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THE USE OF SYMMETRY IN f-K MIGRATION

Einar MAELAND*

In order to speed up the classical f-k migration of zero-offset marine reflection data, a
symmetrical data-set is artificially constructed, both in space and time. An efficient algorithm
utilizes the discrete cosine transform, so only real variables are required. Since this yields a
twofold decrease in computation time and storage requirements, no extra computer storage or
working space other than the original data space is required. Moreover, since the discrete cosine
transform effectively double the record length, computational artifacts caused by the discrete
Fourier transform will be reduced.
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1. Introduction

The construction of an efficient algorithm for migration of zero-offset data
is an important objective in seismic data processing. Migration by the classical
f-k algorithm as given by Stolt [1978], is much faster than any other method,
e. ¢., the phase-shift method [Gazdag 1978], or the Kirchhoff summation
[Schneider 1978]. In f-k migration, the spectrum is transformed from the
frequency axis to the (vertical) wavenumber axis. To perform this (non-linear)
mapping, some method of interpolation is required. Without any other
information, both the real and the imaginary part of the f-k spectrum have to be
interpolated. With respect to the amplitude and phase spectra, the interpolation
errors of the phase spectrum (phase-errors) can be more troublesome than
amplitude errors. An objective of the present study is to reduce the amount of this
interpolation work.

Migration of zero-offset data is based upon the exploding reflector concept
[Loewenthal et al. 1976]. Based on this assumption, the data is equal to zero
for time t <O. If a function /(i) is causal, i. e., f(t) =0 for t <0, the real and
imaginary parts of the Fourier transform form a Hilbert transform pair [Papoulis
1977]. If, in addition, f(t) is real, the real and imaginary parts of the Fourier
transform are related to the cosine and sine transform of f(t). If the real part of
the Fourier transform is given, the imaginary part can in principle be found, and
this latter part is redundant. Although zero-offset data are not “causal” in the
horizontal space coordinates, it is possible (artificially) to construct symmetrical
data without losing any information from the original data. As a consequence of
this construction, the Fourier transform in wavenumber space will be real and
even. Hence, it is possible to work entirely with a real spectrum, and many
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problems of computer storage and artifacts caused by interpolation of a complex
spectrum can be avoided.

Carter and Frazer [1982] proposed a rapid method for f-k migration of
zero-offset data. They used the fact that the Fourier transform of any real function
is hermitian (conjugate even), which means that the real part of the Fourier
transform is symmetric, while the imaginary part is anti-symmetric. The
consequences are that certain parts of the f-k spectrum (negative frequencies)
need not be stored in the memory of the host computer. Moreover, they also used
a familiar trick such that in order to compute the Fourier transform of two real
functions, f(t) and g(t), say, it is possible to compute the Fourier transform of the
complex function h(t) =/(r) +ig(r). The Fourier transform of/(i) and g(t) are then
the hermitian (conjugate even) and the anti-hermitian (conjugate odd) part,
respectively, of the Fourier transform of h(t). However, if the input data are real
and either even or odd, Cooley et al. [1970] have shown that an even faster
method exists to compute the discrete Fourier transform. Thus, the construction
of symmetric zero-offset data in order to speed up the classical f-k migration
warrants a closer study.

2. Thef-k algorithm

In order not to overburden the present analysis with detail, only the
2-dimensional case will be studied. If the data (pressure) as a function of space
(X) and time (t) are given by P(x, t), imagine that a symmetric function P(x, t) is
constructed according to

P(-x, ) =P(x, -t) =P(-x, -  =P(x, t). @)

Although this may at first sight seem to necessitate a much larger (four
times) memory space than the original space, this is not the case. Let
X, =nAxand tm =mAt, where Ax and At are the (constant) sampling intervals along
the x-axis and i-axis, respectively. A simple way to obtain the f-k spectrum is to
perform- a fast Fourier transform (FFT) column-by-column, and put the
transformed data back into the memory P(xn, aam), where aamis the frequency, then
a FFT row-by-row, and put the transformed data back into the memory
P{kn, am) where kn is the wavenumber. This procedure presupposes a discrete
Fourier transform of a working array fm=_P(x,,rm), say. The procedure is then
repeated in order to compute the discrete Fourier transform in the x-direction.
Without any (symmetry) conditions of the input data, the spectrum will be
complex, so extra memory space is required. However, if a symmetric working
array (fm) is constructed, then the Fourier transform becomes real and symmetric,
and no extra memory in the host computer, beyond the original space P(xn, tm), is
required.
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The Fourier series representation of any (periodic) real and symmetric
function contains only real coefficients, which correspond to the cosine terms of
the series. This result can be extended to the discrete Fourier transform. Consider
a sequence fo(m) of length 2/1/-1 (the odd-length symmetrical cosine transform),
where fo(m) =fmwhen in z 0, and /0(«i) =f mwhen m < 0. The discrete Fourier
transform of this sequence is

/' (K) = i\é)/o (m) exp[-2n\kT / (2N1/-1)], (2)
1M

for |f] SM -1, where L =2M-1 is the total length of the sequence. Since /Qw) is real
and symmetric, this relation reduces to

M-1 3)

a g - I ~fm cos[2nkm/(2M-1)],
m=0

where /" is defined by f0 =/0and/* =2f,, for 1<m sM-1.
It is possible to compute the odd cosine transform with the discrete Fourier
transform algorithm of odd length since

f M-I
FO(K) =j Real| ~ /' cxp[-2ni/;if/(2M-1)]

The same result can be obtained if the sequence fm is extended by M zeros, viz.,
fm =0 for m =M, JI/+1, ..., 2Af-1, and computing the DFT of length -2/1/-1. This
construction yields a causal sequence fm (by definition).

In any application of the discrete Fourier transform, it is necessary to make
a distinction between M even or M odd. The frequency interval is o= 2v/1/r, and
if M is odd, the Nyquist frequency (n/At) is not attained by any
W, =W (W ~ A/-1. On the other hand, if M is even, a sample fMat tMmust be
included, so that L =2M. In this case, however, the Nyquist frequency is attained
when m =+A/. In order to treat this case correctly, a “one-half” weight at the very
last sample is utilized, i. e., Vifst at m =M.

The most common way to compute the 2A/-length (real) discrete Fourier
transform is either to use a 2A/-length complex FFT, or by using a Af-length
complex FIT plus some additional operations. Cooley et al. [1970] have shown
that if the sequence (of length 2M) is either even or odd, a simple procedure can
be used to reduce the actual computation of the discrete Fourier transform to that
of an M/2-length (complex) FFT with some preprocessing and postprocessing. An
implementation of this procedure is given by Rabiner [1979]. This yields a
twofold decrease in storage since only half the real input data need be supplied.
More details on the efficient computation of the discrete cosine transform are
given by Vetterli and Nussbaumer [1984]. Finally, an even more direct
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method is to construct a DFT that works directly on 2-dimensional sampled data,
but this technique will not be discussed.

Computing the real spectrum with the decrease of storage requirements may
be summarized as follows:

Do while nr O until n=N-1
1(0) =P[x(n), Q)]
do while mz 1 until m=M-1
f(m) =P[(x(n),t(m)Y
f(2M-I-m) =f(m)
end do
/00 = DFT
do while 0 until m=M-1
PL(x(n), co(/n)] =f(m)
end do
End do

The procedure is repeated in order to compute the discrete Fourier transform in
the jc-direction.

3. Interpolation

Given the f-k spectrum, for each fixed value of the horizontal wavenumber
(kx), f-k migration is essentially a coordinate transformation from the frequency
axis (co) to the vertical wavenumber axis (kz). In a two-dimensional study, this
can be written @/ c-* kz =/ ¢ *cos (a), where c is the velocity and a is the angle
between the vertical axis and the direction of the plane waves. To perform this
coordinate transformation, a suitable interpolation algorithm has to be used. The
algorithm should not only be fast and simple, but also of high resolution. Carter
and Frazer [1982] used a linear interpolation scheme, but since the f-k spectrum
inevitably becomes periodic in any application of the discrete Fourier transform,
it is more natural to use a periodic interpolation kernel. In this connection it is
appropriate to note that for the construction of the odd symmetrical cosine
transform, the addition of trailing zeros effects an interpolation of the spectrum.
If At is the constant sampling interval, samples are taken at tm =mAt where
m=20, 1 2,..., M-1 The Nyquist frequency is then given by cawy=n Mr. The
discrete Fourier transform of a sequence of length M, say, yields a sampling
interval in the frequency domain equal to Ao =2n/ MAt. By application of the (odd
symmetrical) cosine transform, the sampling interval is not changed, so the
Nyquist frequency remains the same. However, since the record-length now
(artificially) becomes (2M-\)At the new sampling interval is [Qu=(2n/2M-1)Ar,
or approximately half the original value. This very construction may make any
further interpolation superfluous (nearest neighbour interpolation may in some
cases be sufficient), but it may be more appropriate to interpolate in terms of
cubic splines.
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Interpolation by cubic splines is essentially by a low-pass action which
incorporates some characteristics of sine interpolation (Cardinal splines). For a
fixed value of horizontal wavenumber, assume that fm is the data at time
tm=mAt, and let the discrete Fourier transform of this sequence be denoted by
Fm. Interpolation by cubic spline can be written

()

where B(a) is the cubic 5-spline and Amare coefficients to be determined from
the condition that H(wT)=Fm. Among a variety of algorithms available in the
literature, the algorithm given by Ford [1975] can be recommended, both for its
simplicity and for its efficiency, but strictly speaking, the results are only
approximately correct. In the present case it is possible to take advantage of the
fact that the interpolation is carried out in the frequency domain. Thus, the results
can be obtained with even less efforts, but the actual details are given in the
Appendix.

The processing part of f-k migration is a mapping from the (E*co)-domain to
the (k*, tfcr-domain. Let £2 be defined by £2/c =/*, where ¢ is the migration
velocity. Assume that the f-k spectrum is given at k,, =nAk and(om =wAco, where
AttandAo are, respectively, the sampling interval in the wavenumber and
frequency domain. Then for each k, andcom the values of the frequency
Q(kn,wm) are required. The mapping is governed by the equation

2/ ¢)2= (mPoo/ ¢)2- (nAK)2 (6)

This transformation represents, for a fixed kn, a shift of data from frequency am
to a lower frequency £ [Stolt 1978]. It is important to achieve
2=jAm, j=0,1, hence, interpolation is necessary. However, for any value
of kn, some values of the original frequency (com) may give an imaginary £2-value.
But the £2 is supposed to be real, i. e., the evanescent part of the wave field is
excluded. If an imaginary £2-value is obtained, the corresponding value of the
spectrum is put equal to zero.

4. lllustrative examples

A comparison of the proposed algorithm with the conventional FFT-method
[Stort 1978] will be made. The input signal is a zero phase Ricker walvelet,
i. e., the second derivative of the function/(r) =exp[-2(r/r0)2], with 10 = 0.05 sec.
Moreover, the velocity is ¢ = 1 km/sec, while the record lengths are X =3 km and
T =2 sec. Three “spikes” are present in the input data set, located at xA =1.5 km,
but at different times tA = 0.75, 1.0 and 1.25 sec, respectively. The migrated
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output with the conventional FFT-method is displayed in Fig. 1. The impulse
response is ideally a semi-circle (the exploding reflector) centred at z = 0, with a
radius equal to ctA =0.75, 1.0 and 1.25 km, respectively. The most conspicuous
artifacts in the conventional FFT-method are the (inverted) semi-circles. Due to
the periodicity of the discrete Fourier transform, the computational artifacts are
(inverted) semi-circles of radii r =c (T- tA), centred at the bottom (z=cT). Other
artifacts are also present (circles centred at xA +c7), but they are hardly visible
due to geometrical spreading. The corresponding results with the proposed
algorithm are displayed in Fig. 2. This method effectively doubles the record
length hence, due to geometrical spreading, the amplitude of the computational
artifacts is reduced.

Fig. 1. Migrated output (impulse response) with the conventional FFT-method.
The (inverted) semi-circles are the computational artifacts, which are strongly in evidence

1 abra. A hagyomanyos FFT-t alkalmazé migracio impulzus valaszfliggvénye.
Az (invertalt) félkorok a szamitas melléktermékei

Puc. 1. PesoHaHCHas vMNynbCHas QYHKLWS MUTpaumumn ¢ TpaguLOHHBIM YCKOPeHHbIM npeobpa3oBa-
H1em ®ypbe.
(O6palLeHHbIe) NOYKPYTK - NOBGOYHbLIN pe3ynbTaT pacyHeTHbIX onepauuii
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Fig. 2. Migrated output (impulse response) with the proposed method.
Computational artifacts are still present, but the amplitudes are reduced due to geometrical
spreading

2. dbra. Ajavasolt migraciéval nyert impulzus valaszfuggvény.
A szamitasi melléktermékek amplitidoi lényegesen csokkentek a szférikus divergencia
kodvetkeztében

PVC. 2 PesoHaHCHas UMMy NbCHan hyHKLMSA, NONYUYeHHas Npu NpeiaraeMoM BapuaHTe MUrpaLmn.
AMNANTYAbI NO6OYHBIX Pe3yNbTaTOB PaCUETHbIX OMepaLuii CyLLeCTBEHHO CHA3WANCL BCEACTBUE
cthepnyecKoii AUBEPreHLMn

5. Conclusion

When migrating zero-offset reflection data for the first time, it is not so
important to use a migration technique that is the best possible. Rather, a quick
f-k migration can be used without running the risk of spending too much time
looking for an exact velocity fit. The process of (artificially) constructing
symmetric zero-offset data is used as an alternative to the classical f-k migration.
The advantages are that it is possible to work entirely with real variables, hence,
there is no need for extra working space to store the f-k spectrum in the host
computer. The actual computation of the (real) f-k spectrum can be done by
utilizing an efficient algorithm such as that of Cooley et al. [1970].

By application of the discrete Fourier transform, the migrated output will be
periodic. Hence, computational artifacts will inevitably make their appearance.
Since the impulse response is a semi-circle, the artifact will be (inverted)
semi-circles. A method to reduce these artifacts is to use a longer record length
in time (trailing the data set with zeros). The proposed method utilizes a
symmetrical data set, which essentially incorporates some of this technique.
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Consequently, it is possible to take advantage of even more symmetry properties
than originally proposed by Carter and Frazer [1982].

Appendix
Periodic cubic B-spline

The cubic O-spline is a polynomial approximation to a function /(r), say,
where the samples fm=f(mAt) are given for \m\ SM-1, where At is the constant
sampling interval. It will be assumed that the input sequence is periodic, i. e.,
fm+L =frn, where L = 2M-1.

Let a function h(t) be constructed according to

M1 (A-1)
h(t) =2 a mB(t-tm),
1M

where B(t) is the 5-spline or Parzen window, while am are coefficients to be
determined from the imposed condition that h(tm)=fm. Moreover, in order that
h(t) should be periodic, h (t+LAt) =h (), the coefficients am are forced to be
periodic too, am+L=am, but it is not necessary to put any restriction on function
5(r). Returning to the 5-spline form 5(t), this function is non-zero over 3 sample
points, with 5(0) = 1, B(xAt) = /4, while B(zmAt) = 0 when m > 1 The claim that
h(tm) =fm yields the key equations

am-i +4am+fim+i=4/m- (A-2)

According to these equations the coefficients am used to weight the spline
functions are related to fm by a banded (tridiagonal) circulant matrix. The
inversion of this matrix can be accomplished by using Fourier matrix techniques,
i. e., the diagonalization property of circulant matrices. The inverse matrix is also
circulant, but not banded. However, when M is large, the asymptotic values of the
coefficients in this (inverse) matrix are effectively independent of M. According
to Ford [1975], the periodic nature of the problem allows it to be expanded (with
no loss of accuracy) as if M -» m

The construction of the coefficients am warrants a closer study. It may be

appropriate to study the discrete Fourier transform of equation (A-2), and the
result is

Ak =ZFKI [2 + cos(2ji£/L)], (A-3)

where Ak andFk are the discrete Fourier transforms of amand fm respectively.
The coefficients amare then given by the inverse discrete Fourier transform
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JV-1 (A-4)
am =2"J1k-exp 2 nikmIL).
1-M

If/,,, is an impulse at m =0, then Fk = 1for all values of the index k (the impulse
response). Let the corresponding discrete Fourier coefficients be denoted by Dk

Dk =2/ [2+cos (2 Tk IL)], (A-5)

which are real and even, i. e, D k=D+k In this way interpolation can be
accomplished by the discrete Fourier transform and its inverse, respectively. The
coefficients am can be obtained by first taking the discrete Fourier transform
Fk=DFT{,,} multiplying by Dk, and finally taking an inverse DFT to obtain
f,, = IDFT{FksDKk}

The processing part of f-k migration is essentially an interpolation on the
frequency axis. The “simplest” way is to take a DFT in space to obtain P(,,, tk),
then a DFT in time to obtain P(kn,tom). At this very step an interpolation as
indicated by equation (J/1-1) must be performed. However, to obtain the
coefficients am, imagine that P(kn, tk) is multiplied by the filter coefficients DK,
followed by a DFT. Then the next step is to perform the convolution, which is
nothing but an evaluation of a polynomial at the desired frequency values. The
final step is to transform back to time and space coordinates to achieve the
migrated output. This procedure may be considered as an alternative method to
the algorithm given by Ford [1975].
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AZf-k MIGRACIO SZIMMETRIAJANAK HASZNOSITASA

Einar MAELAND

nak felgyorsitasara térben és id6ben szimmetrikus adatrendszert hoznak létre. Egy hatékony
algoritmust kozolnek, amely a cosinus transzformaciot hasznalja, ezért csak valds valtozokra
van szilkség. Ez csokkentést jelent mind gépidében, mind tarolasi kapacitasban, igy nincs
szilkség csak az eredeti adatok altal foglalt tarol6kapacitasra. S6t, mivel a cosinus transzforma-
ci6 megkétszerezi a rekordhosszt, a diszkrét Fourier-transzforméacié okozta mdvi jelek amplita-
déja nagymértékben csokken.

YTUANBALUMA CUMMETPUW f-k MUTPALIAN
Jiiap MENJIAH/,

[ns ybbicTpeHns TpaauumHHOW f-k Murpaumm martepmanoB MOPCKOW celimopassegkn MOB c
[MHaMUYECKOI NONpPaBKOiA cO34aeTCs cMCTEMA JaHHbIX, CUMMETPUYHAS B MPOCTPAHCTBE 1 BO BPEMEHM.
MpuBoauTcs ed(heKTUBHLIA anropuTM, B KOTOPOM WCMONb3YETCH KOCUMHYCHOE Mpeo6pa3oBaHue,
MoO3TOMY OH HYX[AeTCsi NINb B peasibHbiX MepeMeHHbIX. 3TO MPUBOAWUT K COKPALLEHWH0 Kak
MaLLUWHHOTO BPEMEHW, TakK M eMKOCTW NamsTW, TaK 4TO O0TnajaeT Heob6X0oAMMOCTb B MamsTv Ans
nepBUYHbIX AaHHbIX. Bofiee TOro, NOCKOABLKY NpU KOCMHYCHOM Npeo6pa3oBaHMK yABavMBaeTCs A/MHA
3anunceil, 3HaYNTENIbHO YMEHbLUAETCS amnaMTyAa WCKYCCTBEHHbIX CUFHAMOB, MOSBASIOWMXCA Mpy
[MCKPeToM npeobpa3oBaHnm dypee.



