine the horizontal component of the vector
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potential because HP does not depend on Az (Eq. 2). From Eq. (3), written
in cylindrical coordinates, the integral representation of Ax can be derived
by the separation of variables:

Ax =e Jj O(Xr)X(X,z,t)dX
0

where:

JO — Bessel function of the first kind, zero order

X(X,z,t) — kernel function in time domain
Constant c can be obtained if we compare the magnetic field of an electric
dipole in vacuum, expressed by vector potential, with the law of Biot-
Savart, by which we get:

_lod

So the formula defining the g component of the vector potential is:

i0di
AX =-T— jJO(Xr) X(X,z,t) dX
a1 0 @

3. Determination of the kernel function X(X,z,t)

From Eq. (3) it follows that the X(X,z,t,) kernel function satisfies the
following partial differential equation:

A2X(Xz21) xzcs((x,z,t) '=pa ¢ X(X,z,t)
dt

©)

For the uniqueness of Eq. (5) it is necessary to satisfy certain boundary
conditions. The electromagnetic components and their time derivatives
have a continuous transition through layer boundaries. For t >0 it is valid
for the kernel function X (X,z,t) and for its time derivatives too. If we take
it into consideration that for z >Zgand z <z the conductivity of the
medium is equal to zero then from Eq. (5) it follows that the kernel function
X (X,z,t) has the form of c0 and cne Xz where c0 and cnare constants.
So at the uppermost and at the lowest layer boundaries Eq. (5) has to be
complemented with the following boundary conditions:
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dXjXAt) | B B
dZ XX(X,Z,t) =0 z=20 (6 a)
& XX(X,z,t) =0 Z~7Zn-1 (6b)

For t <0 current flows at a constant /o current intensity, viz. the time
derivative is equal to zero in Eq. (5). Because of this the Ax component of

the vector potential is the same as it should be in a vacuum from which we
get the boundary condition at t=o:

X(\&OTe**  t=0, z<0 @)

Partial differential equation (5) defining the kernel function X(X,z,t)
can be solved by the finite difference method, too [GOLDMAN 1983] but
this method is very time consuming. Here we would comment that the
frequency domain form of Eq. (5) will be simpler because instead of time
derivation there is conjunction /co, where i =/-T is the imaginary unit and
ois the radian frequency. So the exact solution can be expressed by a linear
combination of exponential functions.

In this paper the solution of Eq. (5) is sought by separating the variables
in the form of an infinite series:

X(Xz) =£ Pk/A2)aki{t) =1, 01 (8)
- 1

If the expansion in series (8) of kernel function X(X,z,t) is substituted into

Eqg. (5) we get the differential equation defining functions Rk'j and ak ein
they-th layer:

©
¢ aklt)

o . -

PR aki VK] (10)

The solution of Eqg. (10) is:

akj(t) =cke ™o HD
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From the continuity of functions akj in direction z it follows that the
exponents have to be independent ofj. Because of this the vkj separational
constants can be determined as a function of conductivity:

vicj =wj Xk
where w, = —, and Xt is a constant that will be determined later.

1 G

Knowing vkj let us rearrange differential equation (9) determining
Bj. j in they-th layer:

zhj&X):—p’\/X,z)(Wij-XZ) Zj-i >2> 7

dz (12

Depending on the sign of the cy% - X2 function, Bkj is a linear
combination of trigonometric or hyperbolic functions:

B =akj cos pk,M ~7-0 +bkj sin pk,M ~2J-0
pk,j=7W Xk- X2 if wjxk>X2 (13q)

Pk,B j) =akd ch Pk,M ~z~1) + bkJ sh pk,M ~z~I)
pkd =7 X2-wj xk if  2>wjXk (13b)

The values of Xk have to be chosen in such a way that the kernel

function X(X,z,t) and its derivative in direction z should be continuous
through the layer boundaries and satisfy Eq. (6). According to the series
expansion (8) functions Rkj have to satisfy the same conditions. In

consequence of Eq. (sa) at the surface:

kak,l +pk,i bk\ = o (14a)

At they-th layer boundary in consequence of the continuity of $kj :

akJ cos @k ] + bk j sin ®k] - akj+I =0 (14b)
At they-th layer boundary in consequence of the continuity of J- Ry :

~akJ pkj sin ®/cj + bk j Pkj cos ®k] - bkj+I Pkj+l =0 (140)
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At the lowest layer boundary in consequence of Eq. (sb):

~ak, -1 Pk, n-1sin ®k n-1 - ak n-imcos ¢k, n-1 +

+h, n-1Pk n-1cos ®* n-1- bk -1 Xsin gk n-1=0 (14d)

where;

®f) Pkf?-j Zj-1) Y 1.7 1

Equations (14) are valid in the case of Wj Xk > X2 in every layer, viz.
PkjiKz) is generated by linear combination of sine and cosine functions
(13a). Formulae similar to Eqs. (14) are valid even if function  j(X,z) is
a linear combination of functions that are hyperbolic in one layer or some
layers only (13b). Thus coefficients akj and bkj are determined by the
homogeneous system of linear equations (14). In the case of n layers the
number of equations and unknowns is 2(n-I). It is necessary that the
determinant of the system of equations be zero in order to have a solution
of this system in addition to the solution that is identical with zero. This
can be achieved by choosing Xk properly. Bearing in mind that only the
proximal elements of the main diagonal are not equal to zero, the value of
the determinant can be computed by a relatively simple algorithm. Hereaf-
ter %will be marked with index k occurring in the expansion of Eq. (8)
when it de facto indicates a number for which the system of equations (14)
can be solved. Let us show as an example the determinant of the system of
equations (14) for a four-layer case for every x where condition xwj ~ X2 >Q

is satisfied in every layer:

D{Xx) =

X, pI> o, o, 0, 0,
cosOj, a1, o, 0, 0,

-PAT® p PjCOS«ixl, o, ~po 0, 0,

o, 0, cos<t>2, sin<t>2, o1, 0,

o, o, -p 2sin$>2, P 2COS<i>2, 0, -pa

o, o, o, 0, -P357® 3-Xco5dP3, P3e03d3-X3TP

where:

P ="Xw ~ X2, o @ Z-)Pj
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Now we show the determinant-computing algorithm taking into
account the case of both Eqg. (13a) and Eqg. (13b). Let Djj and DjH j

denote minor determinants. Djj consists of the firsty lines and columns of
D(X,x) but in the case of Dj+l j instead of7-th lines of D(X,x), (/+1)-th lines
will occur. Let p-denote the solution of the system of equations (12) in the
7-th layer for arbitrary % The minor determinants that correspond to the
first layer are:

Dj 2=k sinQj -
d32=XPpIicos(I>i +p\&napl (15a)
Or if Rj(X,z) is generated by hyperbolic functions:
Dj 2=k sh ®1- Pjch ®!
D32=X A i01®1" pishd1 (15b)
Computation of minor determinants belonging to the (/+1)-st layer on the

basis of the minor determinants of the y-th layer is carried out in the
following way:

D 2(j+1), 2(7+]) = b 2, 2 Pj+ 1coad/+1+ D2Hulj BTOY+L

°2(/+D)+1, 2(3+1) =~D 2j,2j Pj+1 SiN<i>7+| + D 2j+1, 2j cos&j+1 (16a)

The same expression when Ry+1(A.2) is a linear combination of hyperbolic
functions follows:

D23 +D, 2(/+1) = D2j,2 Pj+1ch ®7+1 + D 2j+\, 2j sh ®;+1
D 2(/+1)+1, 2(/+1) = D 2j, 2j Pj+1sh dy+1+ D jjru 2y ch d7+1 (16b)

Finally the total determinant based on the minor determinant corresponding
to the (n-2)-nd layer is:

D(X,X) =D 2(n-2), 2(«-2) (~pN-1sin<iV | - Pn-l  cos<IV I) +
+ 0 2(n-2)+, 2(n-2) (Pn-1CO5¢y+-1 “ ~ S™, _j) (17a)

If Bn_j(A,2z) is a linear combination of hyperbolic functions the same
expression will be:
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D(Kx) D2n-2),2(n-2)('I'l sh*»-i Pn\N  O/1-]) +
+D2(n-2)H, 2(n-2) (P,,-l chpnr _~sh o, 1 (17b)

Henceforth if function 8 has only one index then it denotes a function
that is defined in every layer, viz:

BAV) =R*,/M) if Zj-i >2>7j

Let us see whether function $k(X,z) that belongs to any root Xk of
equation D(X,x) =o is generated by sine and cosine functions in at least
one layer, viz. in at least one layer Wj Xk > X2. This is important because it
ensures the existence of a smallest Xb viz. series (8) is actually an infinite

sum in only one direction and the first term of the series will be determinant
for late times. Assume that contrary to our statement $k{X,z) is a linear

combination of hyperbolic functions in every layer which means that Egs.
(15b), (16b) and (17b) are valid when determinant D(X,x) is computed. As
0j< 0, 222<0 and 232>0 follow from Eq. (15b). Taking ®y+1<0 into

account it results from Eq. (16b) that this property is hereditary from layer
to layer, viz. DJ 2< 0 and D2y+1 2> 0 if O<j< n-1. Finally taking it into
consideration that ®,, 1< 0, 2)(X,%)> 0 is also true according to (17b), which

means that equation D(X,x) =0 has no root. In consequence a function
fik(X,z) belonging to any Xk root °f the equation is a linear combination of

sine and cosine functions in at least one layer.
The computation of kernel function X(X,z,t) has to be started with the
determination of roots Xk °f equation DCk,x) =o, which is the most crucial

part of the process. A numerical method is required that makes it unnec-
essary to compute determinant D(X,x) too many times in which case one
of the advantages of the method, viz. the speed, could be lost. With the
knowledge of Xk we have to compute values Pkj in Eqg. (13), then to solve
the linear system of equations (14). Since function ak j{t) Eq. (11) contains
a constant that will be determined later, constant bk x can be chosen to
equal 1in the system of equations (14) and ak j can be expressed by Eg.
(14a). Knowing cikj-i and bkj 1 Egs. (14b) and (14c) make it possible to
determine akj and bkj. Constants ck can be determined by applying
condition (7) after substituting formula (s8) into (7) with t=0.

[e0]

£ KP*(") =er (18)
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Formally, Eq. (18) is the series expansion of function e” in term of
functions *X,z). Before determining constants ck on this basis we have to

prove the orthogonality of functions PA(Xr). For a given layered model the
definition of the scalar product defined in interval (zn_i, o) in the space of
continuously differentiable functions can be given as:

n-17-1
<f8=£ J1/z)g(z) Wdz (19)

i-1 7z

For the computation of the scalar product of functions (A,z) and
Rfr.,z) (Eq. 19) belonging to different roots Xk and Xi °f equation
D(X,x) = o let us take the integral that is valid for the ¥-th layer:

jy
\] [3* w*) Pl;/X,z) wj dz =
2 (20)

> 1 -1\
1

Xk- X dzh 3 Aj NJdzhj

Integral (20) can be obtained by partial integration by considering
differential equation (9) relating to function 3* j. During the computation

of scalar product (19), as integrals (20) corresponding to the layers are
summed up, terms Rt(X,z) and p Rt(X,z) that belong to inner layer bound-

aries will cancel out because of the continuity. However terms correspon-
ding to the surface and to the lowest layer boundary will cancel out owing
to boundary conditions (6). Thus the system of functions R”X,z) is orthog-

onal to the scalar product definied by formula (19). As R*(X,z) is only
orthogonal but not orthonormal, normalization is required to compute

expansion coefficients ck.
< >
3
>
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When we compute the numerator of fraction (21) only the term that
corresponds to the surface will not cancel out when integrals are summed

up.

n-1 Z-1 2 %

<ey Rk>=£ Je te BkjiKz) wj dz = (22)
3 X

Calculation of the denominator of (21) is a little more complicated but
as in this case there are integrals of analytical functions and those can be
computed by partial integration there is no need for numerical integration.

Tables I and 11 contain values of kernel function X(X,z,t) for different
time values that were computed by the finite difference method and by
formula (8).

time X(X.2.t)
finite difference series expansion
method

0.15020E-04 0.506120E-07 0.466440E-07
0.18399E-04 0.456334E-07 0.433343E-07
0.2214E-04 0.414997E-07 0.402167E-07
0.26659E-04 0.377440E-07 0.370948E-07
0.32391E-4 0.34207 1E-07 0.339257E-07
0.39050E-04 0.310262E-07 0.309217E-07
0.47310E-04 0.281279E-07 0.280964E-07
0.57072E-04 0.255988E-07 0.255910E-07
0.68712E-04 0.234067E-07 023405 LE07
0.82980E-04 0.215164E-07 0.215161E-07
0.99876E-04 0.200088E-07 0.200087E-07
0.12015E-03 0.188494E-07 0.188494E-07
0.14456E-03 0.180045E-07 0.180046E-07
0.17384E-03 0.174167E-07 0.174168€E-07
0.20914E-03 0.170042E-07 0.170043€E-07
0.25156E-03 0.166867E-07 0.166871E-07
Q3000CEG 0.164108E-07 0.16411307

Table /. Computational results of kernel function X(X,z,t) by finite difference method (second
column) and by formula (8) (third column). Parameters: pi=10 fim, p2=100 fim, p3=°° fim,
di=50 m, di=50 m, X =0.001
I. tablazat. Az X{X,zj) magfliggvény szamitasa a véges differencidk modszerével (2. oszlop) és a
(8) képlettel (3. oszlop). Paraméterek: pi=10 fim, p2=100 fim, p3=°° fim, r/i=50 m, dz=50 m,
X=0.001
Tabn. |. PacueT agpoBoii dyHKunn X(X,z,t) METOAOM KOHEUHbIX pasHocTen (cTonbew 2) 1 no
dopmyne (8) (cTonGey, 3). MapameTpbl: pi=10 omm, P2=KO omm, p3= omm, N=6 m, d2=50 m,
X=0.001
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It can be seen that for early times the results given by the two methods are
different while for late times the difference between the two columns is less
than 0.1%. Computations were made by taking into account the first three
terms of series expansion (8). The running time applying equation (8) is at
least two orders less than in the case of the finite difference method. Taking
into consideration that vkj =W xk and numbers Xk form an ascending
monotone series keeping to an infinite limit, from Eq. (11) it can be seen
that for late times it is enough to compute only some of the first terms of
series (8). Namely according to the effect of the exponential function
further terms of the series are several orders less.

time XX D
finite difference series expansion
method

0.15020E-04 0.133314-07 012271 IE-07
0.18399E-04 0.111302E-07 0.104967E-07

[ 0.22154E-04 0.929339E-08 0.893233E-08
0.26659E-04 0.766964E-08 0.748458E-08
0.32291E-04 0.623251E-08 0.615204E-08
0.39050E-04 0.505931E-08 0.502986E-08
0.47310804 0.411569E-08 0.410739E-08
0.57072E-04 0.339869E-08 0.339722E-08
0.68712E4 0.285418E-08 0.285443E-08
0.82980E-04 0.24341 IE-08 0.243465E-08
0.99876E-04 0.212551E-08 0.212607E-08

; 0.12015E-03 0.190150E-08 0.190205E-08
0.14456E-03 0.174634E-08 0.174690E-08
0.17384E-03 0.164559E-08 0.164618E-08
0.20914E-03 0.158266E-08 0.158331E-08
0.25156E-03 0.154206E-08 0.154277E-08
Q30 EG 0.151244E-08 0.151324E-08

Table Il. Computational results of kernel function X(Xj,t) by finite difference method (second
column) and by formula (8) (third column). Parameters: pi=100 fim, p2=10 fim, p3=0° fim,
di=50 m, <72=50 m, X=0.001
Il. tablazat. Az X(Xj,t) magfliggvény szamitasa a véges differencidk médszerével (2. oszlop) és
a (8) képlettel (3. oszlop). Paraméterek: pi=100 fim, p2=10 fim, p3=°° fim, di=50 m, dz=50 m,
X=0.001
Tabn. Il. PacueT sigpoBoit dhyHKUMM X[X,z,t) MeTOAOM KOHEUHbIX pasHocTeli(cTonbey 2) 1 no
dopmyne (8) (cTonbeu, 3). MapameTpbl: pi=100 omm, p2=kO omm, p3=°° omm , di=50 m,
~2=50 m, X=0.001



Fast computing oftransient electromagneticfield... 171

4. Computing of the vertical component of the magnetic field
strength at the midpoint of a circular induction loop

In consequence of the definition of vector potential (2) in the case of
electric dipole:

Applying this to generate integral Ax of Eq. (4) we get the vertical
component of the magnetic field strength:

00

H3t) =48 L £IFX) XX(X2) dX

For a circular transmitter loop of radius r and with the receiver in the
centre of the circle:

Hz{t) =4~-"Ji{Xr) XX{X" t)dX
lo

Let us substitute its series form (Eq. 8) for kernel function X(X,z,t):

Xk

(23)
-1

As in practice the time derivative of the magnetic field strength is
commonly measured let us derive equation (23) in terms of time and let us
put the value given by formula (21) in the place of ck:

HE Vitkryke, 2 PRL TS 24
dt HED - 2wy DT KOKE x con g © Mai X (24)

Thus transient curves measured by a central induction loop (CIL) array
can be calculated by formula (24). We would mention that if we apply
kernel function X(X,z,t), that can be obtained by formula (8), the transient
field of a vertical magnetic field can be calculated, too. The integral that
contains the Bessel function can be computed by filtering [ANDERSON
1979]. In Table IIl. we show the comparison of field values computed by
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different methods for a three-layered model. Henceforth we denote by ns
the number of terms that will be taken into account from series (8). The
second column of the table contains (d Hz(t) /dt ) values computed by the

time H/dt apparert dH/dt apparent
resistivity resistivity
0.89000E-04 -0.22504E+01 66.086 -0.18666E+01 75.449
0.11204E-03 -0.1634E+01 55.917 -0.14925E+01 59.449
0.14106E-03 -0.11949E+01 47120 -0.11521F+01 48351
0.17758E-03 -0.86452E+00 39976 -0.86540E+00 40.242
0.22356E-03 -0.61163+00 A1 -0.61191E+00 34432
0.28144E-03 -0.41838E+H00 30371 -0.41966E+00 30.306
0.35432E-03 -0.2751E+0 27510 -0.27602E+00 27.447
0.44606E-03 -0.17535E+00 25.627 -0.17406E+00 25573
0.56155E-03 -0.10498E+00 24.545 -0.10526E+00 24.499
0.70695E-03 -0.60949E-01 24.153 -0.61099E-01 24.113
0.89000E-03 -0.34005E-01 24.3%4 -0.34081 E01 24.357
0.11204E-02 -0.18264F-01 25253 -0.18299E-01 25220
0.14106E-02 -0.94625E-02 26.760 -0.94779E-02 26.730
0.17758E-02 -0.47401E-02 28.980 -0.47463E-02 28.955
0.22356E-02 -0.23014E-02 32028 -0.23041E-02 32.002
0.28144E-02 -0.10859E-02 36.057 -0.10872E-02 36.027
0.35432E-02 -0.49945E-03 41.274 -0.50012E-03 41.237
0.44606E-02 -0.22459E-03 47.947 -0.22489E-03 47.904
0.56155E-02 -0.99026E-04 56421 -0.99134E-04 56.379
0.70695E-02 -0.42929E-04 67.133 -0.42952E-04 67.110

Table I1l. Comparison of (d H/,t) /dt ) values computed by the spectral technique (second
column) and by formula (24) (fourth column). Layer parameters: n=3, pi=100 flm, p2 =10 flm,
P3=00 £2m, d [=50 m, 02=50 m
I1l. tablazat. Spektral médszerrel (2. oszlop) és a (24) képlettel (4. oszlop) szamitott (g 114t) /dt)
értékek dsszehasonlitasa. A rétegparaméterek: n=3, pi=100 i2m, P2=10 fim, p3=°° fim, di=50 m,
2=0m
Tabn. 11l. CpaBHeHue 3HauveHuid (6 HA) /dt), nonydyeHHbIX cneKTpanbHbIM CNOCO6GOM
(cTtonb6ey 2) n no hopmyne (24) (ctonbey 4). MapameTpbl: N=3, pi=100 oMM, p2=10 oMM,
p3=°° oMM, di=50 m, d2=50 m

spectral method and in the fourth column values computed by formula (24)
in case of ns=1 are. At early times there is a little deviation but from the
fourth time value it is less than 0.5 %. The speed of computation is one
order greater than that of spectral technique. If u5>l then the accuracy
improves even for early times, but it proportionally increases the running
time. The third and fifth columns of Table Ill. contain apparent resistivity
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values near (d/ dt) Hz values. In Fig. 1 a comparison can be made between

results computed by ns=I, 2 and 4 and by the spectral technique. For early
times the apparent resistivity curve corresponding to ns=1 is above the
resistivity value of the first layer (30 fim). The curve o/ns=4 is almost equal
to the curve computed by the spectral technique. In the time interval
corresponding to the measuring range of the transient equipment the
applicability and values ns of the described method depend on the layer
parameters. For thick and conductive layers only the greater values of ns
can give adequate results whereas in the case of thin and non-conductive
layers even ns=1 gives an accurate result. If the layer parameters are such
that in the major part of the measuring interval even with ns=4 we cannot
get an acceptable result then it is only worth applying the spectral technique.
Fig. 2 shows what restriction it means that the described computation
method works only in the case of a non-conductive basement. The com-
puted apparent resistivity curves of a three-layered model are drawn on
each other and the resistivity of the basement changes (500 Qm, 1000 fim,

Pa

Fig. 1. Transient curves computed by spectral technique (lowest curve) and on the basis of
formula (24). Layer parameters: n=3, pi=30 fim, P2=100 fim, p3=°° fim, di=200 m, di =600 m,
r=50 m. The curves from top to bottom were computed by taking into account terms 1, 2 and 4 of

series (24)

1 abra. Spektral modszerrel (legalsé gorbe) és a (24) képlet alapjan szamitott tranziens gorbék.
A rétegparaméterek: n=3, pi=30 fim, p2=100 fim, p3=°° fim, zii=200 m, di =600 m, r =50 m. A
kilonb6z6 gorbék felulrdl lefelé a (24) sor 1, 2, illetve 4 tagjanak figyelembevételével késziltek

Puc.l. KpuBble nepexofHOro npotecca, Nosy4yeHHble CNEKTPanbHbIM CNOCO6OM 1 NO
thopmyne (24). MapameTpbl cnoes: N=3, pi=30 OMM, p2=100 OMM, p3=°° OMM, ¢=200 M,
d2=600 M, r= 50 M. Pa3Hble KpVBble MoflyYeHbl Npu ydeTe 1, 2 1 4-0ro YneHa Gopmynbl (24)
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Fig. 2. Curves computed by spectral technique to demonstrate the effect of a non-conductive
basement. Layer parameters: n=3, pi=30 m, p2=100 Sim, p3=500, 1000, 2000 and °° Sim,
di=200 m, d2=600m
2. abra. Spektral médszerrel szamitott tranziens gorbék a rosszul vezetd aljzat hatdsanak a
szemléltetésére. A rétegparaméterek: n-3, pi=30 Sim, p2=100 Sim, p3=500, 1000, 2000
és °° Sim, di =200 m, d2=600m
Puc.2. KpuBble nepexofHOro npouecca, pacinTaHHble CNeKTpasibHbIM Cnocobom, Ans
UNNIOCTPaL MK BAVAHUS M0XONPOBOAALLEro dyHAaMeHTa. MapameTpbl cnoes: M=3,
p1=30 omm, p2=100 omm, p3=500, 1000, 2000 u °° omM, di=200 m, d2=600 m

2000 Qm and non-conductive basement). For the given model deviations
between the curves even for late times are small.

Conclusions

Formula (23) makes it possible to compute transient curves faster than
till now, which essentially makes it quicker to interpret measured curves
by curve fitting. Though the applicability of the method is restricted by
assuming a non-conductive basement, and that for certain models it is
inaccurate for early times, for most of the models that occur in practice it
can be applied. One of the possible procedures of interpretation is to apply
this computational method at the beginning, and when we only have to fit
that part of the curve that belongs to early times we can change to the curve
computation spectral technique.
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RETEGZETT FELTER FELSZINEN KIALAKULO TRANZIENS
ELEKTROMAGNESES TER GYORS SZAMITASA

PRACSER Erné

Az id6tartomanybeli elektromagneses terek spektral médszerrel, azaz a frekvencia-
tartomanybeli értékekre alkalmazott inverz Fourier transzformaélttal, vagy a Maxwell
egyenletek idétartomanybeli megoldasaval szamithatok. Az utobbi elven alapuld, aréteg-
zett féltér esetére érvényes és a teljes id6tartomanyban pontos szamitasok altalaban
id6igényesek. Ennek az az oka, hogy a tranziens teret meghatarozé képletek levezetésekor
olyan parcialis differencialegyenlet is fellép, amelynek a megoldasa nem allithat6 eld
analitikus flggvények segitsegével. A parcialis differencialegyenletek numerikus megol-
désa viszont rendkivil idGigényes. Ezzel szemben a spektral médszerrel térténd szamita-
sok soran a frekvenciatartomanyban felmeruld differencidlegyenlet megoldasa
kifejezhetd analitikus fliggvényekkel. Abban az esetben azonban, amikor nem toreksziink
a teljes id6tartomanyban pontos megoldasra, az id6tartoméanyban fellépé parcialis diffe-
rencialegyenlet megoldasa is el6allithato analitikus fliggvények segitségevei. Egy ilyen
esetet ismertet a cikk, amely szigetel§ aljzat esetére érvényes és a késoi id6kre pontos,
aszimptotikus megoldason alapuk
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BbICTPOE BbIYNC/IEHWUE S/IEKTPOMATHUTHOI O MOJA
MEPEXOAHOIO NMPOLEECCA HA NMOBEPXHOCTW CNIONCTOIO PA3PE3A

OpHé NMPAYEP

JNeKTPOMarHUTHbIE MOMA BO BPEMEHHOW 061acTM MOryT 6biTb paccuuTaHbl
CneKTpanbHbIM CNOCO60M, — TO €CTb NpM MOMOLM- 06paTHOro npeobpa3oBaHus
dypbe, NPUMEHEHHOTO ANA BENUYUH 3afjlaHHbIX B YAaCTOTHON 06M1acTu, UM MNyTem
peweHnsa ypaBHeHuii MakcBenna. Crnocobbl pacyeToB, OCHOBAHHbIE Ha MOCNELHEM
npuHLUMNe, NpUMeHsieMble A8 CMOWCTOrO MOYMNpOCTPaHCTBA M TOYHbIE BO BCEM
fnanasoHe BpeMEHM, KakK MpasBuio, TpebytT MHOr0 MALWHHOrO BpPEMEHU. 3TO
CBf3aHO C TeM, YTO NpW BbIBEAEHWM POPMYS, ONpefenstolnx nose NepexofHoro
npouecca, UMeeTcsa U Takoe 4yacTHOe AuddepeHuuMansHOe ypaBHEHMe, peLleHue
KOTOPOTrO0 HENb3s HANTK C MOMOLLBI0 aHAMTUYECKUX (DYHKLNIA, @ YNCNOBOE peLleHne
TakWX YpaBHeHWi aBnseTca Tpygoemkum. Haob6opoT, guddepeHumnanscHble
ypaBHEHUS, BO3HUKaKOWMe MpU peLleHnM 3agavynm B 4YaCTOTHOW 06/1acTh, MOXHO
BblpaXaTb aHAMTUUYECKUMUN YHKLMSMU. Ecnin He TpebyeTcs TOUHOE peLleHue BO
BCeli BpPEMeHHON o6nactn, To M AuddepeHuManbHble ypaBHEHWUS, 3afaHHble BO
BPEMEHHOW 06nacTu, MOryT pellatbCs Npu NOMOLWM aHANUTUYECKUX (YHKLUIA. B
CTaTbe U3naraeTcs TakoW cnyyaid, KOrga Npu Haauumm yHAaMeHTa-n3onaropa ans
MO34HUX BPEMEH MOAYYMM TOUYHOE pELUEHMEe acCUMMTOTUYECKMM CMOCO6OM.
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A PERCOLATION MODEL FOR THE PERMEABILITY OF
KAOLINITE-BEARING SANDSTONES

Gabor KORVIN*

After abriefreview of recent theories on the permeability of porous rocks, and of the
rudiments of percolation theory, I shall develop a new model for the permeability of shaly
sandstones containing discrete particle (kaohnite) clays. The experimentally round de-
crease in permeability for sufficiently high clay contents and low but non-zero porosities
will be recognized as a percolation phenomenon, due to the blocking of a critical fraction
of throats between the pore by kaohnite particles.

The main result is an expression for permeability (Egs. 26a-f) in terms of grain size,
porositv and kaohnite volume fraction. The expression contains a percolation factor

P-Pc>Xwhich is identified with the divergence of the tortuosity near the percolation
threshold. The percolation exponent PEX is simply connected to the fractal dimension of
the tortuous fluid path.

The model was applied to compute the permeability of 229 kaolinite-bearing
sandstone samples from Jurassic to Early Cretaceous fluvial and lacustrine reservoirs of
the Eromanga Basin, South Australia. The coordination number of the approximating
discrete percolation lattice and the percolation exponent were determined by computerised
optimum search. There were no other adjustable parameters.

Fair agreement was found between the measured and computed permeabilities over
more than 7 orders of magnitudes. Different percolation exponents were found for
different lithologies: 0 for high permeability fine sand; 1.5-2 for coarse sand and siltstone;
3-5.5 for medium sand and 4.5-5.5 for low permeability (k < 100 md) fine sand.

Keywords: percolation, sandstone, permeability, fractals, models, kaolinite
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1. Historical introduction and problem discussion

1.1 Previous work on the permeability ofshaly sandstones

The permeability of porous rocks can be expressed [(w aish, B race
1984] as:

K= (1)

where K is permeability, As/V is the surface area per unit volume, T is
tortuosity of the flow path and the constant b is equal to 2 for circular tubes
and equal to 3 for cracks. An equivalent expression is:

K HYD 1
k ===----+ —
b T2 2)

where R”yd % the hydraulic radius, defined as the ratio of the pore volume
to the wetted area. By definition [p u11ien 1979], a porous material has a
permeability of 1 darcy if a pressure difference of 1 atm produces a flow
rate of 1 cm3sec of fluid with 1 cP viscosity through a cube having sides
1cm in length. It is easy to check that 1darcy =0.987 pm2, that is, if we
express R™yd in Eqg. (2) in mm and K in millidarcies, the equation becomes:

k [md\ = (RHYD ¢ J_ 109 3

The tortuosity in Egs. (1-3) is between 2-4 in clean sands [vOoLARO-
vicH et al. 1968], its role has generally been neglected in permeability
studies. Equation (2) correctly describes the empirical fact (MARTIN,
HAMILTON 1981] that permeability generally increases with increasing
porosity. To find the grain-size dependence of permeability, assume spher-
ical grains of radius r. Then a volume V of rock of porosity ® will contain

4 r3T V{\ -
N=kK@-0): ' 3Vl o)
47371

grains of total surface area:

As=Napn=>YT-9)

r
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That is, by Eq. (1) the permability can be expected to increase with the
square of grain-size [Martin, Hamitton 1981], or using a similar argu-
ment, with the square of the pore size [serra 1984].

It has recently been realized that the permeability of clay-bearing
sandstones cannot be described by simple equations like (1) or (2) in a way
universally valid for different values of clay content and for all clay
morphologies. Any theoretical model attempting to describe fluid flow in
shaly sands must conform with the following experimental facts:

a) The permeability of shaly sandstones rapidly decreases which increas-
ing clay content and becomes almost zero (even for @ > 0) if the clay
content is greater than about 15 % (HANIN [1951] cited in [EREMEN-
KO 1968]. DENSON et al. [1968] also found that kaolinite clays in
amounts of above 16 « reduce the permeability of sands with
grainsize 0.3 mm + 0.18 mm SD to practically zero.).

b) The relation between porosity and permeability depends on clay
morphology. AMAEFULE et al. [1988] found different trends in the
permeability versus porosity crossplots for reservoir sands, depend-
ing on whether the dominant clay minerals were of the ‘pore bridging’
(illite), “‘pore lining’ (chlorite) or ‘discrete particle’ (kaolonite) type
[Neashaivi 1977].

c) The net confining pressure has a much larger effect on permeability
than on porosity [AMAEFULE et al. 1988], the pressure sensitivity is
strongly correlated with clay content [AMAEFULE et al. 1988] and is
different for the various clay mineralogies [AMAEFULE et al. 1988].

As by Eq. (1) permeability is inversely proportional to the square of
the internal surface-to-volume ratio of the rock, it is reasonable to assume
that in shaly samples this ratio is affected, or even dominated, by the
enormous specific surface of the clay particles [GOODE, SEN 1988, MICHA-
ELS, LIN 1954]. (Van OLPHEN, FRIPIAT [1979] quote 46 m2g specific
surface for montmorrilonite, 8-13 m2g for kaolinite, 100 m2g for illite.)
Since there is a well-established empirical correlation between the cation
exchange capacity (CEC, and the specific surface of clays [PATCHETT
1975, STEWARD, BURCK 1986], GOODE, SEN [1988] have recently ex-
pressed the volume-to-surface ratio in Eg. (1) in terms of CEC. They
deduced an expression:

Q2
k~ Co"1 @)
~&v

where C is an unknown constant, Qv is charge per unit pore volume
(computed from the measured values of CEC as:

_ Q4>
“EC T ki -] ©
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ps being grain density), £2+is the surface charge density of clay, m is the

(electric) tortuosity, determined by conductivity measurements [SEN et. al
1988].

Equation (4) is based on the assumption that the specific surface of the
sand/clay composite is dominated by the surface areas of the clay particles.
In Darcy’s Law [DULLIEN 1979], however, we are only concerned with
that part of the internal surface which actually becomes wetted. In case of
pore lining (chlorite) or discrete particle (kaolinite) clays (using the classi-
fication of NEASHAM [1977]) only a small fraction of the total clay surface
will be exposed to fluid flow and only in the case of pore bridging clays
(illite) will most of the clay surface be wetted. Another problem with Eq. (4)
is that it cannot explain the observed pressure sensitivity of the permeability
of shaly sands. Because of the well-known experimental pressure depen-
dence of porosity [HEDBERG 1926], the Goode-Sen model [GOODE, SEN
1988] (Egs. 4 and 5) predicts a continuous decrease in permeability with
increasing pressure and increasing clay content, rather than an abrupt
disappearance of permeability at certain pressure and clay percentages.

To explain these discontinuous permeability changes we should have
recourse to the Percolation Theory of Statistical Physics [DULLIEN 1979,
ESSAM 1972, ZIMAN 1979, EFROS 1986].

1.2 Basic concepts ofpercolation theory

Historically, the very first published problem in percolation theory was
a question related to the design of impermeable gas masks. It was raised by
S. R. Broadbent — in abstract mathematical form — at a Symposium of
the Royal Statistical Society on Monte Carlo Methods [BROADBENT 1954,
HAMMERSLEY 1983]. At that time (1954) Broadbent was working at the
British Coal Utilization Research Association on the design of gas masks
for use in coal mines. The masks contained porous carbon granules into
which the gas could penetrate. Broadbent found that if the pores were large
enough and sufficiently well connected, the gas could permeate the interior
of the granules; but if the pores were too small or inadequately connected,
the gas would not get beyond the granules’ surface. There was a critical
porosity and pore interconnectedness, above which the mask worked well
and below which it was ineffective. Thresholds of this sort are typical of
percolation processes.

The basic result of percolation theory is represented in Fig. 1 (after
ZALLEN [1983]). In the (bond-) percolation problem we assume that a
fraction |I-p (0o <p < 1) ofthe bonds ofa regular grid are randomly cut and
a fraction p are left uncut. Then there exists a critical fraction pc (called
percolation threshold) such that there is no continuous connection along
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Fig. 1. Randomly cut network as example for
percolation (after ZALLEN [1983])

1 abra. Példa a perkoléciéra: négyzetracs
véletlenszer(en elvagott élekkel. (Zaixen [1983]
nyoman)

Puc.l. Mpumep nepkonsauuun: KBagpaTHas
peLLeTKa Co CnyyaiiHO MepeceyeHHbI rpaHAMM
(no zarren [1983])

the bonds of the network between the opposite faces forp <pc, and there
exists a connection with probability 1 forp >pc.

For the 2-dimensional square lattice (Fig. 1) the percolation threshold
is 0.5. In the more general case the percolation threshold depends on the
dimensionality of the network, d, and on its coordination number Z (where
the coordination number is the average number of bonds connected to any
node of the network), but it is independent of the detailed structure of the
network. Table / (from ZIMAN [1979]) lists coordination numbers and

Network

Honeycomb

Square

Triangular

Tetrahedral (diamond)
Simple Cubic

Body Centered Cubic
Face Centered Cubic
Hexagonal Close Packing

Dimension  Coordination Pc
d number
4
2 3 0.6527
2 4 0.5
2 6 0.3473
2 4 0.39
3 6 0.25
3 8 0.18
3 12 0.12
3 12 0.12

Table I. Bond percolation tresholds
I. tAblazat. El-perkolacios kiiszobértékek
Tabn. |. MoporoBble 3HaUYeHUs1 FpaHeBol NepPKONSALMN
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percolation thresholds for some common networks. It was first observed
by VYSSOTSKY et al. [1961] that the percolation thresholds of Table |
conform quite closely to the simple empirical rule:

<6)

For a 3-dimensional network ——= 1.5, that is percolation only

occurs if there are on the average more than 1.5 links to any node.
Close to the percolation threshold (p >pc) the nodes which are con-

nected with each other by continuous paths form large clusters of average
size Ccalled the correlation distance. The correlation distance diverges for

P - Pcas:
K~ (P~ Pcy* (7)

(see FISCH, Harris [1978]). For 3-dimensional networks we have [FISCH,
Harris 1978]:

v =0.83 (8)
independently of the coordination number. Obviously, the percolation
between two opposite nodes of a cluster, a distance C apart, takes place

along tortuous zig-zag paths. Near the percolation threshold the length
L(C) of a typical zig-zag path will grow as a power of C

L(G)~Ga for p~*pctp>pc (©)
or using Egs. (7 and 8):

Ufy ~(p - pcyV for p-*pctp>pc (10)
where, for 3-dimensional lattices B = va =0.83 a. As the correlation length
C is the natural length scale in percolation problems, we shall follow

RITZENBERGER, COHEN [1984] and define the tortuosity T of the percola-
tion path as:

T= =caml=(p-pcT0S3@a~I)=(p-pc)~y (11)

The exponents describing the length and tortuosity of the paths are
compiled in Table 11 for different percolation models.



Definition of the
path

Correlation
length C

Minimum path

Conductive path

Self-avoiding
random walk on
uncut bonds

Brownian mo-

tion in 3-D

Brownian walk
on a df-dimen-
sional fractal

Brownian walk
on a 3-D dimen-
sional fractal

a in

1.3
1.35

1.7

=2 df
a3

4.5
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i Bin R Yon
L-'C L~(p-pc) P T-ip-pcf*

0.83 0

1.08 0.25

1.12 0.29

1.41 0.58

1.66 0.83
0.83 0.83(a-)

3.74 2.91

Table Il. Percolation exponents

Ref.*

a

b,c
d

C
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Note

3-D percolation

3-D percolation

3-D percolation-
conduction

3-D percolation

a=(3/2)dfis called
the ‘Alexander-
Orbach conjec-
ture’ [Stanley
1986]

The pore space of
certain sandstones
forms an almost 3-
dimensional frac-
tal fWONG 19881

AREFERENCES: a—HSCH HARRIS 1978; b—Ritzenberger, Cohen 1984; c—STANLEY
1986; d—LUBENSKY 1977; e—Le GUILLOU, ZINNWJUSTIN 1977; f—MOSOLOV, DINARYEV 1987

Il. tablazat. Perkolaciés hatvanykitevék
(*HIVATKOZAS: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley
1986; d—LUBENSKY 1977; e—Le GUILLOU, Zinn; f—MOSOLOV, Dinaryev 1987

Tabn. 1l. MepKoNAUNOHHBbIE CTeNeHN
(*NUTEPATYPA: a— Fisch, Harris 1978; b—Ritzenberger, Cohen 1984; c—Stanley
1986; d—LUBENSKY 1977; e—LE Guillou, Zinn; f—MOSOLOV, DINARYEV 1987

The exponent . in Eqg. (9) has asimple physical meaning [RITZENBER-
GER, COHEN 1984]: for distances™ smaller than G a is the fractal dimension
[MANDELBROOT 1982, KORVIN 1992] of the fluid paths between two

nodes x apart.
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1.3 Percolation models ofrock permeability

The pore structure of a sedimentary rock can be converted to a discrete
lattice model by letting the pores correspond to nodes and the throats to
bonds. The coordination number of the pore system is defined as the
average number of throats which connect each pore, it is a measure of
connectivity of the network of pores [DULLIEN 1979, WARDLAW,
McKELLAR 1981] and can be determined experimentally by serial section-
ing [DULLIEN 1979]. Recent theoretical work in continuum percolation
[ELAM et al. 1984, HALPERIN et al. 1985] has proved the general applica-
bility of discrete lattice models in simulating continuous problems, though
the percolation transport exponents for conductivity and permeability have
been found larger than their discrete lattice counterparts [HALPERIN et al.
1985].

Early application of percolation theory centred around qualitative
problems of oil recovery [DULLIEN 1979] and mercury porosimetry
[WARDLAW, McKELLAR 1981]. Recent, quantitative results are reviewed
by Thompson etal. [1987] and Wong [1988]. In 1985 Halperin et al.
[1985] at the Harvard University introduced a ‘Swiss cheese’ permeability
model in which the holes play the role of sand grains and the cheese is the
flowing water. They found that if we make more and more holes there is a
critical fraction of cheese ®@c~0.03-0.04 at which electric conductivity

vanishes as (® - dc)rand hydraulic permeability vanishes as (® - ®c)e,
with t=2.4 and e=4.4. In an important paper KATZ, THOMPSON [1986] of
Exxon Production Research, Houston, assumed that only throats wider than
a given characteristic length Ic can significantly contribute to permeability
and then applied percolation arguments to derive permeability in the form:

k=R 'mx P (max) " P ('QJ? (12)

with B = 1/32; for tthey simply took the percolation conductivity exponent
[FISCH, Harris 1978] t=1.9. In Eq. (12) p(l) means the probability that a
throat is wider than /; Icis a critical width such that the throats wider than
Icstill form a connected net across the rock; Ima,,is another size parameter.
The critical width Ic can be experimentally determined using mercury
intrusion [Katz, Thompson 1986].

In the present study I shall develop a percolation-theoretical model for
the permeability of kaolinite-bearing sandstones from oil reservoirs of the
Eromanga Basin, South Australia. I shall prove that there is a percolation
threshold at some critical kaolinite content, and that the tortuosity of the
flow path (figuring in Eg. 2) diverges at the percolation threshold as
described in Eqg. (11).

The main result is contained in Egs. (26a-f), which is formally similar
to the KATZ, THOMPSON [1986] equation (12), but the power-like disap-
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pearance of permeability at the percolation threshold is attributed here to
the divergence of tortuosity.

The results are only applicable to ‘discrete particle’ [NEASHAM 1977]
clay morphologies (as kaolinite). Possible extensions to pore lining and
pore bridging [NEASHAM 1977] clays will be mentioned at the end of the

paper.

2. Materials and methods

2.1 Previous studies oferomanga basin petrophysics
[G ravestock, Alexander 1986, 1988,1989]

The Eromanga Basin, Australia’s largest onshore hydrocarbon prov-
ince, covers an area approximately 1,000,000 sq km, within which up to
3,000 m of Jurassic to Late Cretaceous sediments are preserved. The
sequence consists of a lower suite of continental deposits which uncon-
formably overlie deeper Palaeozoic basins or older metamorphic and
igneous rocks, and an upper suite of transgressive marine sediments which
in turn are overlain by thick paralic to continental strata. Numerous oil and
gas accumulations have been discovered in the lower suite over the past 10
years.
In 1985, the South Australian Department of Mines and Energy
commenced a study of the petrophysics of Eromanga Basin reservoirs.
Funding for the project was provided by the Commonwealth Department
of Primary Industries and Energy (NERRDDC Project 820). Cores from
18 wells were selected for analysis (Fig. 2, Table I1l) and 638 cylindrical

EROMANGA BASIN

Fig. 2. Location map of the study area
2. abra. A kutatési tertlet sematikus térképe
Puc.2. KapTta-cxema yyacTka

STUDY AREA

0 2000
KILOMETRES
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core plugs were cut from lithologies ranging from coarse sandstones to
mudrocks. Petrophysical analyses were carried out by the Australian Min-
eral Development Laboratories (AMDEL Ltd., Adelaide, South Australia).

Number of samples

Mid-core
depth (M) porosity and ~ Grain den- XRD Electrical
permeability sity and CEC properties

1207.5 31 9 4 4
1 1209.8 26 14 ,

1243.0 7 3 1 2

1247.7 29 11 4 4

1434.6 65 28 4 7

1448.4 26 10 5

1495.5 14 8 :

1505.2 42 14 4

1564.2 16 8 3 2
1 15712 22 1 3

1587.2 21 10 : 2
I 1608.1 35 12 4 4

1635.2 16 7 1

1682.7 35 10 4

1693.9 92 37 6 12

1797.7 49 10 5 :

1843.9 61 20 3 9

1878.5 22 9 : 4

2166.2 7 3 : :

2663.1 22 12 4 2
Total 638 246 47 60

Table Ill. Summary of petrophysical measurements
The results are tabulated in Gravestock, Alexander [1988]

Il. tablazat. A kézetfizikai mérések Gsszesitése
Gravestock, Alexander [1988]

Tabn. 11l. O630p M3MepeHUii HU3NYECKUX CBOWCTB
Gravestock, Alexander [1988]
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All plugs were cut, trimmed, and measured for effective porosity by
helium injection and horizontal permeablility to nitrogen (not Klinkenberg
corrected) at overburden pressure.

Absolute grain density and cation exchange capacity (CEC) were
determined on 246 plugs. Forty-seven samples were subject to X-ray
diffraction analysis to find the distribution of the bulk mineralogy and the
mineralogy of the <2 pm fraction. Sixty samples were submitted for
electrical properties determination, using simulated formation brines,
twenty-one of these had repeat measurements of conductivity in NaCl
brines of differing salinity. Results are tabulated in GRAVESTOCK,
ALEXANDER [1988]. Five grain size categories were selected by visual
examination: coarse-, medium- and fine sandstone, siltstone and mudrock.
Fine sandstone samples were further sub-divided into two sets: those with
permeability of 100 md or more, and those with less than 100 md perme-
ability.

2. 2 Petrophysical properties

The petrophysical properties relevant to this paper are summarised in
Figs. 3-8.

Figure 3 shows the porosity distribution for the selected visual grain
size categories. In spite of the considerable overlap between the porosity
ranges there is a clear decreasing trend in average porosity with decreasing
grain size. A similar trend has been observed for the Permian reservoir rocks
ofthe Cooper Basin, underlying the Eromanga Basin [MARTIN, HAMILTON
1981, SCHULZ-ROJAHN, PHILLIPS 1989]. When unconsolidated marine
sediments are considered the grainsize—porosity relation is just the oppo-
site (that is, the smaller the grain size the higher the porosity [HAMILTON
1972]), we assume that the trend shown by Figure 3 is due to the differences
in compaction and diagenesis acting on sediments of different grain size.

The permeability vs. porosity cross plots (Fig. 4) show completely
different patterns in the different visual grain-size ranges. The cross plot
for ‘fine sands’ (shown twice in Fig. 4) reveals a dual character correspond-
ing to the high permeability (k >100 md) and low permeability (k <100 md)
categories. GRAVESTOCK, ALEXANDER [1986] emphasised that two poro-
sity-permeability trends were apparent. They later [GRAVESTOCK, ALE-
XANDER 1988] provided empirical equations for each trend.

Semi-quantitative X-ray diffraction data for 47 samples are summa-
rised in Fig. 5, which shows the distribution of the bulk mineralogy and of
the <2 pm fraction as function of the visual grain size of the host facies for
each sample. The bulk mineralogy is quartz dominated whereas the clay
size fraction is chiefly kaolinite, other minerals being relatively minor. The
<2 pm fraction rarely exceeded 20 percent by weight of the bulk sample.
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Fig. 3. Porosity distribution by visual grain-size [from GRAVESTOCK, ALEXANDER 1988]

3. &bra. A porozitas eloszlasa kiilénb6zd szemcseméretek esetében [Gravestock, Alexander
1988]
Puc.3. PacnpefeneHrie NOpUCTOCTM MPY Pa3/IMUHbIX pasMepax 3epeH [Gravestock,
Alexander 1988]
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MNOftMALIfCO)
FINE SANDSTONE MEDIUM SANDSTONE COARSE SANDSTONE

log (md)

Fig. 4. Porosity—permeability trends by visual grain-size [from Gravestock, Alexander
1988]
4. dabra. Porozitds—perméabilités trendek kiillénb6z6 szemcseméretek esetében [ Gravestock,
Alexander 1988]
Puc. 4. TpeHAbl NOPUCTOCTU—FAPOHULLAEMOCTU NPU Pa3NINYHbIX pasMepax 3epeH
[Gravestock, Alexander, 1988]
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Fig. 5. Distribution of bulk and < 2 fim mineralogy determined by semi-quantitative X-ray
diffraction, as a function of visual grain-size of the host facies [from Gravestock, ALEXANDER
1988]

5. abra. A teljes minta, ill. a < 2 gm frakcid, fél-kvantitativ réntgen-diffrakcidval meghatarozott
asvanytartalom eloszlasa, kiilénbdzd szemcseméretli hordozokbzetek esetében [Gravestock,
Alexander 1988]

Puc.5. PacnpegeneHne MUHepanbHOro cocTaBa Mo/HOM NPo6bl U pPaKLUM MeHblle 2 MKM,
onpefenieHHOro MoayKoNUYeCTBEHHbLIM PEHTreH-AMPPaKLMOHHbIM CNOCO6GOM Anst

BMelLatoLL el nopoabl ¢ pasinyHbiM pasmepom sepeH [Gravestock, Alexander 1988]
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Clay minerals of relatively low electrical activity were indicated from
CEC measurements of 246 samples whose values range from less than 1.0
to 10 meq /100 g, which is the typical range of kaolinite (Table 1V).

Name CEC meq/100 g Ref*
Kaolinites 3-15 a
4.9 (mean) b
3-25 c

Ulites 10-40 a, ¢
26.6 (mean) b

20-30

Chlorite 10-40 a,c

Smectite 80-150 a, c
Montmorillonite 100-250 d
82.5 b

Table IV. Cation exchange capacity of clay minerals
(*REFERENCES: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)
IV. tablazat. Agyagéasvanyok kation csere kapacitasa
(“ HIVATKOZAS: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—EDMUNDSON, Raymer
1979; d—Patchett 1975)
Tabn. IV. EMKOCTb 06MeHa KaTMOHOB FIMHUCTbIX MUHEPasnoB
(‘ TNTEPATYPA: a—Grim 1968; b—Van Olphen, Fripiat 1979; c—Edmundson, Raymer
1979; d—Patchett 1975)

According to literature, there is a good overall correlation between
CEC and the specific surface of clays [PATCHETT 1975 , STEWARD and
BURCK 1986]. In the present case the dominant clay mineral is presumed
to be kaolinite which has a distinct narrow range of CEC values (Table IV).
Figure 6 shows the correlation between CEC and weight percent of the
< 2 pm fraction for 27 samples. The relationship can be approximated by
the empirical equation

X =0.021 CEC (13)

where CEC is in meq /100 g, A is the weight proportion of the clay size
(< 2 pm) fraction, determined from semiquantitative XRD [GRAVESTOCK,
ALEXANDER 1988]. I shall assume that in the Eromanga Basin samples the
greatest part of the clay size fraction actually consists of clay minerals (as
found in other parts of the world [KUKAL, HILL 1986]) and that it is
predominantly kaolinite as indicated by the CEC and XRD data. Also, as
there is only a slight difference between the densities of quartz
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Fig. 6. Correlation between cation exchange capacity (CEC) and weight percent (X) of the
< 2 pm fraction. Equation of the straight line is X =0.021 CEC. The Xvalues were determined
[by Gravestock, Alexander 1988] from semiquantitative XRD

6. dbra. Korrelacio a kation csere kapacitas (CEC) és a < 2 pm frakcio stlyaranya (X) kozétt. A

regresszios egyenes egyenlete X = 0.021 CEC. A Xértékek meghatarozas [Gravestock,
ALEXANDER 1988] fél-kvantitativ rontgendiffrakcion alapult

Puc.6. Koppensiuns mexay eMKocTblo o6mMeHa kKaTuoHoB (CEC) n BecoBoro cogepxxaHus (X)
(hpakumy MeHblUe 2 MKM. YpaBHeHne nuHum perpeccun X =0.021 CEC. OnpegeneHue
BE/IMYNHbI X 0CHOBAHO Ha AaHHbIX NOMYKONNUYNECTBEHHOTO PEHTreH-4UPaKLMOHHOT0

cnocoba [Gravestock, Alexander 1988]

[SERRA 1984] and kaolinite [GRIM 1968], | shall identify the Xin Eq. (13)
with the volume fraction of kaolinite.

Previous studies of GRAVESTOCK, ALEXANDER [1988] have already
indicated that CEC values can be used to judge reservoir quality: good
reservoir sandstones (k >100 md) have CEC values less than 3.0 meq /100 g
whereas fine grained, shaly sediments with fair to nil reservoir quality have
higher CEC % (Fig. 7). The main task of the next section will be to develop

this empirical observation into a physical theory of the permeability of
kaolinite bearing sandstones.
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Fig. 7. Cation exchange capacity distribution with visual grain-size (A); and CAP and RES trend
distribution with CEC (B) (CAP=caprock, RES“reservoir, sc=clean sand, sm=medium sand,
sf=clean fine sand, sf*=shaly fine sand, si=siltstone, mu=mudstone) [from GRAVESTOCK
Alexander 1988]

7. dbra. Kation csere kapacitas (CEC) eloszlasa kilénboz6 szemcseméretekre (A); és a fed6kbzet
ill. tarolokézet trendek eloszlasa kiilénbézé CEC értékekre (B). (CAP=fed6kézet,
RES=tarolékézet, sc=tiszta homokkd, sm=kdzepes szemcseméretli homokkd, sf“finomszemcsés
tiszta homokkd, sf*=agyagos finomszemcsés homokkd, si=homokliszt, mu=agyagpala).
[Gravestock, Alexander 1988]

Puvc. 7. PacnpegeneHne emkocTu o6meHa KaTuoHoB (CEC) ansi pasHbix pasmepoB 3epeH (A) u
pacnpefeneHne TPeHA0B MOKPbIBAKOLWMX 1 BMeLLaloLWMX 06pa3oBaHnii Npu pasHbIX
3HauveHuax CEC (B). (CAP “nokpbiBawlyne obpasoBaHus, EE8=BMeLLaloLLe NOpoabl,
sc=4HCTbie necyaHUKN, sm=cpefjHe3epHUCTble NecHaHUKN, 3 =MesIKO3ePHUCTbIe YNCTbIe
necyaHmKu, S5M*=TIMHUCTbIE MeIKO3ePHUCTbIe NnecyaHWKW, si=nedaHbie Unbl, TU=TNNHUCTbIE
cnaHupl). [Gravestock, Alexander 1988]
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3. The percolation model

3.1 Theoretical derivation

In order to describe the permeability of the Eromanga Basin reservoir
sandstones I start out from the formula [WALSH, BRACE 1984]:

(rhyd t™"7)2

K [rad = MR o D" ieg (©)

and express the hydraulic radius R"yd ar|d tortuosity T in terms of grain
radius (r), porosity (®) and kaolinite content (X).

As we assume cylindrical tubes, b is taken as 2 [WALSH, BRACE
1984]. In a simplified rock model where the <2 pm fraction consists of
kaolinite, a volume VOof the rock will consist of:

W=ko(1-®)(1-X) quartz (14a)
V2=V0(1-®)\ kaolinite (14b)
VI =Vo® pore (14c)

It is assumed that the volume fraction \ of kaolinite can be expressed
in terms of CEC by the empirical equation (13). If the average radius of a
quartz grain is r, the total quartz volume Vj contains

e (-e)(-x)

43 r3 7t
surface of quartz grains is:

grains, that is in a volume VO of rock the total

31q(1- @) (1- A)
Rtot, quartz N ~ T2 K (15)

If (in thought) we remove all clay particles, an increased space
V2 +V3=Vq[(1 - ®) X+ ®] will be available for fluid flow.

As a cylinder of length h and radius R has a volume V =R2nh and
surface area (without the bases) 5 =2 Rnh, thatisR = (2 V)/S; we find from
Egs. (14 and 15) that the space V2 + V3 can be considered as a very long
cylinder of average radius:

2(Y2+f3) 2 d+(1- D)A

(16)
r2= S[atquatz =3 1-P)(1- X"
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If we put back again the kaolinite particles the radius of the cylinder
will be reduced to rh rl <r2because kaolinite sticks to the walls. As all the
pore space is contained within the long cylinder of radius r, and all the clay
particles are dispersed within the ring rx <r <r2we can write:

n_ ®V
[OK+(1-D)XW]

that is

r.©«,/"«.*(r-o)x 'rz27? @
where we have introduced the notation

® "3
P [®+(1-®)FA] (V2+\3) (18a)

Obviously, 0 <p <1;p has a simple physical meaning: it is the ratio
of open pore space to the total space filled by pores or clays. We shall also
need the proportion of clay in this space, it is

M |-0) 2
I ~[® +(1-DH]  (V2+V3) (18b)

As in Darcy’s Law [DULLIEN 1979] the hydraulic radius R”"yd is
defined as the flow cross sectional area divided by the wetted perimeter, in
Eq. (3) we shall use

fjn g
Tt 2r,« ' 2 (,9)

If we assume a constant tortuosity and substitute Egs. (16-19) into
Eqg. (2) we find that for any given kaolinite volume fraction X the perme-
ability would tend to zero as a power of ® and that it is impossible to have
zero permeability for finite (non zero) porosities. To be able to explain the
experimental data (viz. the very low or zero permeabilities above a certain
clay content, see Fig. 7) I shall transform the continuous Darcy flow to a
lattice percolation problem. Let us make the pores of the rock correspond
to the nodes of a discrete lattice, throats will correspond to the bonds (Fig. 8,
where the symbolic ‘current’ represents hydraulic flow). If a given throat
is completely blocked by kaolinite the corresponding bond will be consid-
ered as ‘cut’ otherwise it is ‘uncut’, independently of the actual radius of
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Fig. 8. Fluid transfer through kaolinite-bearing sandstone (a) and the corresponding lattice
percolation model (b). Nodes correspond to pores, uncut bonds to open throats, cut bonds to
throats blocked by kaolinite particles. The symbolic ‘current’ can be an arbitrary transfer process

8. abra. Folyadék-aramlas kaolinit-tartalm(i homokkdévein keresztil (a), és a megfelel6 diszkrét
perkolaciés model (b). A pérusoknak csomépont, nyilt toroknak elvagatlan él, a kaolinit
részecskék altal eltorlaszolt toroknak elvagott él felel meg. A szimbolikus “a4ram” tetszéleges
atviteli folyamat lehet

Prc.8. Murpauus XnaKocTu Yepes KaoSMHUT-COAepXKallnii NecyaHuK (a) 1 oTBevaroLas ei
AUCKPEeTHas NepKonsiuMoHHast Mogens (b). Mopam cOOTBETCTBYET TOUKA, OTKPbITbIM
ropfioBMHaM - HenepecevyeHHasi rpaHb, a 3aKpPbITbIM FOPMOBMHAM- NepeceveHHast rpaHb.
CUMBONNYECKOMY TOKY MOXEeT 0TBeuaTb /1060i npoLecc nepeHoca

the throat. The coordination number Z of the network depends on the
original packing of the quartz grains and on subsequent compaction and
diagenesis history. As the number of long-, concavo-convex and sutured
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contacts between grains increases with depth and age of the rock [TAYLOR
1950, SMALLEY 1967], the coordination number Z will generally decrease
with increasing compaction (note the missing bond in Fig. sb between
nodes A and F, because of the concavo-convex contact between the
adjacent grains). Generally, Z ranges between 1and e for sandstones. Using
the empirical rule [VYSSOTSKY et al. 1961]:

d
ZPC:id_ 1) (6)

and assuming a 3-dimensional lattice, the bond percolation threshold
probability becomes

Because kaolinite is distributed as discrete book-like clusters (Fig. sa),
| assume that any given throat connecting adjacent pores is open with
probability p and blocked by kaolinite particles with probability q (Egs.
18a,b). In the equivalent lattice percolation problem (Fig. sb) a fraction q
of the bonds are randomly cut, and a fractionp =1 - g are left intact.

By the definition of the percolation threshold, the fluid cannot flow
through the sample for p <pcand percolation only starts for p >pc. Gen-
erally, the fluid particles will follow complicated zig-zag paths, the closer
isp topc, the greater will be the length L(x) of a typical flow path between
two nodes, which are in a geometrical sense only a distance x apart.

As it was shown in Section 1.2, for p -» pc the tortuosity tends to

infinity as
T~{p—pcT o83 [‘' 4 (11)

that is — of the permeability equation (2) or (3) will tend to zero as

\={p-polMla~i] 21

In Egs. (11 and 21) a (a > 1) is the fractal dimension [RITZENBERGER
and COHEN 1984] of the percolation path for small distances. Let us define
a percolation function PERC as

fo ifPAPC
PERC ip) = 22)
CO(p-po)L66[a- I] =CO(p-pcf EX  jfp> Pc
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where PEX (percolation exponent) is defined as
pex = 1.66 (a - 1) (23)

and the normalizing constant Co is chosen as to make PERC(1)=1, thatis

(24)
" (1-PQPEX
We still have to find the constant factor « 0 in the tortuosity function
\ =\ PERC(p) (25)

T To

For clean sandstones X =0, consequently p=1and PERC(1)=1, that is
for - 0we must choose some average tortuosity value which is characteristic
to clean sands in the ambient pressure range of the Eromanga Basin
reservoir rocks [GRAVESTOCK and ALEXANDER 1988] (12,500-
22,000 kPa). According to high-pressure studies [VOLAROVITCH et al.
1968] 10 = 4 seems a reasonable choice.

Combining Egs. (3, 13 and 16-25) the final expression for « becomes

PEX
RHYD cl)10g(P-Pc)PEX ifPAPC
K- b4 a - Pc)
ifp< Pc (26a)
with
b-2 r0-4 (26b)
1O+@L-P)X r-
. 26

RHvD (1) 1_4) (26c)
K =0.021 CEC (26d)

()
P=lo+1-0) XN (26¢)
| 15 (260

p' m~z
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Equation (26) is the main result of the present paper. In the actual
application of these expressions to Eromanga Basin sandstones, the coor-
dination number Z and the percolation exponent PEX were determined
numerically. 1 assumed various Zand PEX values (1<Z <6; 1<PEX <s),
computed the permeabilities kcomp(Z,PEX) for all samples and then minimi-
sed the error

DEV (Z, PEX) =£ [log kmeas - log kcomp(Z, PEX)]2 27)

with respect to Z and PEX.
Note that Eq. (26) has the same form as the Katz-Thompson [1986]
percolation equation

*=P®/Tax Wm-J-Pc)? (12)
even the constant factors are the same ( B =7 in Eqg. (12) and

AT A TE Y(260.

Equation (26) of the present paper, however (which strictly speaking
only applies to kaolinite-bearing sands) has been derived using quite
different arguments, and the percolation factor (p - pc)PEX corresponds to
the normalized reciprocal squared tortuosity of the fluid paths near the
percolation threshold.

3.2 Application to the Eromanga Basin reservoir rocks

I applied the percolation model of Egs. (26a-f) to compute the permea-
bilities of 229 sandstone samples from Eromanga Basin reservoirs. In the
computations | used measured values of porosity and of cation exchange
capacity (CEC), and visual grain size estimations. | assumed that the clay
size (< 2 pm) fraction behaves as kaolinite for all samples, in the sense that
the permeability reduction is due to the blocking of a part of the throats by
discrete clusters of clay particles. The clay volume content was estimated
from the measured CEC using Eq. (13). The percolation parameters Z and
PEX had been numerically optimised for each lithology class. The main
problem in applying Eqgs. (26) to the real data has been that in Eq. (26¢) we
need a numerical value for the mean grain radius r. First, | identified the
gualitative lithologic classes with the Wentworth size classes [PETTIJOHN
et al. 1972] (see Table V) and defined Fas the radius of a particle at the
middle of the corresponding size range, that is r~=0.375; 0.1875; 0.094;
0.094; 0.02 for the respective lithologies 1, 2, 3, 4 and 5 (Table V). As this
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Lithol- Code Name Wentworth  r  No. of ®TT drax Zopt PEXop,

og)é Size Range samp-
Number (mm) les
1 O Coarse 1-0.5 0375 31 011 0.24 25 15
sandstone
2 (o) Medium 0.5-0.25 0188 57 0.06 0.25 25 3.0
sandstone
3 n High Kk 0.25-0.125 0.094 37 0.0 026 - 0
(clean) fine
sandstone
4 Low K 0.25-0.125 0.094 74 0.0 0.26 6.0 5.5
(shaly) fine
sandstone
5 A Silstone 0.0625- 0.02 30 0.0 0.18 6.0 2.0
0.0039

Table V. Summary of data used to construct Figure 9
V tablazat. A 9. abra szerkesztéséhez felhasznalt adatok
Tabn. V. flaHHble, 1CMOMb30BaHHbIE NPK COCTaBNeHUM puc.9.

resulted in an unreasonable large scatter in kcomp, | decided to estimate
graintsize within the allowed range by assuming some smooth dependence
on porosity. After many trials and errors | have found that the best way for
approximating the grain size of any sample of a given lithology i (i=1, 2,...,
5) is to linearly interpolate the logarithm of the grain size between the

Wentworth limits as & varies between the measured bounds ®”~nand

L d - (DT,,,( o
log2r(o =logzrniax(i) + ----—— r— — [log2rmax(i) - log2 rmin(i)]

(i=12,..5 (28)

(The grainsize-porosity dependence of Eq. (28) is in accord with the results
of HAMILTON [1972] for recent marine sediments.)

The optimal coordination number Zopt and percolation exponent
PEXopr were separately determined for each lithology. | computed k from Eqgs.
(26a-r) and Eg. (28) for different values of Z and PEX (2 <Z <s;
1 <PEX <6) and determined Zopt and PEXop, as to minimise the error
between the logarithms of the measured and computed permeabilities.
Using the optimised values of Z and PEX (compiled in Table V) a fair
agreement was obtained between measured and computed permeabilities
over seven orders of magnitude (Fig. 9). The optimisation of expression
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(27) with respect to Z and PEX was not unambiguous: as shown in Fig. 10
for each lithology there are distinct clusters of suboptimal parameters (Z,
PEX) around the optimal (ZopP PEX,,pt) which were found almost as
effective in optimising the error, apart from insignificant digits.

Fig. 9. Crossplot of
measured vs.
computed
perméabilités

9. bra. Meért
permeabilitds —
szamitottt
permeabilitéas crossplot

Puc. 9. Cesisb mexay
N3MEpPEHHO ©
BbIYNCNEHHO

NPOHMLAEMOCTbI0

4. Discussion and conclusions

Using the optimised percolation parameters (Table V) I could keep the
deviation between measured and computed permeabilities within order of
magnitude limits, except for a few fine-grained samples (Fig. 9). The
scatter is due to three factors:

a) visual, rather than quantitative, average grain-size estimation; samp-
les frequently displayed a range of grain sizes of several phi units;

b) difficulties in measuring very low permeabilities; and

c) using an insufficient number of semiquantitative XRD data to express
kaolinite volume content in terms of CEC (Eq. 13).

As by Egs. (26a,c) permeability is proportional to the squared radius of

quartz grains, if grain size is only known qualitatively to belong to a given

Wentworth scale class this involves a scatter of £log1022 = +0.6 in logkcomp.
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Fig. 10. Optimal percolation parameters Z and PEX for the different lithologies (/*coordination
number, ££X=percolation exponent, a “fractal dimension of the tortuous flow path)

10. abra. Optimalis perkolaciés paraméterek killonboz6 litologidkra (Z=koordinaciés szam,
££X=perkolaciés hatvany kitevd, a=a tekervényes folyadékpalya fraktal-dimenzi6ja)

Punc.10. OnTumanbHble NEPKONSALMOHHbIE NapamMeTpbl A5 PasHOro NTOIOrMYeCKOoro
cocTaBa (Z= KOOpAUHALWOHHOE Ymncno, /AXANepKoNALNOHHAA CTeneHb,
a=(hpakKTan-n3mepeHne TpaeKTopun XnULKocTun

The grain-size of ‘siltstone’ can be anywhere between 0.0625-
0.0039 mm which implies a scatter of more than two orders of magnitude
in kc Also, the fine sandstones with k <100 md very likely spread over
2 or 3 Wentworth classes (judged from the range of their permeabilities)
which explains the large scatter for this lithology.

The scatter of fine-grained samples is further increased by the less
reliable measurement of very low permeabilities.

In spite of the known difficulties (m1AN, HiLcHIE 1982] of the mea-
surement of CEC, Gravestock, Altexander [1988] found very good
correlation between CEC values and semiquantitative X-ray diffraction
analysis of the <2 pm size fraction. They were, however ‘cautious of
accepting semiquantitative XRD data on the standard against which to
calibrate wireline logs’ [GRAVEsTock, ALEXANDER 1988, p. 75] and,
obviously, the same criticism applies to the calibration involved by Eq. (13)
of the present paper.

I am convinced that unless one can estimate the grain-size distribution
and sedimentary fabric from digital image analysis of thin sections
[BERRYMAN, Brair 1986] it is hopeless to aim at a better than order of
magnitude agreement between experimental and computed permeabilities
over a large porosity and grainsize range. The same conclusion has been
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drawn by BERRYMAN and BLAIR [1986] when reviewing recent theories
of permeability.

Obviously, the double logarithmic plot of Fig. 9 does not contain those
data for which either one or both of kmeas and kcomp are zero. There were
only five such cases: for a ‘shaly fine sandstone’ sample | had kmeas=0 and
k@mnp=fy there were 3 ‘siltstone’ samples and a ‘shaly fine sandstone’
sample with 0 < kmeas <0.004 md and kcomp- 0.

It is possible to deduce the experimentally known interdependences
between pressure, permeability and shaliness from a mathematical analysis
of Egs. (26a-f). For increasing pressure porosity will exponentially de-
crease [HEDBERG 1926], this leads to a decrease in hydraulic radius
(Eg. 26¢) and in the value ofp (Eqg. 26e). As some of the throats will close
up under pressure, the average coordination number Z will also decrease,
that is the percolation thresholdpcbecomes larger (Eq. 26f). Consequently,
both factors Rhyd and (P ' Pc) Eq. (26a) are decreasing with increasing
pressure whicn leads to an overall permeability decrease with increasing
pressure.

Compaction has a similar effect: besides the reduction of porosity, the
number of long, concavo-convex and sutured contacts between quartz
grains would generally increase with depth and age [TAYLOR 1950, SMAL-
LEY 1967], this reduces the average number of bonds belonging to a node
in the corresponding percolation lattice (Fig. 8b). The coordination number
Z decreases, that is the percolation threshold pc increases (Eq. 26f). The
percolation model also predicts — at least for kaolinite bearing sandstones
— that the permeability reduction with increasing compaction is much
more serious than porosity reduction.

An increase in kaolinite content X slightly reduces the hydraulic radius
(according to Eqgs. 26c¢,e) but its permeability reducing effect is mainly due
to the increased tortuosity described by the percolation function
T2~ (p - per PEX

Figure 10, showing the optimum percolation parameters (Zopt, PEXapt)
for the different lithologies, deserves a closer lock. Observe that there are
two horizontal scales: the percolation exponent PEX and the fractal dimen-
sion of the percolating fluid path a. The two values are related by:
PEX = 1.66 (a - 1) for 3-dimensional percolation [RITZENBERGER,
Cohen 1984]

For “clean fine sands’ (lithology 3, k >100 md) PEX=0, that is there is
no percolation transition and tortuosity is constant independently of ka-
olinite content. ‘Siltstones’ (lith. 5) and ‘shaly fine sand’ (lith. 4,
K <100 md) have a more complicated pore network (Z=5-6) than ‘coarse
sands’ and ‘medium sands’ (liths. 1and 2) where Z=2-4.

The optimal percolation exponent is PEX=0 (no percolation) for ‘clean
fine sands’; PEX=1.5-2.5 for ‘coarse sands’and ‘siltstone’, PEX=3-5.5 for
‘medium sand’ and PEX=4.5-5.5 for ‘shaly fine sand’. This seems to settle
the controversy [THompPsoN et al. 1987] which is the ‘correct’ percolation
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exponent: 1.9 found by KATZ, THOMPSON [1986] or the ‘Swiss cheese’
model percolation exponent 4.4 of Halperin’s group [HALPERIN et al.
1985]. In the present example, ‘siltstones’ and ‘coarse sand’ are closer to
the KATZ and THOMPSON [1986] model, while ‘medium sand’and the low
permeability ‘shaly fine sand’ to the ‘Swiss cheese’ model [ELAM et al.
1984, HALPERIN et al. 1985]. In general, different percolation exponents
can be expected for sands of different grain-size and different clay mor-
phology.

Ibe percolation exponenthas asimple physical meaning [RITZENBER-
GER and COHEN 1984]2 by Eq. (23) PEX is connected to the fractal
dimension of the fluid paths near the percolation threshold.

For the high permeability ‘clean fine sand’, where there is no percola-
tion transition, the fluid path is one-dimensional. For ‘coarse sand’ and
‘siltstones’a « 2 which is the fractal dimension of Brownian motion in the
3-dimensional Euclidian space (Table Il). This corresponds to the model
of MmosoLov, bINARYEV [1987] who assumed the transfer of fluid partic-
les in a porous rock as a random Brownian motion. For ‘medium sands’
a = 1.8-4.3, for ‘shaly Fine sand’ (« <100 md) a =3.7-4.3.

According to the Alexander-Orbach conjecture [STANLEY 1986] the
fractal dimension of a random walk over a dj--dimensional fractal structure
IS:

dw~2/f (29)

Thus, the tortous fluid paths in ‘medium sands’ and low permeability
‘shaly fine sands’ can be visualized as random walks over 1.9-2.9-dimen-
sional and 2.5-2.9-dimensional fractal pore-spaces, respectively. The high
fractal dimensionality of the pore space of these sandstones is in conformity
with published results of small angle neutron scattering experiments
[WONG 1988] where for certain sandstones fractal dimensions as high as
2.96 have been reported.

Equations (26a-f) only apply for sandstones containing ‘discrete par-
ticle’ type clay (NeasHam 1977], for example, kaolinite. The empirical
equation (13) has been established for the Eromanga Basin samples, for
any other region similar calibration should be sought between kaolinite
content and CEC, or between kaolinite content and wireline logs.

The most important finding of the present paper is that the vanishing
permeability at and below the percolation threshold can be ascribed to the
divergence of tortuosity. I expect this conclusion to remain valid for other
clay morphologies, though different percolation models would describe the
effect of pore lining (chlorite) and pore bridging (illite) clays. Mixed clay
morphologies (as e.g. the Permian sandstones from the Cooper Basin,
South Australia, where the illite/kaolinite ratio has been found [scHuLz-
ROJAHN, PHILLIPS 1989] to depend on the grainsize of the host rock) pose
an intriguing, if not intractable, challenge.
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KAOLINIT TARTALMU HOMOKKOVEK PERMEABILITASANAK
PERKOLACIOS MODELLJE

KORVIN Gabor

A pordzus kdzetek permeabilitasara vonatkozo korszer( elképzelések, és a Perkola-
cios Elmélet aIaPJalnak rovid ismertetése utan G4j modellt vezetek le a diszkret agyagré-
szecskeket (kaolinit) tartalmazo agyagos homokkovek permeabilitasara. A kiserletileg
tapasztalt permeabilitas-csokkenés elegendéen nagy agyagtartalom és alacsony, de nem
zérd porozitds esetében perkolacios jelenség, annak kovetkeztében, hogy a kaolinit
_rélfzecskék a porusok kozotti ateresztd nyilasok (“torkok™) kritikus hanyadat eltorlaszol-
ak.
J A f6 eredmény (26a-f egyenletek) a permeabilitas kifejezése a szemcseméret,
porozitas és a kaolinit térfogathanyad segitségével. Szerepel a képeletben a (pc - p)PE*
perkolaciés faktor, amely a tortuozitas divergenciajaként értelmezhet6 a perkolaciés
kiiszob kozelében. A PEX perkolacios hatvanykitevo egyszer(i kapcsolatban all a teker-
vényes folyadékpalya fraktal-dimenziojaval.

A modellt 229 db, jara - korai kréta kor(i, az Eromanga medence (Dél-Ausztralia)
folyami és tavi eredet(i tarol6ibol szadrmazo, kaolinittartalmu homokkd minta permeabili-
tdsanak kiszamitasara alkalmaztam. A kozelit6 diszkrét perkolaciés racs koordinacids-
szamat és a perkolacios hatvanykitevot szamitogépes optimumkereséssel hataroztam meg,

ezenkivil nem volt mas illesztési paraméter,

Jo egyezest kaptam a meért és szamitott permeabilitasok kozott, tobb mint hét
nagysagrenden at. Kilonboz8 perkoléaciés hatvanykitevdk feleltek meg az egyes Etoldgi-
aknak: 0 a nagy permeabilitasu tiszta homokkének, 1,5-2 a durvaszemcsés homokkdének
és a homoklisztnek, 3-5,5 a kdzepes szemcseméret(i homokkdnek és 4,5-5,5 az alacsony
permeabilitasi (k < 100 md) finomszemcsés homokkének.

MEPKONTAUMOHHAA MOJAE/b MPOHULIAEMOCTU
KAOIMHNT-COAEPXALWNX MECYHAHNKOB

Fa6op KOPBUVH

Mocne onucaHWs COBPEMEHHbIX MPeACTaBIEHUA O NPOHULLAEMOCTU MOPUCTbIX
MOPOAL M OCHOB MePKO/ALMOHHOW TeopuMu AaeTcsi HOBas MOAeNb MPOHULLAeMOCTH
FMIMHUCTbIX NECYaHUKOB, COAePXaLLMX AUCKPETHbIE TAMHUCTbIE 3epHa (KaoMHUTA).
YCTaHOBNEHHOE OMbITHbIM MYTEM YMEHbLUEHWe MNPOHMULAEMOCTU NpWU LOCTATOUYHO
BbICOKOM COAEPXXaHWUMW [INHbI U HWU3KON, HO OT/INYatoLLeiics OT Hys, MOPUCTOCTK
ABNAETCSA MepPKONALUOHHLIM SBMEHWEM B CBA3M C TEM, YTO 3€pHa Kao/AMHUTa
3aKpbIBAOT KPUTUYECKYH) YaCTb MEXMOPOBbLIX OTBEPCTUI (FTOP/OBHUH).

[NaBHbIM pe3ynbTaToM paboTbl ABAAKTCA ypaBHeHUs 26a-f, Bbipaxkatoline
3aBMCMMOCTb MPOHMLAEMOCTU OT pas3mepa 3epeH, MOpPUCTOCTU U 0O6BLEMHOIO
cogepXaHus kaonnHuta. B popmyne numeetca nepKonsuMOHHbIA dakTop (pc- p/
KOTOPbIA MOXHO MOHMMAaTb KakK [AUBEPreHUU0 TOPTYOCHOCTU BOGAU3M
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NepKoNAUMOHHOrO nopora. MNepkonsiyMoHHas cTeneHs PEX nMeeT npocTyto CBA3b C
(hpakTan-agnuMeHcHein TpaeKTopumn XNAKOCTHU.

Mogenb Oblna NPUMEHEHA A5 BbIYUCNEHUA NpoHMLaemMocTn 229 o6pasyos
KaoNIMHUT-CoAepiKaLlux nec4aHMKOB IOPCKOro U MefloBOro Bo3pacTta 0TOBPaHHbIX U3
pe3epByapoB PEYHOro M 03epPHOro MpomucxoxaeHus bGacceliHa dpomeHmx (KO>kHasa
ABcTpanus). MepKoNALMOHHASA CTeNeHb U KOOPAUHALUOHHOE YNCI0 NPUBAMKEHHOW
OVCKPETHOM NepKONALUOHHOW peweTKM Oblnn onpefeneHbl KOMMbHOTEPHbLIM
cnoco6om onTuMU3aLUnM (4pyrux napameTpoB COMPSHXKEHUN He ObINO).

Mexay W3MepeHHbIMW W PacYeTHbIMW 3HAYEHUAMW MPOHULAEMOCTHU
HabntofaeTcAd Xopolwee CcOBMafeHWe nNpu AuanasoHe 7 NOPALKOB BefNYMHbI.
MepKonsLuMOHHAA cTeneHb 3aBUCUT OT IMTONOrMYECKOro coctaBa obpasua : 0—an4a
YMCTbIX MNEecYaHWKOB BbLICOKOW nNpoHuuaemocTn, 1.5-2—Ana rpy603epHUCTbIX
necyaHUKoB W necyaHoro wuna, 3-5.5—Ana cpefHe3epHUCTbIX MeCYaHUKOB W
4.5-5.5—AN9 MeNKO3ePHUCTbIX Nec4YaHWKOB HWU3KON MPOHULLAEMOCTMN.
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EXPLORATION OF THE DEVAVANYA-SOUTH BASEMENT
STRUCTURE FOR HYDROCARBONS — A CASE HISTORY

Sandor PAP |, Viktor SOREG and Irén PAP-HASZNOS

In 1987, wildcat Déva-D-1 reaching the basement of fissured, brecciated gneiss,
provided a two-phase mixture of oil and water. As the quantity of oil was relatively
significant (24.7 m3day oil, 7.1 m3day water and 1380 m3day gas through a 3 mm valve),
it was decided to carry out a detailed investigation of the area. In 1989, the Canadian
company Teknica prepared a SEISLOG section from the seismic line crossing Déva-D-1,
to locate another well. This well, drilled in the same ﬁear, reached the crystalline basement
at a higher position, but provided much less oil than the former one. To clarify the situation,
a new seismic network was shot in 1989. By integrating all available geological and
geophysical information, it was found that the strongly tectonized basement consists of
nydrodynamically separated blocks. The boundaries of these blocks are formed by faults
or different nature. Geochemical data suggest that the oils of Déva-D-1 belong to two
different types that do not form a common system. It can even be supposed that the oils
have no reservoir(s), but they migrate along the conduits formed by the fissured, brecciated
zone? ogthe basement. Proposals for further investigation are given although great risk is
envolved.

Keywords: Pannonian Basin, hydrocarbons, crystalline basement, fault zones,
migration, geochemical methods

1. The first phase (1981-82)

At least a decade ago seismic profiles of the neighbouring hydrocarbon
fields of the Békés Basin reached the area, that we now call Dévavanya-
south. The first seismic survey which delineated the structure was the
1981-82 Dévavanya-Korosladany project.

Geofizikai Kutaté Vallalat, Szolnok, Korosi u. 43. H-5000
Manuscript received: 24 July, 1991
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Because it was difficult to follow the surface of the eroded Precambrian
basement in the seismic time sections two contour-maps were constructed,
the more probable one being presented in Fig. 1. Although the tectonic zone
in the northwest was clearly seen in all sections, the other tectonic indica-
tions could not be systematized. Well Déva-D-1was later located on the
slope of the nose-like structure.

2. The second phase (1987-88)

The time sections of the 1981-82 survey were interpreted in 1987 by
seismic stratigraphy in the framework ofan OKGT-USGS contract. In this
study, nine localities of basal turbidites of Early Pannonian age pinching
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out in onlap structure (thickness about 400-500 m) were marked out in the
Békés Basin. The task of well Déva-D-1 was to test one of these onlaps
combined with a nose-like Miocene-Precambrian structure. The Precam-
brian basement was planned to be penetrated for 100 m.

Hydrocarbon indications were observed while drilling in the fissured,
cataclastic granitic biotite gneiss basement, therefore the penetration was
longer than planned (137 m), and three layer tests were carried out. The
results of these tests are presented in Table | and Fig. 2, and some details
are also given:

— Test No. 1was carried out in an open part of the hole. Inflow from

a medium permeability reservoir of seemingly unlimited reserves
was recorded.
— For test No. 2 the layer was opened by perforation under depression.
Yield data and effective thickness suggested higher permeability
than test No. 1

—For test No. 3, the layer was opened similarly to test No. 2.
Simultaneously with the production test, logging was carried out,
too. These showed inflow from the 2986-2987 m depth interval as
a mixture of oil and water.

The following temperatures were recorded during test production at
the depth of 2988 m:

— during production 169.7 °C

— 0.5 hours after production stop 168.8 °C

— 3.5 hours after production stop 165.4 °C

— 5.5 hours after production stop  164.0 °C

Temperature data recorded in both wells Déva-D-1and -2 are plotted
in Fig. 3.

After 43 hours of production, the oil yield decreased to 5 % of the initial
value. Gas chromatograph measurements showed similar normal alkane

Fig. 1. Dévavanya-south area. Reflection time contour-map of a horizon chosen close

O to the metamorphic basement (constructed by E. Varga, E. Frindt 1983)
1—seismic line (DvG) of the 1981-82 survey; 2—time contours in ms (datum plane:
+50 m);

3—fault indication; 4—regional fault zone; 5—uwell

1 abra. Dévavanya-dél. A metamorf medencealjzat kozelében kijeldlt szint reflexiés
id6térképe. (Szerkesztette: Varga E., Fridt E. 1983.)
1—1981-82-ben mért DvG jell szeizmikus vonalak; 2—id6észintvonalak ms-ban (tsz.
feletti 50 m-es értékre vonatkoztatva); 3— toréses 6v; 4—regionalis vet§; 5—mélyfaras

Puc.l. YuacTok Dévavanya-tor. KapTa 130XpOoH 0TpaXkatolLero ropusoHTa,
O O0TMeYeHHOro B6/M3N MeTaMop(UUeckoro gyHaameHTa (coctaunu: E. Varga,
E. Frindt 1983)
1—celicMnyeckne npounum (DvG), namepeHHble B 1981-82. rr.; 2—un30XpOHbI B
MCEK, OTHECEHHbIE K YPOBHIO 50 M H.y.M.; 3—30Ha pa3apobneHuns;
4—pervoHasnbHbI pasnom; 5—CcKBaxXnHa
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Fig. 2. Layer test results in the three wells of the study area
1—core and its number; 2—drill stem test and its number; 3—layer test and its
O number; 4—water inflow; 5—oil inflow; 6—gas inflow; 7—no inflow; 8—water
show; 9—oil show; 10—gas show; 11—distillate show; o—oil; g—gas; w—water.
Yields are given in m3day

2. bra. A Dévavanya-déli és a Kérésladany-4 sz. farasok rétegvizsgélati eredményei
1—magfaras és szdma; 2—fardszaras teszteres rétegvizsgalat és szama;
O 3—rétegvizsgalat és szama; 4—vizbedramlas; 5—kdolajbearamlas;
6—foldgazbearamlas; 7—nem adott bearamlast; 8—viznyom; 9—kd&olajnyom;
10—féldgaznyom; 11—paérlatnyom; o—kéolaj; g—fdldgaz; w—viz.
A hozamok m3nap-ban

Puc.2. PesynbTaTbl nccnefoBaHna CnoeB Mo ckBaknHam Dévavanya-tor u
O Korosladany-4
1—K3pHOBOe GypeHne 1 ero HoMep; 2—ccnefjoBaHne cnoes nNo 6yposomy
CHapsafdy TecTepoM M ero Homep; 3—ccnefloBaHne C/I0eB U ero HoMep;
4—npocaymBaHne BOfbl; 5—pocaynBaHue HedTH; 6—npocauymBaHue rasa; 7—HeTt
npocaymBaHus; 8—eneabl Boabl; 9—eneabl HetpTn; 10—enenbl rasa; 11—nefbl
AucTuUNNATa; 0—HedTN; g—Fasa; w—sogbl. [ebutbl B M3/cyT

TEST YIELD  (m3day)
number location oil ges water
3 2963,0-2998,0 at the end of the test 200 884
after flushing 3m3
2 3010,0-3014,0 24,7 1330 71
1 3041,0-3100,0 108 30 108
(by the end of the test 5 %9

Table I. Layer tests in the basement complex of well Déva-D-1
I. tablazat A metamorf medencealjzat vizsgalatanak eredményei a Déva-D-1 fdrasban
Tabn. . PesynbTaThbl UccnefoBaHUA MeTaMoOpP(UUECKOro yHAameHTa B ckBaxuHe Déva-D-1

distribution in tests Nos. 1and 3, while the oil of test No. 2 contained more
light hydrocarbons than the other two. The normal alkane distribution curve
of the oil of test No. 2 shifted towards lower carbon atomic numbers
compared to the other two (see Fig. 4). Analysis of gases, on the other hand,
showed similarity between gases of tests Nos. 2 and 3, and proved that of
test No. 1to be of different origin.

The NaCl content of waters from tests 1and 3 showed similarity, while
that of test No. 2 was different. The complete analyses of waters could not
be compared, because there was no water in test No. 3. The layer pressure
in test No. 2 also proved to be different from the other two (see Fig. 5).

All these data led us to the conclusion that the fluids (or a part of them)
of test No. 2 migrate upwards through a fissure system from the deeper
parts of the metamorphic basement. It could not unambiguously be deter-
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temperature 'C

_2800150 155 180 188 170 175 10
Fig. 3. Temperatures recorded
during layer tests
-2850 . .
Déva-D-2/9 w—uwater inflow; o—oil
V 9D4va-D-2/8 inflow;
-2700
d
e 3. dbra. Rétegvizsgalatok
p 2750- regression line soran mért hémérsékletek
t w—vizbearamlas;
h o—kéolajbedramlas
-2800-
b. Déva- D-1/2 aC
s. Puc. 3. Temnepatypa,
l. -2850- n3mMepeHHas npu
ncenefoBaHumn cnoes
Déva-D-1/1 -V 00 w—fpocayunBaHue Bofbl;
~2900- Déva-D-1/3 Déva-D-113 o—fipocauneaHme HedTy
M
-2950-
e = static temperature
° - temperature during production
-300017

Fig. 4. Normal alkane distribution of oils found in the crystalline basement reservoir of well
Déva-D-1
4. dbra. A Déva-D-1 flréssal feltart metamorfit tarolobél szarmazé kéolajok normal-alkan
eloszlasa
Puc. 4. PacnpeaeneHne HOpManbHOrO asbkaHa HehTM MeTaMOpPghMUUecKOro pesepByapa
BCKPbITOro ckBaxKuHoli Déva-D-1
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pressure MPa

Fig. 5. Static pressures determined in

the crystalline basement during layer

tests in the two wells of Dévavanya
w—water inflow; o—oil inflow;

5. abra. Rétegvizsgalatok soran
meghatarozott statikus nyomasok a
dévavanya-déli farasok altal feltart

metamorfitokban
w—yvizbedramlas; o—kd&olajbearamlas

Puc. 5. CtaTnuyeckoe faBneHue,
onpegeneHHOe Npu UccnefoBaHUM
cnoeB B MeTamopuTax, BCKPbITbIX

CKBaXXMHamu yyacTka Dévavanya-tor
w-—npocaynBaHue BOAbl;
0—npocaymBaHme HeTu

mined how many reservoirs exist in the basement complex. In spite of all
these contradictory data, it was decided to continue exploration.

As the inner structure of the basement seemed to be crucial in solving
these problems, seismic profile Dv-21 was reshot in 1987 using the latest
data acquisition and processing techniques. Reflection characteristics of
the basement (both surface and inner structure) were much better in this
section (Fig. e, for location see Fig. 7) than in the former ones. Two
reflection patterns could be distinguished in the basement: one with low-
frequency strong signals of medium continuity, and one consisting of
poor-energy reflection fragments representing more or less sheared and
fissured blocks. The most important feature is the overthrust plane acting
as a detachment plane for the smaller faults.

A new structural map was constructed (Fig. 7), based on the new
seismic profile (Dv-21), and the reprocessing of the older ones. Although
it seemed most probable that oil and gas accumulation were linked with the
tectonic features it was not possible to determine whether the basement
elevation had a decisive role or not, i.e. whether the next well should be
located towards the top zone of the elevation (point B in Fig. 7) or in the
strike direction (point A in Fig. 7).

3. The third phase (1989-91)

Taking into account all the available data of seismics, well logging,
layer tests and geochemical data, as well as the SEISLOG section produced
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by the Canadian company Teknica, from the data of seismic section Dv-21
it was decided to locate well Déva-D-2 at point B (the SEISLOG method
is described in several publications, its application and results in the
Dévavanya-south area can be found in the interim report of GKV A-7/89).

Well Déva-D-2 was drilled in 1989. It reached the metamorphic
basement complex at a depth of 2801 m (162 m nearer the surface than well
Déva-D-1), and penetrated it for 299 m. Lithologically it was similar to
the biotite gneiss known from Déva-D-1. Five layer tests were carried out
below 2890 m, but pumping provided no more than water. Above this depth
the water showed traces of oil which increased with decreasing depth (see
Fig. 2). The maximum inflow of oil was near the top of the basement in
test No. 9 (between 2815 and 2827 m): 3.3 m3day oil and 25 m3day saline
water with combustible gas. The above data, as well as the next well, Kél-4
(being at an even higher structural position) prove that in this area oil and
gas accumulation are not tied to structural elevation.

To clarify the situation, simultaneously to drilling well Déva-D-2, a
new detailed reflection survey was shot. The structural time contour map
with all relevant data is presented in Fig. 8, the geoseismic section connect-
ing the three wells in Fig. 9. The palaeogeomorphologic dome of approx-
imately NNE-SSW strike, is bounded by structural zones both on the NW
and SE. Between these zones the basement was overthrust NE-warOly by
compression from the south. The imbricated biotite gneiss block moved
upwards along several small inverse fault planes.

The geochemical data are as follows: The normal alkane distribution
of distillation residue over 200 °C of oils of both Déva-south wells is
practically the same (Fig. 10). The quantity of paraffin hydrocarbons, the
maximum of carbon atom distribution, the carbon preference index and the
ratio of pristane/phitane differ but negligibly (Table II). These data suggest
a moderately reducting oil generation environment, and moderate maturity

Fig. 6. A portion of seismic time section Dv-21
*O 1—top of Miocene; 2m—top of Precambrian basement; 3— ‘emphasized’ reflections;
4—regional overthrust; 5—normal fault; 6—overthrust of lower order, limit of
block; 7 — fault planes

6. abra. A Dv-21 szeizmikus szelvény egy szakasza
O 1—miocén tetd; 2—prekambriumi tet§; 3—""kiemelt" reflexi6; 4—regionalis
feltolédasi 6v; 5—tdrés; 6—masodlagos feltolddas, blokk-hatar; 7—tdrési sikok

Puc. 6. MHTepBan celicmnyeckoro npocunsa Dv-21
1—KpoBnsi MUOLLEHOBOTO BO3pacTa; 2—KpoB/s JOKEMBPUINCKOro Bo3pacTa;
3—oTpaxeHue OT NPUNOAHATOrO 6/10Ka; 4—30Ha PErnoHanbHOr0 HaABUra;
O 5—pasnom; 6—BTOPUYHbI/ HaABUr, FrpaHuLa 610KOB; 7—f/I0CKOCTH Pa3oMoB
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5 oDova-D-1 B8 OA.B 7

Fig. 7. Seismic time contour- map of the surface of the crystalline basement (constructed by
B. Szanyi, 1988)
1—seismic lines (DvG) of the 1981-82 survey; 2—seismic line Dv-21 shot in 1987; 3—time
contours in ms (datum plane: +50 m); 4—fault zone or boundary of the presumed overthrust
zone; 5—zone of fractured basement; 6—well; 7—proposed location of well

7. abra. A metamorf medencealjzat felszinének szeizmikus id6térképvazlata. (Szerkesztette:
Szanyi B. 1988)

1— 1981-82-ben mért DvG jel(i szeizmikus vonalak; 2—1987-ben mért Dv-21 jel( szeizmikus
vonal; 3—id6szintvonalak ms-ben (tsz. feletti 50 m-es értékre vonatkoztatva); 4—vet6z6na, vagy
feltételezett ratol6dasi zéna hatara; 5—medencealjzat toredezett zénaja; 6—mélyfaras;
7—tervezett furési variaciok

Puc. 7. Cxema M30XpPOH NMOBEPXHOCTU MeTamMopdPuUUecKoro pyHAaMeHTa TPETUYHOIO
6acceiiHa (cocTaBun: B. SzZANYI 1988. r.)
1l—eeiicmnyeckune npounu (DvG), namepeHHble B 1981-82. rr.; 2—eelicMuyeckuii npodunb
Dv-21, namepeHHblli B 1987. r.; 3—130XPOHbI B MCEK, OTHECEHHbIE K YPOBHIO 50 M H.y.M.;
4—rpaHunLbl Pa3fIoMHON 30HbI WY 30HbI NPeMNoa0raeMoro Hagsura; 5—3oHa pasgpobneHus
B (hyHAaHEHTe TPeTUYHOro bacceiiHa; 6—eKBaXuHa; 7—BapuaHTbl NPOEKTHOW CKBaXXWHbI
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Fig. 8. Seismic time contour-map of the surface of the metamorphic basement (constructed by
A. PRIBUS, B. Szanyi and V. SOREG, 1990)
1—seismic lines of the 1981-82 survey; 2—seismic lines of the 1989 survey; 3—time contours
in ms (datum plane: + 50 m); 4—fault zone; 5—Ilimit of compressional zone; 6—overthrust;
7—prediction of Teknica, based on SEISLOG processing: a) oil, b) gas; 8—well; 9—our
proposals for drilling locations; 10—drilling localities proposed by Teknica

8 abra. A metamorf medencealjzat felszinének szeizmikus id6térképe. (Szerkesztette:
Pribus A., Szanyi B., S6reg V., 1990)
1—1981-82-ben mért részletezd szeizmikus vonalak; 2— 1989-ben mért részletez6 szeizmikus
vonalak; 3—idészintvonalak ms-ben (tsz. feletti 50 m-es értékre vonatkoztatva); 4—vet6zéna;
5—feltételezett kompresszids zéna hatara; 6 —feltolédas; 7—elbrejelzés a Teknica cég szeizlog
feldolgozésa alapjan: a) kdolaj; b) foldgaz; 8—mélyfluras; 9—lehetséges faraspontok; 10—a
Teknika cég altal javasolt furasok

Puc. 8 KapTa 130XpoH NoBepxHOCTU MeTamMOpP(pUUECKOro GpyHAaMeHTa TPETUUHOTO
6acceitHa (coctasunu: A. Pribus, B. Szanyi nV. Séreg,1990. r.)
l—eelicMnyeckne Npounnmn, naMepeHHble B 1981-82. rr.; 2—aeTanbHble celicMMyeckune
npogunun, namepeHHble B 1989. r.; 3—30XpPOHbI MCeK, OTHECEHHbIE K YPOBHIO 50 M H.y.M.;
4—30Ha pasfnoma; 5—rpaHuLbl NpesnoaoraeMoil 30Hbl KOMNpeccuun; 6—Haasur;
7—vHTepnpeTayus no o6paboTke ceiicnor pupmoil TekHMKa : a) HeTb; b) ras;
8—eKBaXKMHa; 9—BapuaHTbl NPOEKTHOM CKBaXWHbI; 10—€KBaXWHbI, PEKOMeH0BaHHbIe
thupmoii TekHUKa
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of hydrocarbons. On the other hand, the normal alkane distribution of crude
oils determined by gas chromatography (Fig. 11) shows that oils of test
No. 2 of well Déva-D-1 and tests Nos. 7 and 8 of well Déva-D-2 have
similar composition: the curves shift towards lower carbon atomic num-
bers. The oils of these three tests contain a higher ratio of lighter
hydrocarbons, consequently their paraffin content is higher than that of
the others (Table III).

Fig. 10. Normal alkane distribution of distillation residues above 200 °C of oils from the
metamorphites of Dévavanya-south area

10. abra. A Dévavanya-déli tertilet metamorfitjaibdl szarmazé kdéolajok 200 °C feletti
desztillaciés maradékainak normal-alkan eloszlasa

Puc. 10. PacnpefeneHne HOPManbHOro afbkaHa 0CTaTKOB AUCTUNNALUN NpU TemnepaType
Bblwe 200 °C HethT 13 meTamopdmToB yyacTka Dévavanya-tor
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Well number Déva-D-1 Déva-D-2
number and location 1 2 3 Ta 8
(m) of test 3041-3100 3010-3014 2963-2993 2815-2827 2815-2859
Cmax 15.00 1400 15.00 14.00 15.00
Pristane 15 130 123 127 132
Phitane
P13 104 101 0.99 0.99 101
OEP 108 0.99 100 101 12
Total paraffin 54.40 54.30 54.80 5450 56.60
CH (weight %9

Table 1. Geochemical data of distillation residues above 200 °C of oils from the
metamorphites of Dévavanya-south area
Il. tAblazat A dévavanya-déli kéolajok 200 °C folotti desztillaciés maradékainak adatai
Tabn. Il. JaHHble aHanM3a 0CTaTKOB AUCTUANALUKN Npy TemnepaType Bbiwe 200 °C HedTH
yyacTka Dévavanya-tor

Fig. I1. Normal alkane distribution of crude oils from the metamorphites of Dévavanya-south area
11. dbra. A Dévavanya-déli tertlet metamorfitjaibél szarmazé kéolajok normal-alkan eloszlasa

Puc. 11. PacnpegeneHne HOpManbHOro anbkaHa He)TU MeTamop(pUTOB yyacTKa
Dévavanya-tor
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Well number Déva-D-1 Déva-D-2
Number and location 1 2 3 Ta 8
(m) of test 3041-3100 3010-3014 2963-2993 2815-2827 2815-2859
Cmax 15.00 14.00 14.00 10.00 12.00
Pristane 15 130 13 127 12
Phitane
cpic21-31 104 100 0.99 0.99 101
OEP 108 0.99 100 101 102
Total paraffin 58.70 45.70 46.80 52.30 52.30
HC (weight %9

Table Ill. Characteristic geochemical data of crude oils of Dévavanya-south area
111. tblazat A dévavanya-déli nyersolajok jellemzé adatai
Tabn. 111. XapakTepHble faHHble HedTU yyacTka Dévavanya-tor

We had recourse to one more possibility: geoelectric direct hydrocar-
bon exploration, which might increase the number of hits. The WEGA-D
electromagnetic system for measuring resistivity/conductivity and polar-
izability, was first developed in Poland and it was improved by cooperation
between GKV and Polish geophysicists [DZWINEL 1979, DZWINEL 1983,
DZWINEL, NAGY 1985, Nagy 1988]. The method is based on the fact that
in the vicinity of hydrocarbon fields some special minerogenesis and rock
alterations occur, giving rise to conductivity and polarizability changes (in
both directions in the case of conductivity, and increase in the case of IP).
For the cluster analysis of data, at least two wells (one productive and one
dry) have to be in the study area. The result of this analysis is a probability
contour map (Fig. 12).

+. Conclusions

In contemplating the causes of the differences in the composition of
oils, several of them seem to be acceptable. They may have been caused
by different migration velocities, or it may be presumed that the oil
migrating upwards from the deep Neogene depressions to the SW along
the overthrust plane, found remnants of previously migrating oils of
different composition and a mixture came into being, or this mixing of
different oils occurred during migration. Nevertheless, oil could only reach
those parts of the reservoir system which were in contact with the overthrust
plane. Therefore even within hydrodynamically distinct blocks no uniform
phase order was formed: oil and water can be found above, below and
side-by-side each other, depending on partial hydrodynamic connection or
separation of fissured, permeable blocks.
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Fig. 12. Probability contour-map of WEGA—D survey
1—probability values in %; 2—existing well; 3—proposed locations for drilling
12. abra. A terllet WEGA-D anomalia képe
1—WEGA-D val6szin(iségértékek %-ban; 2—mélyflras; 3—farasi variaciok
Puc. 12. AHOManunWEGA-D Ha yyacTke
1—3Ha4yeHna seposaTHocTM WEGA-D B npoueHTax; 2—CKBaXuHa; 3—BapnaHTbl NPOEKTHbIX
CKBaXKWH

Clarification of the extremely complex situation is further hindered by
infiltrating fluids from deeper reservoirs during layer tests. In addition to
the above-mentioned differences in pore fluids, some anomalous tempera-
ture (Déva-D-1/3, Fig. 3) and pressure data (Déva-D-2/7, Fig. 5) indicate
such partial connection and separation of blocks. It can even be supposed
that no reservoirs exist, but instead there are migration conduits in the
basement complex, and these provide the inflowing oils in the wells.

In locating further exploration wells, the question is which of the
blocks should be drilled. Those blocks near to the limits of the compres-
sional zone (legend 5 in Fig. 8), are most probably too small to contain
significant pore volume. Based on their SEISLOG processing, Canadian
experts suggested drilling locations for oil in the basement complex and
for gas in the Szalonta Sandstone along seismic section Dv-21 (see Fig. 8).
However well Déva-D-2 did not verify these predictions. The probability
contour lines of the WEGA-D map (Fig. 12) suggest that the most prom-
ising parts of the study area have already been drilled, although no test
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production has been carried out yet. Similarly, 3-D seismics, which may
have contributed to the clarification of the situation, was not yet shot.

For further drilling locations we see three possibilities: (i) West of well
Déva-D-1, inside the probability anomaly ofthe WEGA-D map (point A,
Fig. 12). In spite of the basement being in a lower position than in the
existing well, that block seems to be the biggest (Fig. 8) and once it proved
productive, not to mention the probability high, (ii) NNW of well
Déva-D-1 (point B in Figs. 8 and 12) for testing the second largest block.
This point is the westward projection of Point 2 of Teknica, where the block
seems to be broader, (iii) NE of well Déva-D-2 (point C in Figs. 8 and 12)
with the task of penetrating the overthrust plane which may be the main
migration conduit, containing oil. This is the equivalent of Point 4 of
Teknica. It must be admitted, however, that all three points are high-risk
investments.
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A DEVAVANYA-DELI METAMORF MEDENCEALJZATI SZERKEZET
SZENHIDROGENKUTATASI PROBLEMAI — ESETTANULMANY

PAP Sandor, SOREG Viktor és PAPNE HASZNOS Irén

1987-ben a Déva-D-1 farasban, miutan elérte a repedezett breccsésodott aljzatot,
vizb6l és kdolajbol allo kétfazisi bearamlas kovetkezett be. Mivel a kéolaj mennyisége
viszonylag jelent8s volt (3 mm-es flavokan 24,7 m3nap kdolaj, 7,1 m3Inap viz és 1380
m?naE éghet6 gaz) a terllet tovabbkutatasat hataroztuk el. 1989-ben a kanadai Teknica
cég elkészitette egy, a firason atmend szeizmikus szelvény szeizlog valtozatat egy masik
faras elhelyezése céljabol. A mé% ebben az évben lemélyitett Déva-D-2 firés a meden-
cealjzatot magasabb szerkezeti helyzetben tarta fel, azonban Iényegesen kevesebb kéolajat
adott mint az el6z6 faras. A szerkezeti viszonyok tisztazasara 1989-ben Ujabb szeizmikus
mérésekre keriilt sor. Feldolgozva az 6sszes rendelkezésre allo geoldgiai és geofizikai
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informé&ciot megdllapithatd, hogy az erdsen tektonizélt aljzat egyméastol hidrodinamikai-
lag elkiilonul6 blokkokbol épiil Fel. A blokkok hatarait kiillonb6z0 tipusu vet6zdnak jelolik
ki. Geokémiai elemzések alapjan feltételezhetd, hogy a D éva-D -1flras k6olajbearmlasai
nem egy rendszerhez tartoznak és két kilonboz6 tipust kGolajbol allnak. Felmerul az a
lehet6ség is, hogy a kbolaj nem telepbdl vagy telepekb6l szarmazik, hanem fellazult
részekbdl, tektonikai 6vékbol indulva toredezett zondban migral. Bar a kockazat nagy,
tovabbkutatési javaslatokat nyujtottunk be.

MPOBMTEMbI PA3BEAKW YITNEBOJOPOJOB HA YUYACTKE

DEVAVANYA-IOT C YHIAMEHTOM, COCTOAWMNM U3
METAMOP®UYECKWNX MOPO/A

LWangop MATMM, BukTtop LWEPET, NpeH MATMHE XACHOL

B 1987. r. ckBaxmHa Déva-D-1 gocturna gpyHAameHTa TpeTUUYHOrO 6acceiiHa,
CMIOXEHHOr0 TpewuHoBaTbiMK, Gpek4YnpoBaHHbIMKM nopojamu. [locne 3Toro B
CKB@XXWHY Hayanocb MpocayrBaHue [BYXKOMMOHEHTHOM XWUAKOCTMW, COCTOALWEN U3
BOLbl M HepTU. TaK Kak KONMYecTBO He( TN 0Ka3anoCcb OTHOCUTE/IbHO 3HAYNUTENbHbIM
(vepes conna ¢ guaMeTpoM 3 MM MOMyYeHbl 3a CYTKM 24.7 M He(pTn, 7.1 M BOAbl U
1380 M roptoyero rasa), 6bi10 peweHo Mpogo/HKaTb uccnegosaHue. B 1989. r.
KaHagckKoi (upmMmoi TekHuKa Obln WM3roTOBMAEH BapuaHT CeNlcnor ogHOro u3
CefCMUYECKNX paspes3oB, NPOXOAALLUX Yepe3 3Ty CKBAXMHY, C Lefiblo MPON0XEHUS
LpYroiA.

MpobypeHHas B 3TOM e rogy ckBaxuHa Déva-D-2 Bckpblna ¢yHZaMeHT B
6onee NpUNOAHATOM CTPYKTYPHOM nonoXxeHuu, yem Déva-D-1, ogHako u3
CKBaXXWHbl 6ObII0 NOMYYEHO 3HAYUTENbHO MeHble HeMTW. [Na BbIACHEHUA
CTPYKTYPHbIX COOTHOLWeEHMI B 1989. r. NpoBOAWIUCL HOBble CelicMOpa3BefoUHble
n3mepeHnsa. Mocne 06paboTKy BCell NMeIOLLenCcs reoornYecKoli u reohrnsnyeckon
NH(OpPMaLMN MOXHO YCTaHOBWUTb, UTO CW/IbHO TEKTOHW3WPOBAHHBIA (yHOAMEHT
COCTOMT U3 TMAPOAUHAMUYECKN OTAENAWMUXCA APYr OT apyra 610koB. I'paHuLamm
6/10K0B SABNAOTCA Pa3HOTUMHbIE 30HbI Pa3/ioMoB. 10 AaHHbIM FEOXMMMUYECKMNX
aHanM30B MOXHO YCTaHOBUTb, YTO HEPTb CKBaXKMHbI Déva-D-10THOCUTCA K pa3HbIM
cMcTeMaM M COCTOMT U3 ABYX TWUNOB. VIMeeT MeCcTO W Takoe MpeAnonoXeHue,
COrNacHO KOTOPOMY HepTb NOSTyYeHa He U3 OLHOM0 UAN HECKOMbKUX NOKaNbHbIX Ten,
a MUrpupyet M3 pasgpo6/ieHHbIX TEKTOHW3MPOBAHHbLIX 30H NO TPeLWMHOBATbIM
30HaM. HecmoTps Ha 60/bLLIO PUCK PeKOMeHAYeTCA AabHeliLlee n3yyeHmne yqacTka.
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AMPLITUDE ATTENUATION AND INDUSTRIAL NOISE
ORIGIN IN THE EASTERN ALPS

W. LENHARDT and K. ARIC

A seismic model of the crust is presented, based on data evaluated by the ‘Alpine
Explosion Seismology Group’ (AESG). Information taken from the amplitudes are
denved. It is shown that the amplitude decay in this region can be simulated by introducing
a relatively low quality factor (Q) in the crust.

The resulting Q values appear to be relatively small since they include scattering
effects. Based on two different seismic phases, direct P-wave and Moho reflections, a crustal
model could be divided into an upper and a lower part. The upper crust showed relatively
constant absorption with Q at 6 Hz is about 90. In the lower crust a slight trend could be
observed, starting with <9=350 in the west and increasing to 550 inthe east. Geothermal sources
should be situated in the upper crust due to the lower Q at shotpoint F.

Industrial noise covered the range of signal frequencies. Most of the noise could be
attributed to agricultural machines and appeared to be monochromatic.

Keywords: seismic modeling, crust, quality factor, absorption, noise

1. Introduction

In September 1975 seismic measurements were carried out in Europe-
an cooperation on a long range profile (Alp 75) along the strike of the Alps
between France and Hungary [AESG, Reporter: H. MILLER 1976]. Fig. la
shows the refraction profiles 04 and 05 of ALP 75 with shotpoints D near
Innsbruck, E near Judenburg and F in Hungary and also the main tectonic

* Abteilung Geophysik, Zentralanstalt fur Meteorologie und Geodinamik, Hohe Warte
38, A-1190 Wien

** |Institut fir Meteorologie und Geophysik der Universitat Wien, Hohe Warte 38,
A-1190 Wien
Manuscript received: 28 August, 1989
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units. Some technical data of the ALP 75 shots used in this study are given
in Table I.

Shot Type Elevation No. of Total charge
m charges (TNT), (<9

DL Lake 2250 K] 1500

2 Lake 2250 50 2500

El Lake 2050 0 1500

B Lake 2050 50 2500

Fl Boreholes 200 15 1000

2 Boreholes 200 K7J 2000

F3 Boreholes 200 60 4000

Table I. Description of shot points
/. tdblazat. A robbantépontok leirasa
Tabn. I. OnucaHve ToyeK B3pblBa

Seismic energies were observed up to distances of 500 km with a
MARS 66 recorder [BERCKHEMER 1970]. The equipment has a constant
transfer function starting at 2 Hz. The seismic records were bandpass
filtered from 2 to 30 Hz.

Intensive studies were carried out in seismic modelling based on
traveltimes [MILLER et al. 1977, ARIC et al. 1979]. A seismic model for
the East Alpine region published by ARIC [1981] was adapted and slightly
improved near the shotpoints and at the Moho, to fit the observed ampli-
tudes (Figs, la, Ib). For this purpose a ray tracing program [ARIC et al.
1980] was improved in order to include the computation of theoretical
amplitudes of first onsets and Moho reflections based on

ATheor ="0' ke mkz- ks mka

where
AQ0 amplitude at the shotpoint
ke geometrical spreading
kz  reflection and transmission coefficient
ks effect of free surface
ka absorption
During the computation of theoretical amplitudes and the evaluation
of the recordings, problems of seismic noise were encountered. Therefore,
the second part of this paper deals with the identification and problems
connected with the seismic noise [LENHARDT 1983]. Especially for the
determination of the main signal frequency of the first onset, we found that
noise spectra often covered the frequency range of the signal.
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2. First estimation of quality factor in the crust based on an
empirical law of amplitude decay

The evaluation of first onsets showed a remarkably constant decay of
amplitudes. Therefore, a first estimation of the seismic quality factor Q
[KNOPOFF 1964] based on a simplified crustal model (see Figs. 2 and 3)
was carried out [LENHARDT 1983].

0 50 100 150 200

Fig. 2. First estimation of Q=f(z) from
an amplitude decay of nr18 (km)

2. dbra. A Q=f(z) els6 kozelitése xr18
(km) amplitadécsokkenéssel

Puc. 2. MepBoe npu6nunxeHue

dhyHkumm Q=f(z) npn 3aTyxaHun
amnanTtyg X'18 (km)

Empirically we can approximate the observed amplitude decay by
A(x) =A0x~I8

which should also agree with the theoretical formula including both geo-
metrical spreading and absorption given by

A0
A(X) = s)

X surface distance from shotpoint (km)
a(x) depth-dependent absorption coefficient
S(x) length of ray path (km)
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a is related to Q by

o 2n
T 1-e~2aX

with X wavelength. In a lateral homogenous medium with constant gradi-
ent, the maximum depth of ray penetration is tied to the surface distance of
emergence by

|
\b

2() = )

z(x) maximum depth (km)
vo P-wave velocity at surface (km/s)
b gradient of the vo

hence a(x) as a function of depth can be described by the observation
distance a(x)~a(z). To find a variation of the absorption coefficient with
depth or distance, we can solve the problem iteratively by incrementing the
observation distance x (equivalent to the depth of penetration of the seismic
ray) taking into account the absorption which was computed from the
layers above.

Therefore

-In +2£ 9))/ (xjI* e~2Vy))
ti ti
Si

af

Xj surface distance (km)

S} ray path length in layer i (km)
sj ray path length in layerj (km)
aj absorption coefficient of layer;]

The factor 2 in the summation of the ray paths in the recently computed
layers refers to the down and upgoing ray. By introducing the simple model
for the crust with velocity of

v=\f +k-z\ Vj =6.00 km/s; £=0.04 1/s

z depth (km)
V average P-wave velocity (km/s) from z (km)
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and the initial condition where the first layer has a constant absorption and
velocity, we find the depth dependence of Q. Figure 2 shows the resulting
discrete function Q=f(z) using the dominant frequency of s Hz.

In the upper part of the model we get Q values less than 150. Since the
lower crust should show much higher values (Fig. 3), aray tracing program
was adapted to enable Q to be computed from a crustal model derived from
traveltimes observed in the East Alpine region. By using both of the first
onsets (refracted P-waves) and reflections from the Moho, it was possible
to divide the crust into an upper and a lower layer with constant Q. As a
result of three shotpoints at large distances from each other (distance about
220 km) a slight lateral change in Q becomes apparent (Fig. 3).

It can be stated that the upper crust has an almost constant Q of about
90. ARIC et al. [1980] introduced a low-velocity layer in the upper crust
near to shotpoint E to explain reflection onsets. This thin zone at a depth
between s and 12 km was interpreted by ARIC [1981] as the ‘Schieferhiille’
of the Austroalpine unit (PREY [1980], see Figs, la and Ib). This layer is
also supported by theoretical amplitudes which show their maximum in the
observed range between 60 and 90 km.

The absorption in the lower crust seems to be very much less, hence
the Q-factor is higher. We find Q values of 350 in the western part which
increase to 550 in the east shotpoint F. This result contradicts the usual
concept of low Q — high geothermal gradient. Therefore the source of heat
in Hungary has to be expected in the upper crust [ARIC et al. 1987].

Knowledge of the origin of seismic noise is interesting from several
aspects. First of all the design of a seismic array strongly depends on the
background seismicity. Further, if recorded data are disturbed by unwanted
stationary time series, the design of filters can be optimized by applying a
noise analysis. Practically all unwanted signals and time series are usually
understood as noise. Now we can differentiate between sources of natural
origin and those that are man-made. Whereas emitted time series of natural
sources are extremely broadbanded due to different mechanisms like tides,
wind and natural background seismicity, man-made noise in the near field
due to industry mainly lies between 2 and 50 Hz. Especially in this
frequency range we have to expect signals on the seismic long range
profiles.

The evaluation of industrial noise is determined and limited by am-
plification. Recordings in the near field (10 km) could not be used since
the signal to noise ratio was too high and a filter to remove the noise became
ineffective. Due to the amplification which is chosen for a good evaluation
ofthe first onset, the noise is simply covered by white noise from digitizing.

As a lower level of industrial noise an empirical amplitude of 104 cm/s
was chosen.
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3. Evaluation and identification of seismic noise

As mentioned above only a frequency range from 2 to 30 Hz can be
interpreted. Time intervals of 256 samples equivalent to 2.56 seconds were
analysed by FFT [COOLEY and TUKEY 1965] of each vertical component.
Since the amplitude decay approximately follows an exponential law we
have a short explanation on the distribution of noise amplitudes for the
profiles (Fig. 4).

The amplitudes of the seismic waves which were caused by the charges
fired by ALP 75, were comperable if they were weighted by x1 8 (km). Yet
Fig. 4 shows a signal to noise ratio exceeding 1.0 in about 100 km which
calls for effective filtering in the far field for that charge and geometry of
blasting. At distances up to 100 km first onsets and noise amplitudes can
have similar amplitudes (Fig. 4). It should be mentioned that any kind of
distributed shots (borehole, lake) produced similar signals and the fre-
qguency range always overlapped with that of the noise. A variation of signal

X(km)

Fig. 4. Noise amplitudes on both profiles and their increase due to distance weighting to ensure
that the amplitude of the first onset is constant. The dots are the observed noise amplitudes along
the profiles. The signal has a reference amplitude from 0.1 to 3. Minimum noise amplitude
belongs to MO'4 cm/s
4. dbra. Zaj-amplitidok a szelvényeken és novekedésiik az els6 beérkezések konstans
amplitadoéjat biztositva a tavolsag szerinti stlyozasnak megfeleléen. A pontok az észlelt
zaj-amplitadékat jeldlik. A jel referencia amplitidészintje 0,1-3. A minimalis zaj-amplitddé
MO'4 cm/s-nak felel meg
Puc.4. AMnnnTyga WymMoB No Npoduao 1 ee yBesIMYeHNEe COrNacHoO B3BELUMBAHMWIO NO
paccToAHWIO NPY COXPaHEHWN MOCTOAHCTBA aMNANTYAbl MepBbIX NOCTYMAeHNA. Toukamu
0603HaYeHbl HabMOAeHHbIE aMNANTYAbI WyMa. YPoBeHb aMNANTyfbl ONOPHOr0 cUrHana
0.1-3. MunHuUManbHasa amnauTyga wyma cootTBetTcTByeT 1104 cm/cek
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form by shot geometry and charge on a long-range profile seems to be
impossible due to the absorption of seismic waves in the earth.

Noise interpretation can be carried out only at distances greater than
10 km from the shotpoint. At smaller distances the amplification of the
equipment was usually very low in order to read the amplitudes. Similarly
MEISSNER and STEGENA [1977] (pp. 51-53) observed that a noise level of
104 cm/s limits the radius (10 km) of seismic observations around each
station.

Especially next to the Tauem window (Fig. 3), in absence of any
industry, only 16 2/3 Hz were observed but not completely explained. The
Austrian Railway usually uses this frequency otherwise it should not
influence stations at a distance of more than 10 km (Fig. 5). One feature
which appeared very soon was the strong amplification of low frequency
noise (2-5 Hz) in sedimentary basins as described STEINet al. [1967] and
PLESINGER and WIELAND [1974], in the same range of amplification of
factor 10. Extremely high absorption in sediments is the reason for the loss
of the higher parts of the frequency spectrum and the low frequency parts
of the seismic signature are enhanced due to resonance.

Low frequencies (4-6 Hz) are also produced by industrial organiza-
tions equipped with machines such as saw-mills (Fig. 5) which are very
frequent in the Alpine region. Other industries (coal mining, steel) cover a
frequency range from 2-6 Hz that is precisely the expected spectra from
blasts in the far field. Since the frequency content of the P-wavelet lies
between 5 and 6 Hz for P-waves at distances from 30 to 200 km, mono-
chromatic noise emitted by industry could be eliminated by using filters.

rel.frequency rel.frequency

dominating frequency in cps dominating frequency in cps

Fig. 5. Dominating frequencies of noise and their corresponding sources
5. abra. Dominans zaj-frekvenciak és a hozzajuk tartozé forrasok
Puc.5. loMnHMpyoLLMe 4acToTbl LWyMa U 0TBeYaloL e UM UCTOUYHUKN
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AMPLITUDOCSILLAPODAS ES IPARI ZAJOK EREDETE A
KELETI-ALPOKBAN

W. LENHARDT és K. ARIC

Az “Alpine Explosion Seismology Group” (AESG) altal kiértékelt adatokon alapul6
szeizmikus kéregmodell kertil bemutatasra. Levezetik az amplitiddkbol nyerheté infor-
mécidkat és megmutatjak, hogy az amplitidécsokkenés ezen a teriileten a kéregre vonat-
kozd, viszonylag kicsi Q faktor bevezetésével szimulalhatd.

Az eredmeénykeént kapott Q értékek alacsonynak bizonyultak mivel tartalmazzak a
szOrdédasi hatasokat. Két kiilonbézd szeizmikus fazisnak megfeleléen—direkt P-hullam
és Moho-reflexiok—a kéregmodell egy fels6 és egy also részre oszthatd. A felsd kéreg
viszonylag alland6 abszorpciét mutatott Q=9Q értekkel 6 Hz-nél. Az alsé kéregben egy
enyhe emelkedd tendencia figyelhet6 meg C=350-t61 Q=550-re, nyugatrol kelet felé
haladva. Az F robbantopontnal jelentkezd alacsonyabb Q-nak megfelelGen geotermikus

forras valdszin(i a felsd kéregben.
Az ipari zajok lefedték a jelfrekvenciak tartomanyat. A zajok legnagyobb része
monokromatikusnak bizonyult és mez6gazdasagi berendezéseknek tulajdonithato.

MPNYNHA SATYXAHNA AMNANTY A4 N MPOMBbILWAEHHBLIX LUYMOB B
BOCTOYHbIX ANBIMAX

B. NTEHXAPAT, K. APUK

Moka3blBaeTcA celicMMyeckasd Mofefb 3eMHOW KOpbl, OCHOBaHHaf Ha
WHTepnpeTaunn AaHHbIX, BbINOMHEHHOW (AESG). MpuBoaaTcs AaHHbIe, NOAyYaemble
no amnauTygam, M NoKasbiBAeTCA, YTO 3aTyxaHue amnianTyf Ha y4yacTKe XOpoLlo
CUMYNMpyeTCcs BBefeHWeM (hakTopa Q OTHOCUTENbHO HE6O/MbLION BeNNUYUHbLI, U
OTHECEHHOI K Kope.

MonyyeHHble B pe3ynbTaTe BeNMYMHbI Q OKasanucCb HU3KUMMKU B CBA3N C
BAMAHWEM Aaucnepcun. Mogenb KOpbl, COCTaBjeHHas Mo [BYM pa3HbiM BOHAaM
(npamas P BonHa v oTpaXKeHUs 0T NoBEPXHOCTU MOX0), pasfenseTcsa Ha BEPXHIOO 1
HUXHIOI0 4acTb. BepxHAs Kopa XapaKTepu3yeTcs MOCTOAHCTBOM abcopbumu npu
(?=90 Ha 6 ru. B HWXHel Kope OTMeYaeTcsa TeHAEHUMS cnaboro MoBbIWEHNS
3HavyeHns Q c 3anaga (>=350 Ha BoCTOK Q=550. CornacHoO HM3KMM 3HayYeHusaM Qy
TOUYKM B3pbiBA F B BepxHeli Kope MpeanofioraeTca Hanauume reoTepmMumyeckoro
NCTOYHMKA.

Ovnana3oH 4acTOoT CUrHanoB MepeKkpbIT WYMOM MNPOMbILIIEHHOTO
nponcxoxpaeHus. OCHOBHaf 4acTb LIYMOB OKa3anaCb MOHOXPOMAaTUYHON, W,
no-BUAMMOMY,CBA3aHa C PaboTON CeNbCKOXO03AMCTBEHHOW TEXHUKM.
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