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T H E  U SE  O F S Y M M E T R Y  IN  f - к  M IG R A T IO N

Einar MAELAND*

In order to speed up the classical f -к  migration of zero-offset marine reflection data, a 
symmetrical data-set is artificially constructed, both in space and time. An efficient algorithm 
utilizes the discrete cosine transform, so only real variables are required. Since this yields a 
twofold decrease in computation time and storage requirements, no extra computer storage or 
working space other than the original data space is required. Moreover, since the discrete cosine 
transform effectively double the record length, computational artifacts caused by the discrete 
Fourier transform will be reduced.
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1. Introduction

The construction of an efficient algorithm for migration of zero-offset data 
is an important objective in seismic data processing. Migration by the classical 
f -к  algorithm as given by Stolt [1978], is much faster than any other method, 
e. g., the phase-shift method [Gazdag 1978], or the Kirchhoff summation 
[Schneider 1978]. In f -к  migration, the spectrum is transformed from the 
frequency axis to the (vertical) wavenumber axis. To perform this (non-linear) 
mapping, some method of interpolation is required. Without any other 
information, both the real and the imaginary part of the f -к  spectrum have to be 
interpolated. With respect to the amplitude and phase spectra, the interpolation 
errors of the phase spectrum (phase-errors) can be more troublesome than 
amplitude errors. An objective of the present study is to reduce the amount of this 
interpolation work.

Migration of zero-offset data is based upon the exploding reflector concept 
[Loewenthal et al. 1976]. Based on this assumption, the data is equal to zero 
for time t < 0. If a function /(i) is causal, i. e., f(t) = 0 for t < 0, the real and 
imaginary parts of the Fourier transform form a Hilbert transform pair [Papoulis 
1977]. If, in addition, f(t) is real, the real and imaginary parts of the Fourier 
transform are related to the cosine and sine transform of f(t). If the real part of 
the Fourier transform is given, the imaginary part can in principle be found, and 
this latter part is redundant. Although zero-offset data are not “causal” in the 
horizontal space coordinates, it is possible (artificially) to construct symmetrical 
data without losing any information from the original data. As a consequence of 
this construction, the Fourier transform in wavenumber space will be real and 
even. Hence, it is possible to work entirely with a real spectrum, and many 
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problems of computer storage and artifacts caused by interpolation of a complex 
spectrum can be avoided.

Carter and Frazer [1982] proposed a rapid method for f -к  migration of 
zero-offset data. They used the fact that the Fourier transform of any real function 
is hermitian (conjugate even), which means that the real part of the Fourier 
transform is symmetric, while the imaginary part is anti-symmetric. The 
consequences are that certain parts of the f -к  spectrum (negative frequencies) 
need not be stored in the memory of the host computer. Moreover, they also used 
a familiar trick such that in order to compute the Fourier transform of two real 
functions, f(t) and g(t), say, it is possible to compute the Fourier transform of the 
complex function h(t) = /(r) + ig(r). The Fourier transform of/(i) and g(t) are then 
the hermitian (conjugate even) and the anti-hermitian (conjugate odd) part, 
respectively, of the Fourier transform of h(t). However, if the input data are real 
and either even or odd, Cooley et al. [1970] have shown that an even faster 
method exists to compute the discrete Fourier transform. Thus, the construction 
of symmetric zero-offset data in order to speed up the classical f -к migration 
warrants a closer study.

2. The f -к  algorithm

In order not to overburden the present analysis with detail, only the 
2-dimensional case will be studied. If the data (pressure) as a function of space 
(x) and time (t) are given by P(x, t), imagine that a symmetric function P(x, t) is 
constructed according to

P(-x, t) = P(x, -t) = P(-x, - 1) = P(x, t). ( 1 )

Although this may at first sight seem to necessitate a much larger (four 
times) memory space than the original space, this is not the case. Let 
x„ = nAx and tm = mAt, where Ax and At are the (constant) sampling intervals along 
the x-axis and i-axis, respectively. A simple way to obtain the f -к  spectrum is to 
perform- a fast Fourier transform (FFT) column-by-column, and put the 
transformed data back into the memory P(xn, com), where com is the frequency, then 
a FFT row-by-row, and put the transformed data back into the memory 
P{kn, oom) where kn is the wavenumber. This procedure presupposes a discrete 
Fourier transform of a working array fm = _P(x„,rm), say. The procedure is then 
repeated in order to compute the discrete Fourier transform in the x-direction. 
Without any (symmetry) conditions of the input data, the spectrum will be 
complex, so extra memory space is required. However, if a symmetric working 
array (fm) is constructed, then the Fourier transform becomes real and symmetric, 
and no extra memory in the host computer, beyond the original space P(xn, tm), is 
required.
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The Fourier series representation of any (periodic) real and symmetric 
function contains only real coefficients, which correspond to the cosine terms of 
the series. This result can be extended to the discrete Fourier transform. Consider 
a sequence fo(m) of length 2Л/-1 (the odd-length symmetrical cosine transform), 
where fo(m) = f m when in z 0, and /0(«i) = f_m when m < 0. The discrete Fourier 
transform of this sequence is

1 V  (2)/'°  (к) = — 2 )/о (m) ехр[-2л\кт / (2Л/-1)],
1 -M

for |£| sM -l, where L = 2M-1 is the total length of the sequence. Since /0(w) is real 
and symmetric, this relation reduces to

M- 1
а д  -  I  ^fm  cos[2nkm/(2M-l)],

m = 0

(3)

where / '  is defined by f0 =/0 and/' =2f„ for 1 <.m sM-1.
It is possible to compute the odd cosine transform with the discrete Fourier 

transform algorithm of odd length since

f M-l
F0 (k) = j  Real | ^  /' cxp[-2ni/;i£/(2M-l)]

The same result can be obtained if the sequence fm is extended by M zeros, viz., 
fm = 0 for m = M, Л/+1, ..., 2Af-l, and computing the DFT of length -2Л/-1. This 
construction yields a causal sequence fm (by definition).

In any application of the discrete Fourier transform, it is necessary to make 
a distinction between M even or M odd. The frequency interval is Дсо = 2л/1Дг, and 
if M is odd, the Nyquist frequency (л/At) is not attained by any 
w,„ = шДш, |w|  ̂A/-1. On the other hand, if M is even, a sample fM at tM must be 
included, so that L = 2M. In this case, however, the Nyquist frequency is attained 
when m = +А/. In order to treat this case correctly, a “one-half” weight at the very 
last sample is utilized, i. e., Vi fst at m = ±M.

The most common way to compute the 2A/-length (real) discrete Fourier 
transform is either to use a 2A/-length complex FFT, or by using a Af-length 
complex FIT plus some additional operations. Cooley et al. [1970] have shown 
that if the sequence (of length 2M) is either even or odd, a simple procedure can 
be used to reduce the actual computation of the discrete Fourier transform to that 
of an М/2-length (complex) FFT with some preprocessing and postprocessing. An 
implementation of this procedure is given by Rabiner [1979]. This yields a 
twofold decrease in storage since only half the real input data need be supplied. 
More details on the efficient computation of the discrete cosine transform are 
given by Vetterli and Nussbaumer [1984]. Finally, an even more direct
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method is to construct a DFT that works directly on 2-dimensional sampled data, 
but this technique will not be discussed.

Computing the real spectrum with the decrease of storage requirements may 
be summarized as follows:

Do while n г 0 until n=N- 1 
/(0) = P[x(n), t(0)] 
do while mz 1 until m=M-1 

f(m) = P[(x(n),t(m)Y 
f(2M -l-m ) = f(m) 

end do 
/О  0 = DFT
do while тт>0 until m=M-1 

P[(x(n), co(/n)] = f(m) 
end do 

End do

The procedure is repeated in order to compute the discrete Fourier transform in 
the jc-direction.

3. Interpolation

Given the f -к  spectrum, for each fixed value of the horizontal wavenumber 
(kx), f -к  migration is essentially a coordinate transformation from the frequency 
axis (co) to the vertical wavenumber axis (kz). In a two-dimensional study, this 
can be written co / c-* kz = со / c • cos (a), where c is the velocity and a is the angle 
between the vertical axis and the direction of the plane waves. To perform this 
coordinate transformation, a suitable interpolation algorithm has to be used. The 
algorithm should not only be fast and simple, but also of high resolution. Carter 
and Frazer [1982] used a linear interpolation scheme, but since the f -к  spectrum 
inevitably becomes periodic in any application of the discrete Fourier transform, 
it is more natural to use a periodic interpolation kernel. In this connection it is 
appropriate to note that for the construction of the odd symmetrical cosine 
transform, the addition of trailing zeros effects an interpolation of the spectrum. 
If At is the constant sampling interval, samples are taken at tm = mAt where 
m = 0, 1, 2,..., M -1. The Nyquist frequency is then given by сому = л Mr. The 
discrete Fourier transform of a sequence of length M, say, yields a sampling 
interval in the frequency domain equal to Aco = 2л/ MAt. By application of the (odd 
symmetrical) cosine transform, the sampling interval is not changed, so the 
Nyquist frequency remains the same. However, since the record-length now 
(artificially) becomes (2M-\)At the new sampling interval is Дш = (2л / 2M-l)Ar, 
or approximately half the original value. This very construction may make any 
further interpolation superfluous (nearest neighbour interpolation may in some 
cases be sufficient), but it may be more appropriate to interpolate in terms of 
cubic splines.
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Interpolation by cubic splines is essentially by a low-pass action which 
incorporates some characteristics of sine interpolation (Cardinal splines). For a 
fixed value of horizontal wavenumber, assume that fm is the data at time 
tm = mAt, and let the discrete Fourier transform of this sequence be denoted by 
Fm. Interpolation by cubic spline can be written

where B(со) is the cubic 5-spline and Am are coefficients to be determined from 
the condition that Н(шт) = Fm. Among a variety of algorithms available in the 
literature, the algorithm given by Ford [1975] can be recommended, both for its 
simplicity and for its efficiency, but strictly speaking, the results are only 
approximately correct. In the present case it is possible to take advantage of the 
fact that the interpolation is carried out in the frequency domain. Thus, the results 
can be obtained with even less efforts, but the actual details are given in the 
Appendix.

The processing part of f-к  migration is a mapping from the (£*co)-domain to 
the (к*, tfc^-domain. Let £2 be defined by £2/c = /^, where c is the migration 
velocity. Assume that the f -к  spectrum is given at k„ = nAk and(om = wAco, where 
AttandAo are, respectively, the sampling interval in the wavenumber and 
frequency domain. Then for each k„ andcom the values of the frequency 
Q(kn,wm) are required. The mapping is governed by the equation

This transformation represents, for a fixed kn, a shift of data from frequency com 
to a lower frequency £2 [Stolt 1978]. It is important to achieve 
£2 = j'Aco, j  = 0,1, hence, interpolation is necessary. However, for any value 
of kn, some values of the original frequency (com ) may give an imaginary £2-value. 
But the £2 is supposed to be real, i. e., the evanescent part of the wave field is 
excluded. If an imaginary £2-value is obtained, the corresponding value of the 
spectrum is put equal to zero.

A comparison of the proposed algorithm with the conventional FFT-method 
[Stolt 1978] will be made. The input signal is a zero phase Ricker walvelet,
i. e., the second derivative of the function/(r) = exp[-2(r/r0)2], with f0 = 0.05 sec. 
Moreover, the velocity is с = 1 km/sec, while the record lengths are X  = 3 km and 
T =2 sec. Three “spikes” are present in the input data set, located at xA =1.5 km, 
but at different times tA = 0.75, 1.0 and 1.25 sec, respectively. The migrated

(5)

(£2 / c)2 = (mAco / c)2 -  (nAk)2. (6)

4. Illustrative examples
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output with the conventional FFT-method is displayed in Fig. 1. The impulse 
response is ideally a semi-circle (the exploding reflector) centred at z = 0, with a 
radius equal to ctA = 0.75, 1.0 and 1.25 km, respectively. The most conspicuous 
artifacts in the conventional FFT-method are the (inverted) semi-circles. Due to 
the periodicity of the discrete Fourier transform, the computational artifacts are 
(inverted) semi-circles of radii r = c (T-  tA), centred at the bottom (z = cT). Other 
artifacts are also present (circles centred at xA ± c7), but they are hardly visible 
due to geometrical spreading. The corresponding results with the proposed 
algorithm are displayed in Fig. 2. This method effectively doubles the record 
length hence, due to geometrical spreading, the amplitude of the computational 
artifacts is reduced.

0 1 2  3

Fig. 1. Migrated output (impulse response) with the conventional FFT-method.
The (inverted) semi-circles are the computational artifacts, which are strongly in evidence

1. ábra. A hagyományos FFT-t alkalmazó migráció impulzus válaszfüggvénye.
Az (invertált) félkörök a számítás melléktermékei

Рис. 1. Резонансная импульсная функция миграции с традиционным ускоренным преобразова­
нием Фурье.

(Обращенные) полукруги -  побочный результат расчетных операций
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0 1 2  3

Fig. 2. Migrated output (impulse response) with the proposed method. 
Computational artifacts are still present, but the amplitudes are reduced due to geometrical

spreading
2. ábra. A javasolt migrációval nyert impulzus válaszfüggvény.

A számítási melléktermékek amplitúdói lényegesen csökkentek a szférikus divergencia
következtében

Рис. 2. Резонансная импульсная функция, полученная при предлагаемом варианте миграции. 
Амплитуды побочных результатов расчетных операций существенно снизились вследствие

сферической дивергенции

5. Conclusion

When migrating zero-offset reflection data for the first time, it is not so 
important to use a migration technique that is the best possible. Rather, a quick 
f -к  migration can be used without running the risk of spending too much time 
looking for an exact velocity fit. The process of (artificially) constructing 
symmetric zero-offset data is used as an alternative to the classical f -к  migration. 
The advantages are that it is possible to work entirely with real variables, hence, 
there is no need for extra working space to store the f -к spectrum in the host 
computer. The actual computation of the (real) f -к  spectrum can be done by 
utilizing an efficient algorithm such as that of Cooley et al. [1970].

By application of the discrete Fourier transform, the migrated output will be 
periodic. Hence, computational artifacts will inevitably make their appearance. 
Since the impulse response is a semi-circle, the artifact will be (inverted) 
semi-circles. A method to reduce these artifacts is to use a longer record length 
in time (trailing the data set with zeros). The proposed method utilizes a 
symmetrical data set, which essentially incorporates some of this technique.
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Consequently, it is possible to take advantage of even more symmetry properties 
than originally proposed by Carter and Frazer [1982].

Appendix

Periodic cubic B-spline

The cubic Д-spline is a polynomial approximation to a function /(r), say, 
where the samples fm=f(mAt) are given for \m\ sM-1, where At is the constant 
sampling interval. It will be assumed that the input sequence is periodic, i. e., 
fm+L =frn, where L = 2M-1.

Let a function h(t) be constructed according to

M - 1
h(t) = 2 a m B(t-tm),

1 -M

(A-l)

where B(t) is the 5-spline or Parzen window, while am are coefficients to be 
determined from the imposed condition that h(tm)=fm. Moreover, in order that 
h(t) should be periodic, h (t + LAt) = h (r), the coefficients am are forced to be 
periodic too, am + L = am, but it is not necessary to put any restriction on function 
5(r). Returning to the 5-spline form 5(t), this function is non-zero over 3 sample 
points, with 5(0) = 1, B(±At) = 1/4, while B(±mAt) = 0 when m > 1. The claim that 
h(tm) = fm yields the key equations

am-i + 4am +flm + i= 4/m- (A-2)

According to these equations the coefficients am used to weight the spline 
functions are related to fm by a banded (tridiagonal) circulant matrix. The 
inversion of this matrix can be accomplished by using Fourier matrix techniques, 
i. e., the diagonalization property of circulant matrices. The inverse matrix is also 
circulant, but not banded. However, when M is large, the asymptotic values of the 
coefficients in this (inverse) matrix are effectively independent of M. According 
to Ford [1975], the periodic nature of the problem allows it to be expanded (with 
no loss of accuracy) as if M -»  oo.

The construction of the coefficients am warrants a closer study. It may be 
appropriate to study the discrete Fourier transform of equation (A-2), and the 
result is

Ak = ZFkl [2 + cos(2ji£/L)], (A-3)

where Ak andFk are the discrete Fourier transforms of am and fm, respectively. 
The coefficients am are then given by the inverse discrete Fourier transform
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Л/-1 (A-4)
am =2^Лк- exp (2 л i к m IL).

1 - M

If/„, is an impulse at m = 0, then Fk = 1 for all values of the index к (the impulse 
response). Let the corresponding discrete Fourier coefficients be denoted by Dk

Dk = 2 / [2 + cos (2 тс к IL)], (A-5)

which are real and even, i. e., D_k =D+k. In this way interpolation can be 
accomplished by the discrete Fourier transform and its inverse, respectively. The 
coefficients am can be obtained by first taking the discrete Fourier transform 
Fk = DFT{/„,} multiplying by Dk, and finally taking an inverse DFT to obtain 
я,„ = IDFT{Fk ■ Dk}

The processing part of f -к  migration is essentially an interpolation on the 
frequency axis. The “simplest” way is to take a DFT in space to obtain P(k„, tk), 
then a DFT in time to obtain P(kn,tom). At this very step an interpolation as 
indicated by equation (Л-l)  must be performed. However, to obtain the 
coefficients am, imagine that P(kn, tk) is multiplied by the filter coefficients Dk, 
followed by a DFT. Then the next step is to perform the convolution, which is 
nothing but an evaluation of a polynomial at the desired frequency values. The 
final step is to transform back to time and space coordinates to achieve the 
migrated output. This procedure may be considered as an alternative method to 
the algorithm given by Ford [1975].

REFERENCES

Car i er J. A. and Frazer L. N. 1982: Rapid f -к  migration of zero-offset marine reflection data.
Journal of Geophysical Research 87, (В 11), pp. 9365 -  9373 

Cooley J. W., Lewis P. Л. and Welch P. D. 1970: The fast Fourier transform algorithm: 
Programming considerations in the calculating of sine, cosine and Laplace transforms. 
Journal of Sound and Vibrations 12, pp. 315 -  337 

FORD W. S. 1975: Periodic cubic spline interpolation with equidistant nodes. The Computer 
Journal 18, pp. 183 -  184

Gazdag J. 1978: Wave equation migration with the phase-shift method. Geophysics 43, 7, pp. 
13 4 2 - 1351

Loewenthal D., Lu L.. Roberson R. and Sherwood J. 1976: The wave equation applied to 
migration. Geophysical Prospecting 24, 2, pp. 380 -  399 

Papod Lis A. 1977: Signal Analysis, McGraw-Hill Hook Co.
Rabiner L. R. 1979: On the Use of Symmetry in FFT Computations. IEEE Trans. Acoust., 

Speech, Signal Proc. 27, pp. 233 -  239
Schneider W. A. 1978: Integral formulation for migration in two and three dimensions. 

Geophysics 43. 1. pp. 49 -  76
Stout r . IF 1978: Migration by Fourier Transform. Geophysics 43. 1. pp. 23 - 4 8  
Vetterli M. and Nussbaumer 11. J. 1984: Simple FFT and DCF algorithms with reduced 

number of operations. Signal Processing 6. pp. 2(>7 -  278



252 E. Maeland

AZ f - к  MIGRÁCIÓ SZIMMETRIÁJÁNAK HASZNOSÍTÁSA

Einar MAELAND

Dinamikusan korrigált, tengeri reflexiós szeizmikus anyag hagyományos f -к  migrációjá­
nak felgyorsítására térben és időben szimmetrikus adatrendszert hoznak létre. Egy hatékony 
algoritmust közölnek, amely a cosinus transzformációt használja, ezért csak valós változókra 
van szükség. Ez csökkentést jelent mind gépidőben, mind tárolási kapacitásban, így nincs 
szükség csak az eredeti adatok által foglalt tárolókapacitásra. Sőt, mivel a cosinus transzformá­
ció megkétszerezi a rekordhosszt, a diszkrét Fourier-transzformáció okozta művi jelek amplitú­
dója nagymértékben csökken.

УТИЛИЗАЦИЯ СИММЕТРИИ f -к  МИГРАЦИИ

Эйнар МЕЙЛАНД

Для убыстрения традицинной f-k  миграции материалов морской сейморазведки MOB с 
динамической поправкой создается система данных, симметричная в пространстве и во времени. 
Приводится еффективный алгоритм, в котором используется косинусное преобразование, 
поэтому он нуждается лишь в реальных переменных. Это приводит к сокращению как 
машинного времени, так и емкости памяти, так что отпадает необходимость в памяти для 
первичных данных. Более того, посколъку при косинусном преобразовании удваивается длина 
записей, значительно уменьшается амплитуда искусственных сигналов, появляющихся при 
дискретом преобразовании Фурье.


