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FOCUSING ASPECTS OF ZERO-OFFSET MIGRATION

Einar MAELAND*

Migration with an erroneous velocity gives a ‘smile’ or curve along which the energy is
smeared. Associated with the ‘smile’ is another curve, the caustic or edge of regression, enveloped
by the normal rays. Computation of this curve reveals that it is cusped. Migration of zero-offset
data with an erroneous velocity can give a ‘focus’only if the imaging principle is modified according
to the position of the cusp. Within the paraxial approximation of the wave equation, the focus is
cusped whether or not the correct velocity is used.

Keywords: seismic diffraction, data processing, wave equation, migration, velocity, geometrical optics,
paraxial approximation, caustic

1. Introduction

Migration of zero-offset data will in general suffer from velocity errors, and
the migrated output will be contaminated by focusing errors. If zero-offset data
from a single point diffractor is considered, the result of migration with an
erroneous velocity is a ‘smile’. In zero-offset migration, the data is extrapolated
by some suitable operator to a certain depth, at which an imaging principle is
applied. Much effort has been devoted to the construction of extrapolation
operators, but only a few have studied the effect of varying the imaging prin-
ciple. The reason is that migration of zero-offset data is based upon the explod-
ing reflector model as described by Loewenthal, Lu, Roberson and Sherwood
[1976].

If the data is migrated with an erroneous velocity, the ‘image’ is blurred
and there is a loss of resolution. Still a ‘focus’ may exist if only the imaging
principle is modified. This has to some extent been discussed by De Vries and
Berkhout [1984], a discussion which was based on the paraxial approximation
of the wave equation. In order to gain insight into the focusing aspects of
migration, an alternative investigation within the framework of geometrical
optics or ray theory will be carried out.

In ray theory what matters is not the individual rays, but rather a family
of rays. Associated with a family of rays is the possibility of focal regions or
caustics, which occur on contact with neighbouring rays. So at a caustic two
or more rays become parallel. Outside the caustic there is only one ray through

* Seismological Observatory, University of Bergen, Allegt. 41, N-5007 Bergen, Norway
Manuscript received (revised version): 25 May, 1989



146 E. Maeland

each point. On the caustic curve, rays touch in pairs, while if three rays touch,
the caustic is cusped. Consequently, as far as the amplitude of the wave field
is concerned, it must be significant on a caustic, and exceptional at a cusp.
Hence, the possibility of a cusp becomes important, and if one exists, it will be
used to modify the imaging principle so as to produce a focus when zero-offset
data is migrated with an erroneous velocity.

Strictly speaking, ray theory cannot account for diffraction and focusing
phenomena. Nevertheless, certain approximative methods can be applied suc-
cessfully to evaluate the seismic wave field close to a caustic. Carter and
Frazer [1982] reported a net phase-shift within the ‘smile’. The phase-shift is
in accordance with the approximations of geometrical optics. Within the para-
xial approximation of the wave equation, a true focus cannot be realized, even
if the correct velocity is applied. The caustic represents the concentration of
energy, and can be considered as the aberrated image of a point source. The
caustic is cusped, and the cusp replaces the true focus.

2. Over- and undermigration

Let cartesian coordinates (x, z) be defined with x in the horizontal and r
in the vertical direction, respectively. Without any loss of generality, only the
two-dimensional problem will be studied. Assume that a point diffractor is
located at the position (0, z*). The travel time t0 recorded at a point x0 on the
X-axis is given by

(cOt0)2 = x@+1zl, ®

where c0 is the (true) velocity in the medium. The kinematic part of migration
is the construction of an envelope of (spherical) waves with radius r0 = c0t0and
the origin at the position x0on the x-axis. In order to study the effects of over-
and undermigration, an erroneous velocity ¢ cOwill be used, so that the radius
is equal to r = ct0. Let (x, ) be a point on the wave surface

(x-x02+z2=rW 0)2, @

where y = c/cOis the velocity'ratio. The two equations can be put in the form
F(x, z, x0) = 0, where x0 is a free parameter. To obtain the envelope [Sneddon
1957], the parameter x0 must be eliminated between the two equations
F(x, z, x0) = 0 and OF(x, z, x0)/0xo = 0, The result is

x2(y2-1) +z2y2 = z2, ©))

which describes an elliptic or hyperbolic ‘smile’ according to y>1 or y<1,
respectively. This is the so-called ‘zero-distance phase front of refraction’
[Cornbleet 1984], since the ‘optical distance’ between a point (X, z) on this
surface in a medium with velocity ¢, and the point (0, z#) in a medium with
velocity c0, is zero. In the terminology of optics, the zero-distance phase front
of refraction is the ‘virtual image’ of the point source.
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The effect of an erroneous velocity is a blurring of the focus. As far as the
focusing aspects of zero-offset migration is concerned, the imaging principle is
applied too late when y> 1, or too early when y< 1, so a focus (if any) can only
be achieved by a modification of the imaging principle. With a radius r=ct0,
only the phase front of zero-distance (c?=0) can be constructed, but with a
radius r = c\t0-1\, the envelope is a parallel wavefront according to Huygens’
construction. When the velocity is correct, but the imaging principle is applied
at a time ?>0, the result is in some sense similar (but not identical) to a case
with a velocity c<cO0 and imaging at /= 0. On the other hand, if the imaging
is applied at a time ?<0, the result is in some sense similar to a case with a
velocity c>c0and imaging at t=0.

Ifaradius r = ¢|/0- t\is utilized, the equations can be represented by the
one-parameter system of surfaces F(x, z, t, x0) = 0. From a mathematical point
of view, it may be more adequate to consider a characteristic curve on this
surface [Sneddon 1957] , i.e., a solution of F=0 and dF/5x0 = 0 (for any fixed
x0). As x0can take any value on the x-axis, a locus of the intersection of different
characteristic curves can be constructed. The locus is a solution of
F = SF/dx0 = S2F/0Xo = 0O, giving the caustic or edge of regression of the
envelope of the surface F= 0. The result is a curve given by a set of parametric
equations x(x0), z(x0) and t(x0), say. This is the simplest way to compute the
caustic, but it is much more instructive to construct a family of rays of the
zero-distance phase front, and then compute the envelope of the ray family. The
results are of course identical, as the methods only differ in their mathematical
formulation.

3. The caustic

The definition of a caustic is a curve enveloped by the normal rays which
have their origin at the zero-distance phase front, which by itself is an envelope
of the one-parameter system of curves F(x, z, x0) = 0. Let the angle between
the horizontal x-axis and the normal from a point (x, zZ) on the (elliptic or
hyperbolic) zero-distance phase front be denoted by B. Assume that x =f(u) and
z=g(u) is a parametric description of the wavefront at time t=0. A parallel
wavefront at a distance d=ct is defined by a set of parametric equations
X = X(t, u) and z = Z(t, n)

X(t, u) = f(u) +ct mos (B),
Z{t, u) = g(u) + ct msin ().

The tangent of the zero-distance phase front has a direction given by dg/df. The
direction of the normal (ray) is tan (B) = - df/dg. It follows that
cos (B) = g\u)/D(u) and sin (B) = -f'(u)/D(u), where f\u) = df/du,
g\u) = dg/duand D2 = (df/du)2+ (dgjdu)2. Moreover, by eliminating the time
(0, a system of curves x =£ and z= £ are obtained, given here by

[C~8(M)\ = tan (B) m<=/(n)]. )
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For each value of the parameter u, this equation defines a straight line in the
x-z plane, that is, a normal ray. The equation can be put in the form
G(E, Gw = 0, from which the envelope of the family of rays can be calculated.
The results is

\ R
Ne =/(«)- g u|))(:) v
(6)
_ [ («) *m
ql’]’) - g(u) + D{U) )

where R(u) is the radius of curvature of the zero-distance phase front. Hence,
with ct = —R(u), this construction reveals that the caustic is the locus of the
centers of curvature of the zero-distance phase front. This locus is also known
as the ‘evolute’ [Cornbleet 1984].

The set of parametric equations x =f(u) and z=g(u) are not unique, so it
is possible to choose a suitable set at will. Let > 0 be defined by M2 = y2- 1J.
When y> 1 (overmigration), a suitable set of parametric equations are

—=ImsinW and — = ymos (), @)
7 2
where \u\ < ) , While if y< 1 (undermigration)

L = M msinhu) and = = ymcosh(u), ®)

where —oo<u< + co. The computations will be simplified by defining
Xjz* = I mS(u) and z/z* = y «C(u), where S{u) and C(u) are the circular or
hyperbolic sine and cosine functions, according to y> 1 or y< 1, respectively.

4. The cusp

In the terminology of geQmetrical optics, a caustic is a curve enveloped by
reflection or refraction of light from a curved surface [Cornbleet 1984]. The
caustic may be cusped, i.e., there may be a point at which two branches of the
caustic have a common tangent. The geometry of the present problem allows
an explicit parametric representation of the parallel wavefronts and the caustic,
hence, the possibility and the position of a cusp can easily be attained. With the
(elliptic or hyperbolic) zero-distance phase front defined by f{u) = z"r =S(u)
and g(u) = zy mC(u), a parallel wavefront may be written
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X(t, U) = 2°S(u) m T+ Zzg:(?f):,
y T Cpt (9)
Z(t, ) = z"C(u) m D)

where D2 = "2+ S2. The upper sign is used when ¥<1 and the lower sign when
y> 1 The parameter t labels the wavefronts, while the parameter n labels the
rays. The caustic (evolute) is given by

r. £0) = -zJSO)]3, r(M = :JC(«))3 (10)

It is worthwhile giving this particular curve a name. When y> 1, the parametric
equations represent an ‘astroid’ [Cornbleet 1984]. Hence, the phrase elliptic or
hyperbolic astroid, according to y> 1or y< 1, respectively, will be used. More-

over, associated with the caustic is the time ct = - R(u), or t- x(u), which can
be written
cOr
Q)
Z*

The astroid is cusped at the points where |8(/dQ\ -> oo or |df/d<j;| >0, i.e, at
u=0, giving £c=0 and Cc = zJye If y>h it is also cusped at the position
* {xA 0), where XA = zJT. If \xO\*x A, the point x0 lies within the ‘shadow
region’ of geometrical optics.

Associated with the cusp (gc,(c) is the time rc=r(0), given by
corc/z* = (y2~ 1ly2- With respect to the focusing aspects of zero-offset migra-
tion with an erroneous velocity, imaging at time t=0 cannot yield a focus. If
the imaging principle is modified according to t=rc, the focus is forced to
coincide with the position of the cusp. However, the vertical position of the cusp
is CcN"*- so 1te penalty is a position error. On the other hand, the gain is that
the amplitude, and hence the phase information of the migrated output, may
be easy to attain. The phase information may be used to modify the imaging
principle or the velocity so as to improve the quality of the migrated output at
time /=0.

Figures la, b display a family of normal rays from the elliptic or hyperbolic
zero-distance phase front, according to y>1 or y< 1, respectively. The ap-
proximate position of the caustic can readily be identified. Figures 2a, b display
the exact positions of the caustics. Also shown are examples of parallel wave-
fronts close to the characteristic cusp at which the two branches of the caustic
meet. Beyond the cusp and between the two branches, the wavefront has a
folded form, so the wavefront also has a cusp at the point where it touches the
caustic. Figures 3a, b show the results of migration by the phase-shift method
[Gazdag 1978], but with the modified imaging principle according to t=rc. The
input signal is a zero-phase Ricker wavelet, i.e., the second derivative of the
function exp[-2 (t/t0)2], with ro=0.05sec. The extrapolation step is
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Az=0.01 km, the velocity is cO= 1km/sec, with the point diffractor located at
depth 2*= 1.0 km (jc*= 15 km). Although the position of the cusp is well
defined, the migrated output from the phase-shift method still shows an indica-

Fig. 1 The zero-distance phase front and the ray paths (normal incidence). The asterix marks
the point diffractor
a) Overmigration, c¢/c0 = 1.25 b) Undermigration, c/c0 = 0.75

1 abra. A diffraktalépont (csillag) virtualis képe (elliptikus fazis front) és a normal beesés(
sugarak

a) Tulmigréalas esete, c/c0 = 1,25 b) Alulmigralas esete, c/cO = 0,75

Pue. 1. Kaxylwiascs KapTuHa (3N1MNTUYECKUIA (ha3oBbili (DPOHT) ANDPaKLNOHHOM TOUKU
(3Be304Ka) M Ny4yn HOPMasbHOrO MajeHus
a) cnyvaii ceepxmurpaumm c/c0 = 1,25 b) cnyyait HegocTaTouHoM Murpaumm c/c0 = 0,75.
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a b

Depth (km)

Fig. 3. Migrated data with the phase shift method. Parameter values are zt = 1 km, c0= 1 km/sec
a) Overmigration, c/c0 = 1.25 and imaging applied at /=rc>0
b) Undermigration, c/cO= 0.75 and imaging applied at t= tc <0

3. abra. Fazistolas eljarassal migralt adatok. Modellparaméterek: z,,= 1km, c0= 1km/sec
a) Talmigralas esete, c/c0 = 1,25 és a leképezés t=zc >0 idére tortént
b) Alulmigralas esete, cjc0 = 0,75 és a leképezés t=rc<0 idbre tortént

Puc. 3. [laHHble, MUTPUPOBaHHbIE METOAOM (Da3oBoro casura. MogenbHble napameTpsbl:
zt = 1kwm, c,,= 1km/cek
a) cnyyait ceepxmurpauumu, c/co= 1,25 n oTpakeHMe NpoucxoamT npu t= 1c>0
b) cnydali HegocTaTouHoi murpaumm, c¢/cO= 0,75 1 oTpaxeHne NPoUcxoguT npu t= T<0.

O Fig. 2. The caustic (elliptic astroid) and the parallel wavefronts (dashed)
a) Overmigration b) Undermigration

O 2. 4bra. A kausztika (elliptikus asztroid) és a parhuzamos hullamfrontok (szaggatott vonallal
jeldlve)

a) Tulmigréalas esetén b) Alulmigralas esetén

O Puc. 2. KaycTuka (3n1MNTUYECKWIA acTpous) 1 napannenbHble PPOHTbI BOHbI (0603HAYEHbI
NpPepbIBUCTON NMHWENR)
a) B C/lyyae cBepxXmMurpauum b) B cnyyae HeOCTATOUYHOW MUrpauuu.
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tion of the ‘smile’. This is reminiscent of the wavefront at time t=xc. The
position of the apex of the wavefront coincides with the position of the cusp.
The migrated output is a ‘snapshot’ of the wave field, and the amplitude maxima
of the migrated output are close to the actual position of the caustic.

A more or less well defined ‘focus’ is attained, but the phase of the migrated
output are not identical according to y> 1 or y< 1, respectively. Ray theory
gives excellent information about the travel time of individual rays, but suffers
from giving little reliable information about the amplitudes (caused by the
vanishing of ray-tube area in the caustic region). A net phase-shift of 4/2 in
overmigration as compared with undermigration was reported by Carter and
Frazer [1982]. A phase-shift of f/2 every time a ray passes through a caustic
is consistent with the approximation of geometrical optics, i.e., the amplitude
varies inversely with the square-root of ray-tube area. Inspection on figures la, b
reveals that the normal rays touch the caustic en route from the zero-distance
phase front to a point on the n-axis only when ¥> 1 This is a logical explanation
of the fact that the phase experiences a net phase-shift of 5/2 in overmigration
as compared to undermigration.

5. The paraxial approximation

Much effort has been devoted to the construction of an extrapolation
operator within the paraxial approximation of the wave equation. This ap-
proximation has a long history, related to the Fresnel approximation in optical
literature, or the 15°-approximation in seismic literature [Claerbout 1985]. One
of the most important implications of this approximation is anisotropy, but the
kinematic part of migration is still a construction of the envelope of the secon-
dary wavelets according to the theorem of Huygens. However, the surface of
the secondary wavelets are no longer spherical, but rather elliptical

(*~*0)2+ 222 = 2yzcOto, (12)

Where y = c/c0is the velocity ratio. The particular form of the wavelets follows
from the dispersion relation and evaluation of the group velocity and the related
wavesurface [Claerbout 1985], In order to compute the envelope, the travel
time curve and the latter equation are put in the form F(.r, z, x0) = 0, and the
envelope represented by a set of parametric equations x =f(x0) and z=g(x0).
Although it is only a minor point, x0 is not the most suitable parameter to be
used. Since the travel time curve is a hyperbola, the actual computations will
be simplified by utilizing

— = sinh(r) =S, = cosh(u) = C, (13)

where —00 <v< + 00. After some simple algebra, the result is a set of paramet-
ric equations
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m S-[2(1-y2+(yD)Z
z* 2+ (yD2

) 2yC
2+(yT)2’

It is not possible to solve this problem in a closed form (in terms of a simple
functional relation between jcand z), but this is not essential, as the equations
are well suited for computational methods.

Let a family of rays be constructed according to eq. (5). Due to the
anisotropy, the rays are not orthogonal to the plane waves, so the caustic is not
the locus of the centers of curvature of the zero-distance phase front. It follows
that the angle B cannot be deduced from the derivative (agjaf) of the set of
parametric equations, but only from

(14)
T= tanh(i;).

cotigy = P ~1V) (15)
g(v)
which, upon substituting from eq. (14), can be written
cot (B) = y manh(r). (16)

The (maximum) ray-angle is related to the aperture of the extrapolation opera-
tor. It follows that the aperture within the paraxial approximation of the wave
equation is always less than /2, irrespective of the actual value of the velocity
ratio.

The construction of the caustic enveloped by the rays is straightforward.
The parametric equations are

No = -z*[S(»)]3 Trd ) =: X (17
while the corresponding time t=x(v) is
T _ . 2 +fe+y9s2 (19)
z* 2yz

The caustic is a hyperbolic astroid, irrespective of the actual value of the velocity
ratio. A cusp occurs for 7= 0, so the conclusion is that the position of the focus
(¢c, @>ancl the modified imaging principle (/= rc), are not given any new values
within the paraxial approximation. Thus, with respect to the focusing aspects
of zero-offset migration, migration within the paraxial approximation isin some
sense similar (but not identical) to undermigration with the exact wave equation.
It follows that the gqualitative results of migration with y= 1are inherent for any
y¢ L Consequently, only the case y= 1 will be discussed.

Let a parallel wavefront x =X{t,v) and z=Z2(t,v) be constructed at a
distance d=cqt, where cg is the group-velocity. The group-velocity cg=cgVv) is
defined by

boCaLl2 = [x0-f{v)]2+ [g{V)]2, (19

which yields the relation
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cglv) = 2¢ L+ 12 20
B 2+ T2 )

It follows that a parallel wavefront is given by

let
TzJ ST+
X(t =
V) 2+ T2
(21)
22 C- —
V= o

Figure 4a displays the caustic with the characteristic cusp. Also shown are
different wavefronts (dashed) when the imaging principle is applied at times t>0
and i<0, respectively. In the latter case the wavefronts are folded and touch
the caustic at a cusp. A “focus’ at the correct position, =  can only be
achieved ify= 1, and if the imaging principle is applied at time t=xc=0. Figure
4b displays the result of migration with the phase-shift method [Gazdag 1978].
The signal and other input parameters are the same as used in Figure 3b. The
phase of the migrated output has not been changed, which can be explained by
the hyperbolic shape of the astroid.

Fig. 4. Paraxial approximation with correct velocity. Parameter values: = 1km, cO= 1km/sec
a) Parallel wavefronts (dashed) and the caustic (hyperbolic astroid) b) Migrated data

4. dbra. Paraxidlis kozelités pontos sebességgel. Paraméterértékek: z* = 1 km, cO= 1 km/sec
a) Parhuzamos hullamfrontok (szaggatott vonal) és a kausztika (hiperbolikus asztroid)
b) Migralt adatok

Puc. 4. MapakcanbHoe NPUGIMKEHNE NPU TOYHOW CKOPOCTU. 3HaYeHMs napaMeTpoB: zt = 1 KM,
c0= 1km/cek.
a) MapannenbHble BOMHOBbIE ()POHTLI (MPEPbIBUCTAA NNHUS) U KaycTuKa (runep6omyeckuii
actpoug) b) MurpupoBaHHble filaHHble.

Depth (km)
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6. Conclusion

The focusing aspects of zero-offset migration within the framework of
geometrical optics or ray theory has been examined. Although this theory
cannot give the correct amplitude and phase of the migrated data, some results
from this theory are still of interest. The kinematic part of zero-offset migration
is based on Huygens construction of a wavefront as the envelope of secondary
wavelets. With no velocity errors (c= c0), this construction will give the correct
position of the point diffractor (focus). However, if velocity errors are present
(c=fcQ), the envelope will be a hyperbolic or elliptic ‘smile’. According to the
definition of ‘optical distances’, the optical distance between this curve (in a
medium with velocity c) and the point source (in a medium with velocity c0),
is zero. Consequently, in the terminology of optics, this curve has been denoted
the ‘zero-distance phase front of refraction’, or the ‘virtual image’ of the true
point source. The conclusion is that migration with an erroneous velocity (and
imaging at time t=0), will always give the zero-distance phase front of re-
fraction.

The result of migration with an erroneous velocity is a blurring or smearing
of the focus. Construction of a family of rays and the caustic enveloped by the
rays, reveals that a ‘focus’ may still be defined if the caustic by itself is cusped.
However, this new ‘focus’ cannot emerge as a result of migration unless the
imaging principle is modified. The construction of the caustic gives insight into
the focusing aspects of zero-offset migration. An analysis of the focusing aspects
within the paraxial approximation of the wave equation reveals that neither the
position of the focus, nor the modified imaging principle are given any new
values as a consequence of this approximation.

Within the paraxial approximation of the wave equation, ray theory seems
to give reliable results, irrespective of the actual value of the velocity ratio. If
the velocity ratio c/cO = y—>1, a focus can be defined at the cusp of the caustic.
On the other hand, if the exact wave equation is considered, ray theory suffers
from giving reliable results in the limit y->1 This is caused by the elliptic or
hyperbolic shape of the caustic when y> 1or y< 1, respectively. Consequently,
while the position of the cusp is defined, the orientation (up or down) of the cusp
is not defined in this limit. The conclusion is that in this particular case, ray
theory seems to be inadequate.
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A f(0) IDOSZELVENY MIGRACIOJANAK FOKUSZALO HATASAI
Einar MAELAND

A hibés sebességli migracié ives (mosoly) alak( gérbét eredményez, amely mentén az energia
szétszorddik. A mosoly alakd gérbéhez egy maésik gorbe tarsul, a kausztika, amely a sugarelmélet
alkalmazhatésaganak hatarat jel6li ki. Ez utobbit kiszamitva lathaté, hogy csucsos. A rQ.v) szelvény
migréacidja rossz sebességgel csak abban az esetben fékuszalhat egy pontra, ha a kausztika csucs
helyzetének megfeleléen modositjuk a leképzés elvét. Ha a hullamegyenlet paraxialis kozelitését
alkalmazzuk, a fokusz egybeesik a kausztika csucsaval, fuggetlendl attél, hogy helyes sebességérté-
ket vettiink-e fel vagy sem.

OPOKYCUPYIOWUVE 3PDPEKTblI MUTPALVWN BPEMEHHOTIO MPO® WA i(0).
3itnep MEVNAH]

Murpauuio, MMeloLyl0 OWN60UYHYI0 CKOpPOCTb, XapaKTepusyeT Ayroo6pasHas Kpusas,
B/OMb KOTOPOWi pacnpefensieTcsi aHeprus. B3avMocBsi3aHHas C Heil KpuBasi, KaycTuKa, onpegensiet
rpaHuLy Ucnofb30BaHUA Teopuu CTPyid. PacueTaMu onpegensieTcs ee NUMKOBOI xapakTep. Murpa-
uma npocpunsa /Q.T) B cnyyae HeNpPaBUIbLHOM CKOPOCTU TONLKO TOrAa (hOKYCUPYETCS B OAHOM TOUKe,
€C/IM NPUHLIMM 0TPaXeHUs1 BUAOM3MEHSIETCS COT/TacHO MOOXKEHMIO NMKa KayCcTUKU. py 1Ucnosnb3o-
BaHWW NapaKcaibHOro NPUGKEHNs BOTHOBOTO ypaBHeHUs (hOKYC COBMELLLaeTCs C MMKOM KayCcTu-
KV HE3aBMUCKMMO OTTOrO, YTO B3ATble 3HAUEHWSI CKOPOCTEN NpaBUMbHbI U HET.
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ELECTROMAGNETIC PARAMETERS AT THE SURFACE OF A
CONDUCTIVE HALFSPACE IN TERMS OF THE SUBSURFACE
CURRENT DISTRIBUTION

Laszl6 SZARKA* and Gaston FISCHER**

Electric and magnetic fields at the horizontal surface of a conductor (e.g. the earth) were
derived in terms of the currents flowing in its interior. The formulae obtained are valid for any
magnetotelluric or controlled-source electromagnetic problem. In the simple limits of one- and
two-dimensional magnetotelluric situations they provide a clear physical meaning for impedance,
apparent resistivity and phase. For example, the imaginary part of the surface impedance gives the
depth to the centre of gravity of the currents which are in phase with the surface magnetic field,
and the real part of the impedance yields the mean depth of the out-of-phase currents. The apparent
resistivity - depending on its definition - always reflects the period-dependence of some function
of the real and/or imaginary part of the complex mean depth of the subsurface current system, while
the phase tangent is the ratio of the mean depths of inphase and out-of-phase currents. In .E-pola-
rization, when the currents flowing horizontally in the earth are modified by the dip-variation of
the vertical magnetic field, all formulae may be written in a form analogous to the one-dimensional
situation. The A-polarization impedance on the other hand, breaks up into the sum of two terms:
the first is simply the one-dimensional formula and the second reflects the dip-variation of the
vertical electric component in the medium (normalized to the total current at depth) that is due to
charges appearing at resistivity interfaces. To compute the fields at a point inside the conductor it
suffices to modify the corresponding integration limit.

Keywords: electromagnetic induction, magnetotelluric methods, controlled-source electromagnetic
methods, impedance, apparent resistivity, electromagnetic phase

1. Introduction

All electromagnetic sounding methods relying on natural or artificially-
generated fields, try to determine the subsurface conductivity structures by
means of some interpretational parameters (e.g. impedance, apparent resistivity,
phase), which are derived from the distribution and/or period-dependence of the
field components at the surface.

Even after the basic geo-electromagnetic induction studies in the frequency
domain [e.g. Cagniard 1953, Weidelt 1972, Price 1973] and results on dif-
ferent interpretational parameters (e.g. Fischer [1985] on the 2-D mag-
netotelluric phase, Spies and Eggers [1986] on the apparent resistivity, etc.) the
physical meaning of the geophysical interpretational parameters in the fre-
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guency domain has not always become clear. Recently Levy et al. [1988]
attempted a physical interpretation in terms of a reflectivity section, a sort of
analogue of the reflection seismic section.

In this paper the surface impedance and some corresponding parameters
will be interpreted in a novel way, based on the distribution of the subsurface
currents. Some elements of this approach can already be found in the papers
by Schmucker [1970], Weidelt [1972] and Haak [1978], and in some works on
the skin-effect of solids [e.g. Pippard 1954].

We shall begin with the derivation of the surface electromagnetic field
components, expressed in terms of currents flowing in the earth. The physical
meanings of surface impedance, apparent resistivity and phase will then be
discussed for the traditional, simple magnetotelluric situations.

2. Maxwell’s equations adapted to surface electromagnetic methods

Assuming a harmonic time-dependence of the form exp (+ iwf), the inte-
gral form of Maxwell’s equations, when neglecting displacement currents, is as
follows:

£H ds = 1JjdS, 1)
S
$Eds = - impjjHdS, )]
S
$H dS = 0, ?)
$EdS = Q, 4)

(all fields are functions ofx, y and 2, and in what follows e and // will be assumed
constant, independent of time and position).

Starting from equations (1) - (4) the electric and magnetic field components
at the surface will be derived as functions of the subsurface currents. The
integration domains are shown in Fig. 1where : mtends to infinity, at which limit
we can assume all field components to vanish. The distance intervals
Ax = x2 x!and Ay = y2—yi are assumed small.

At any depth the current density is the following vector:

jU, v, 2) = {iix, ¥, 95 Jyx, Y, 2)5 JEX, Y, )}

2.1. Ampere?s law

Equation (1) for the surface element normal to the x-axis of Fig. 1can be
written in the form:
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Fig. 1. Integration domains used
in the derivation of electric and magnetic components
at the surface in terms of subsurface currents

1 abra. A felszini elektromos és mégneses
térkomponensek mélybeli &ramrendszer segitségével
torténd leszarmaztatasdhoz hasznélt integralasi
tartomanyok

Pue. 1. ViHTerpanbHble 06nactu, B npegenax KoTopbiX
C MOMOLLbI FNYBUHHONM CUCTEMbI TOKa NMPOUCXOANT
BO3HWKHOBEHVE MOBEPXHOCTHBIX 3/1IEKTPUYECKUX
N MarHUTHbIX KOMMOHEHTOB.

f HY(x,y, 0)dy+ j Hzx, y2,z) dz+ j HY(X,y, zj dy+ j Hz(x,ylz)dz

=jJuwl,y, z)dzdy.

Yl o
If Ay >0,
SH,(x, Y, 2)
Hz(x, y2,2)- Hz(x,yu z) « ----- ay ..... Y,
and if zm—>oo,
H 0) = o d
(x,y,0) = dy Z. )

Similarly, for the surface element normal to the y-axis the following equation
can be derived: 0

Hx(X, y,Q) (6)

2.2. Faradays law

Equation (2) for the same closed loops of Fig. 1can be written as follows:

x Zn X 0
Jj Ex(x)y, 0)dx+ JE£x2y,z)dz+ J EXX,y, zj dx+ jEz(xuy, z)dz =
X\ 0 YO X2 zm

= loj/j j j HYX,y, z) dr dx.
xi O
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If AX -» 0, then

0£zX, Y, 2)
EAx2Y, z)- Ez(xuy, z) « -—-- S Ay,
and with zm-> 0o,
£x(* v 0) = icoll q dr+ i dEfix,y, 2)
(*,y,0) =i (X, v, 2)dz Ul ox
According to the rules of partial integration :
®
dHfix, y, z dHfix, p, z
Hy(x,y, z) dz - [z Hy] y )z dz = z— }----F-)---)dz.
dz dz
The x component of the differential form of eq. (1) is
8A2Ax,Y,z) AHYX Yy, 2)
dy dz = JX(*, x r);
and therefore,
bE,
Ex(X, y, 0) = i(of 2 )

For Ey along the other closed line shown in Fig. 1the following equation can
be given:

00

. 0sAN
Exy, 0 =Ml oy a g g (8)

Equations (5) - (8) hold on condition that the electromagnetic fields vanish
at infinite depth, at least to second order, and the vertical field components E,
and Hz vary continuously in lateral directions. Both conditions are generally
fulfilled for media with finite resistivity and conductivity.

2.3 Conservation of magnetic and electricfield lines

With equation (3) the vertical magnetic field at the surface can be expressed
by the sum of lateral variations of the horizontal components:

dHfix, vy, 2) N dllfix, y, 2)

SX dy ©)

Hz(x,y, 0) = -
0

Equation (4) can similarly be written as follows (since we are neglecting
displacement currents we have no vertical electric fields at the surface) :
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dEx(x,y,z) dEJx,vy, 2)

dx dy z (10)

In equations (9) and (10) the role of the subsurface currents is not im-
mediately apparent, but in some special situations equation (10) can be ex-
pressed in terms of such currents. As an example we consider an f-polarization
magnetotelluric situation : a vertical resistivity interface aty = 0. The differential
form of equation (4) relates the surface charge density r(y=0, z) appearing at
the interface to the discontinuity of the displacement vector [Price 1973, Kauf-
mann and Keller 1985]:

ADy =,
where the x-axis is the strike direction. When neglecting displacement currents,

the current density, which we denote by jy(y = 0, z), will be the same on both
sides of the interfaces. Therefore

Ty=0,2) = e(g2- qJ j (y=0,2) (11)

The anomalous electric field at the surface caused by the charge density
r(y =0, z) can be expressed by Coulomb’s law:

: _ v _
Ev(y,z=0) = ] — t(y= 0, z) Fdx dz=
(12
Q_Q N _Q_ QL 7y(,=02)
in [X2+y2+22]3]2]y(y—0, 7)dvdz = 2"y y2+122 dz

For vertical contact the electric field due to charges can readily be expressed
in terms of the currents jy flowing through the resistivity interface.

3. Significance of the foregoing results

As was expected, the horizontal magnetic field at the surface is determined
by the entire current distribution inside the earth: the first term on the right of
equations (5) and (6) is an integral of the currents over a penetrating path
(zm—>00); the second is a direct consequence of the lateral current variatons
since it depends on the lateral gradient of the field component along the
integration path. It is worth noting, at this point, that the integration loops of
Fig. 1could have been chosen quite differently, though with the same horizontal
portions at the surface; the two terms in the resulting integrals would retain the
same significance, but refer to penetrating paths (zm-» o0o) with other orienta-
tions. This clearly demonstrates the obvious fact that although in equations (5)
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and (6) integration was chosen along a vertical path, it is the entire current
distribution inside the conductor that determines the fields at the surface.

The horizontal electric field is also a sum of two terms: the first term on
the right of equations (7) and (8) is the first moment' of the currents which
determine the horizontal magnetic component, whereas the second again de-
scribes the effect of the lateral variations of the magnetic flux in terms of the
lateral gradient of the vertical electric field. Note that the gradient of a magnetic
field has the dimensions of a current density, whereas SEJbx and SEJdy are
moment-like quantities, or rates of change of magnetic flux.

Equations (5) - (10), which are valid for any surface electromagnetic meth-
od, have simple physical meanings. These immediately become apparent in the
common magnetotelluric 1-D and 2-D configurations. Equations (5) —10), and
several of their important consequences, are summarized briefly in Table I for
these two magnetotelluric geometries: in the upper part of the table Maxwell’s
equations adapted to magnetotellurics are shown; in the lower part relations
which emphasize the physical meaning of impedance, apparent resistivity, and
magnetotelluric phase in terms of the current distribution at depth are given.

4. One-dimensional relationship between the surface field parameters and the
subsurface current system

The horizontal magnetic field is simply given as the integral of the subsur-
face current distribution jy(z, c0) whereas the electric field is the “first moment’

of this distribution.

4.1. Surface impedance in the one-dimensional situation

Surface impedance (i.e. the ratio of the corresponding electric and magnetic
field components), based on Table 1, is given by:

J ZjWz, o) dr
A-d = ~i el (0)074al (13)
Jjyz, & dz
0

Disregarding the coefficient —icop, the remaining factor z* on the extreme
right-hand side of equation (13) is a complex depth. If the magnetic field at the
surface is assumed to be real (which in the 1-D configuration is not a restriction)
the denominator in equation (13) will be real, too, and Re z* and Im z* can be
expressed as follows:
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1-D A-POLARIZATION A-POLARIZATION
[£(,®), Hizw)l [BXy.  co), HyY, z, co), HRY, z, )] [£,0" 1, cd). EAY, 2 t0), HXY, T, )]
= [Adz,
Ampeére’s law \ jxdz = const (c0) 0 Hx = - Jjydz = const (c0)
0
where  Joc =X~ EA;)-( 0
2
2
S Faradays law Bx = iGtj zjxd =i : EJ = icofi
% y’s law i {)] r |eu’r(f),Edr ioofi | o by J
£ 0
g fi ical interf j=0
eg. for vertical int tj =0:
3 no free charges 9. for vertical Interiaces at J
= Conversation free ch
electric no free charges €0 = |
""""" T 4 n 2+22
_ magnetic no extra currents y yerz
field lines >
0 no xtra currents
[
Z,,= BYHx =
Surface 1 -Adr [ya’
impedance 22D epu = - ZE= BHy= Sowh L
[ JA: [ JAr N :
0 0 VA* r
: {JJW
SR TUNR YR LD E!
5 * 1 B m=_J H
S Complex . »= _J_
.(E depth of ZI’D iGY/? E ooy
2 subsurface Re-io = - ImZAJcofi RezE = - Im Z&kdc where/(£,)= . ~"dz/ 1hdz
g ourents Imz* D= Re Z UDlcolc Imz£ = Re Z&/colc 1
- Rtz% = - [Im ZHAmf(E 2}
Im %= [- Re ZH+ Re/(£2)/colc
. Rer5-— 1w/(£r)
Magnetolluric Sd = - alan RecTO O _amn Re . " cost
phase i-d= - . @ = T atan

Im zA+ — Rel/(£2)
oo

Table I. Maxwell's equations for the magnetotelluric one-dimensional case and for the E- and
A -polarization field components (upper part) and their magnetotelluric interpretation based on
subsurface currents (lower part). The surface values are denoted by upper indices 0. Other

designations are explained in the text

|. tdblazat. Maxwell egyenletek a magnetotellurikus egydimenzids esetre és az E- és
A-polarizaciés térkomponensekre (felsé rész), valamint az egyenletek magnetotellurikus
értelmezése a felszin alatti &ramok alapjan (als6 rész). A felszini értékeket 0 felsé indexek jeldlik.
A tovabbi jelolések magyarazata a sz6vegben talalhaté

Ta6bnuua |. YpaBHeHUss MakcBenna Ansi MarHMToTeNlypuyeckoro ofHOMEpHOro cayyas u ans
KOMTMOHEHTOB B Nofisipusaumsx Eii 51 (BepxHsst yacTb), a Takxke MarHuToTe/lypudeckoe
WHTEpNpeTUpoBaHNe ypaBHeHUI Ha OCHOBAHWMMW MOA3EMHbIX TOKOB (HWXKHSISI YacTb).

[M0BEPXHOCTHbIE 3HAYEeHUSA 0603HayvarTCA BepxumMn nHgexkcamm 0. O6bsACHEHME ,qal'IbHef/'ILLIVIX
YC/NTOBHbIX 0603HaYveHn HaxoguTca B TEKCTE
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JzRejy(z, ®) dz JzImjyz, &) dz
Rez* = p and Imz* = (14
JbRej ¥z, 00) dz % Rejy(z, o) dz

Re z* gives the depth to the centre of gravity of the currents flowing in phase
with the surface magnetic field. The imaginary part of z* cancBot be defined as

a depth to the centre of gravity of out-of-phase currents since j Imjyz, co) = 0,
0

but Im z* corresponds to the moment of the out-of phase currents normalized
to the total current, and it gives the ‘mean depth’ of the out-of-phase currents.
(Schmucker 1970 used the concept of Im z* to calculate apparent resistivity).

The formulae in Table I thus establish a meaningful relationship between
surface impedance and the complex mean depth of the subsurface currents; the
complex depth z* and the impedance Z,.Dare srictly proportional to each
other: the real part of the impedance corresponds to the mean depth of currents
flowing out-of-phase to the surface magnetic field, while the imaginary part of
the impedance (divided by - icop) can be interpreted as the depth to the centre
of the in-phase currents.

4.2 Apparent resistivities in one-dimensional structures

As was pointed out by Spies and Eggers [1986] for the one-dimensional
situation, the magnetotelluric apparent resistivity can be defined in several
arbitrary ways. Cagniard’s definition is based on the absolute value of the
impedance. In the Schmucker inversion an apparent resistivity, calculated from
Re Z, is used (according to the morphological study by Spies and Eggers [1986],
this definition has proved to be the best one). But an apparent resistivity can
be defined by a variety of functions of the surface impedance. With our relation-
ship between the subsurface current system and surface impedance all of these
different apparent resistivities are also connected directly with the subsurface
current system : the apparent resistivity curve calculated from Re Z reveals how
the mean depth of out-of-phase currents increases with the period; the apparent
resistivity based on Im Z, on the other hand, describes the period-dependence
of the depth to the centre of gravity of in-phase currents; in the commonly-used
Cagniard resistivity it is the mean square of these two depths related to the two
current systems which is taken into account. Further apparent resistivity defini-
tions can also be given; all of them will somehow reflect the period-dependence
of Re z* and/or Im z*.
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4.3 The one-dimensional phase and its relationship to the apparent resistivity

The phase difference between the horizontal electric and magnetic com-
ponents at the surface is given by the ratio of the imaginary and the real parts
of the surface impedance, which is the same as the ratio of the real and
imaginary parts of the complex current centre depth z*:

Im Z,.00> *
. atan & .Re z*(co)
Re Z,.0Oto) atanim z*(e)

(With the assumption of + 45° for the asymptotic value of the magnetotelluric
phase, Im z* happens to have negative sign. In the interpretation it does not
matter whether Im z* is positive or negative, since out-of-phase currents may
arbitrarily be defined as being 90° behind or ahead, with appropriate positive
or negative signs.)

According to equation (15) the behaviour of the phase curve against the
period gives information on the ratio of the depth to the centre of gravity of
‘in-phase’ and the mean depth of the ‘out-of-phase’ currents (e.g. a phase value
of 60° informs us that the centre of gravity of the in-phase currents is |/3 times
deeper than the mean depth of the out-of-phase currents).

The period-dependence of the current depths for the typical two-layered
half spaces with g2q1 = K0 and g2/ql = 0.01 is shown in Fig. 2a and b.
When the period, or AJfr (Aiis the wavelength in the upper layer defined as

A = (WgfT, his the layer thickness) almost vanishes, the two depth values

are equal. As the period increases the currents extend progressively to greater
depths. When they approach the high-resistivity interface (g2ql = 100 case),
the out-of-phase current centre (after small initial oscillations) goes to greater
depths than the in-phase current centre. But towards (AX/r) -> oo the two depths
again coincide. In the opposite configuration of a high-conductivity basement
(@2Q = 0.01) the situation is reversed: here Fig. 2b shows that (except for the
initial small oscillations) the out-of-phase depth will lag behind the in-phase
depth, though towards (AJA) -> Q0 the two depths will again coincide.

‘Overshooting’ in the frequency domain of the apparent resistivity and
phase curves is a direct consequence of the small oscillations shown in Fig. 2a
and b. Oscillation-free apparent resistivity and phase curves cannot be obtained
in the frequency domain.

As was mentioned earlier, the most reliable apparent resistivity definition
is related to the real part of the surface impedance. When g2/Qi = 0.01, Spies
and Eggers [1986] observed that the apparent resistivity curve was more strong-
ly featured, and they therefore concluded that this allowed a higher resolution
for magnetotelluric soundings than in the opposite situation (Q2Q = 100).
According to Fig. 2a and b the mean depth of the out-of-phase currents is
modified by a high-conductivity basement over a very narrow AX/r interval,

(15)
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Fig. 2. Relationship between the mean depth of in-phase
and out of phase currents and the magnetotelluric problem
a) Mean depths of in-phase and out-of-phase currents as
functions of A,jh for a high resistivity basement
"WRi = 100
b) Mean depths of in-phase and out-of-phase currents as
functions of ij/A for a high-conductivity basement
Wei = 00D
¢) Magnetotelluric phase curves for q2/Qi = HO0 and
QilQi = 0.01, calculated from relation:
®]-0 = tan-1(Re 2D
2. abra. Osszefiiggés a fazisban levs és a 90° fazistolasi
aramok atlagmélységei és a magnetotellurikus fazis kézott
egydimenziés magnetotellurikus probléma esetén
a) A fazisban levé és a 90° fazistolasi aramok
atlagmélységei a A/A fliggvényeként, nagyellenallasu aljzat
(QilQi - 100 esetén
b) A fazisban lev6 és a 90° fazistolasu aramok
atlagmélységei a kjh fuiggvényeként, nagy vezetdképességii
aljzat (g2/ql= 0,01) esetén

c) Magnetotellurikus fazisgorbék a q2/Qi = 100 és
a i72i?i = 0.01 esetre, a <P D = arctg (Re z* B/lm z*.D)
osszefuiggéssel szamitva

Puc. 2. 3aBUCMMOCTb MeXay cpefHUMMN rny6uHamn TOKOB,
HaxoAsLWmMXcsl B OfHOM (hase M CMeLLEHHbIX No ¢ase Ha 90°,
N MarHuToTennypuyeckoii asoi NS 0LHOMEPHOro
MarHeToTelypPUYECKOro cryyas
a) CpefHue rny6uHbl TOKOB, HaxoAsLLMXCA B 04HON (hase
M CMeLLeHHbIX Mo (ase Ha 90°, Kak 3aBUCMMOCTb A/A,

B C/lyyae (hyHfaMeHTa C BbICOKUM COMPOTUBIIEHVEM
Ohlei = 100)

b) CpegHue rnybuHbl TOKOB, HaXOASILLUXCS B OLHOW (hase
M CMeLLeHHbIX Mo (hase Ha 90°, KaK 3aBUCUMOCTb F/A
B C/lyyae (hyHAaMeHTa C BbICOKOM NMPOBOAMMOCTbIO
Wel= o,0i)

c) MarHutoTennypuyeckune hasoBble KpuBble AN Cyyas
62Ri = 10u g2q\ - 0,01, paccumTaHHble Npu

o\D = arcs (RezIVIm

while in the case of a high-resistivity basement the depth modification extends
over a wide AJ/r range. With a high-conductivity basement the depth increase
of the current centres is strongly reduced as soon as the current system reaches
the good conductor. Consequently, the apparent resistivity calculated from Re Z
IS seen to adjust to the basement resistivity, over a much shorter period range.

On the other hand, and as is well known, the phase curves forp2i? = 100
and£?2i? = 0.01 are symmetrical. The surface phase — in contrast with the ap-
parent resistivity calculated from Re Z — is equally responsive to high-resistiv-
ity and high-conductivity units, in analogy with the apparent resistivity cal-
culated from |Z|. This means that the corresponding statement of spies and
Eggers [1986] requires a slight modification: different resolving powers for
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high-conductivity or high-resistivity structures are not strictly attributes of the
magnetotelluric method itself, but are largely a problem of the parameters used
for the interpretation. However, it is also true that the impedance is a ratio,
which in theory can be computed to any desired accuracy. In practice, because
of noise sources, it is often more difficult to measure the small field amplitudes
one has over conductive structures; on the other hand, conductive structures
are also a good shield against distant perturbations.

5. Remarks on the two-dimensional impedance, apparent resistivity,
and phase formulae

According to the corresponding equations in Table I, the special two-
dimensional distortion effects are as follows:

— in .E-polarization the appearance of A, and bHAby is due to extra
currents. As can be seen in Table I, any change in the total current immediately
leads to a modification of its moment;

— in d-polarization the magnetic field is a constant across the entire
surface profile, but the electric field is modified by a depth-integral of 6EZ/6y.
Ez and 6EZ6y in the medium originate from charges appearing at resistivity
interfaces, or simply from variations in the current conducting cross-section. As
we have seen in Sec. 3,8EJby can also be viewed as describing lateral variations
of the magnetic flux. For example, in Table I, and for the special case of a
vertical fault, the anomalous horizontal electric field due to free charges can also
be expressed in terms of the currents flowing through the resistivity interface.

5.1 Two-dimensional surface impedance

Just as for the one-dimensional situation, the surface impedance in E-pol-
arization also gives the complex depth of the current distribution, but instead
ofjx the modified current density j Eshould be used to compute the impedance,
as shown in the upper part of Table I. In A -polarization the impedance formula
is strongly modified by the appearance of 6Ez/6y in the medium, leading to the
superposition of two terms: the first is equivalent to a perfect one-dimensional
relation, but the second embodies the effects of 6EZ6y (6Ez6 y has a relative
phase shift of 90°, which strongly suggests that it is indeed caused by surface
charges).

5.2 On the two-dimensional apparent resistivities
In Table I the resolving powers one may expect with E- and A -polarization

anomalies are also indicated : in E-polarization any of the apparent résistivités
discussed will determine the complex depth zf of the modified currentsjE; in
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A-polarization all that will be determined is a combination of the depths Re zg
and Im z% with effects caused by surface changes.

Two-dimensional magnetotelluric variations of the Cagniard resistivities
are well known, and their link with the subsurface currents is certainly more
abstract than that ofthe apparent resistivities calculated from Re Z. But in spite
of some advantageous properties of pRez, it is not yet clear whether it is worth
using it instead of gz .

5.3 The two-dimensional magnetotelluric phase

In A-polarization the magnetotelluric phase tangent can be interpreted as
in the one-dimensional situation, since it is again the ratio of the real and the
imaginary part of the complex depth z£ of the subsurface currents, but instead
of currents flowing horizontally in the earth, the modified currents j Eshould be
used.

In A-polarization the depth to the centre of in-phase currents is combined
with the out-of-phase part of dEz/dy, while the mean depth of the out-of-phase
currents is influenced by the in-phase part of dEz/dy; this leads to complex
magnetotelluric phase behaviour. Table I gives an example of the evaluation of
bEJby, in the case of a vertical resistivity interface, where the charge effects can
also be expressed in terms of currents flowing through the resistivity interface.

Thus all geophysical parameters which are usually determined at the sur-
face can directly be related to the distribution of the currents flowing in the
earth.

A similar physical interpretation for the magnetotelluric phase has been
given by Fischer [1985]. His interpretation, which was derived at first for a
two-dimensional A-polarization configuration and then ‘extended’ to the one-
dimensional situation, is based on the occurrence of near-surface current con-
centrations or reductions : a near surface concentration of ohmic currents results
in a phase decrease, whereas a current reduction there leads to a phase increase.
Thus, with a simple intuitive rule about the distribution of the currents flowing
in the earth, the resulting magnetotelluric phase anomalies can be predicted.

The apparent success of Fischer's phase rule results from several favourable
circumstances :

— The distribution with depth of in-phase and out-of-phase currents always
evolves differently with period near resistivity contrasts (see, e.g., Fig. 2a and
b, where in-phase currents are pulled towards or into the medium of higher
conductivity, while out-of-phase currents are attracted towards or into the
medium of higher resistivity);

— the ohmic currents are closely related — at least at longer periods — to the
in-phase current;

— apart from the anomalous currents occurring in H-polarization there are no
further perturbing effects caused by surface charges;
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— in//-polarization, difficulties arise because the effects due to the redistribu-
tion of the currents combine with effects produced by surface charges at
resistivity discontinuities. These effects are going to be studied in detail by
Fischer, Szarka and Adam in a paper now in preparation.

6. Remarks on three-dimensional magnetotelluric and controlled-source
problems

Simplified formulae derived from equations (5)-(10), which are sum-
marized in Table I, yield a clear physical meaning for the surface electromag-
netic parameters usually used in magnetotelluric interpretation.

For the three-dimensional magnetotelluric problem, or for any controlled-
source problem, equations (5)—€10) cannot be simplified (except for special
controlled-source situations where some elements in the general relationships
may vanish, yielding equations similar to those in Table I). In most cases both
anomalous currents and charges are present, and from electromagnetic mea-
surements carried out at the surface only very complex conclusions can be
drawn. Equations (5}-(10) clearly illustrate the true complexity of the problem
faced in three-dimensional magnetotellurics or in controlled-source methods.

7. Electromagnetic parameters at arbitrary depth

Ifwe integrate Ampere’sand Faraday’s laws not from the surface, but from
an arbitrary depth z to infinity, it can be shown that the basic formulae derived
in this paper remain valid and express the fields at any arbitrary depth inside

the conductor.
It is easy to show that the only difference appears in the derivation of eq. (7),

where the product z «Hy cannot be neglected when zAO. A detailed deriva-
tion for this situation is given by Szarka and Fischer [1989] whose results for
the three-dimensional configuration can be expressed as follows:

ZW(x, y,z)= - icop(zU - 2)+/mx(E2) (16)
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According to eg. (16) the impedance at any interior point of a conductor
is entirely given by the complex mean depth of the currents flowing below the
observation point. Although the amplitude and configuration of this current
distribution are also determined by currents flowing above the measuring point,
this does not appear explicitly in eq. (16). Szarka and Fischer [1989] also
demonstrate that formulae like eq. (16) are of very general validity: they remain
true even when the surface exhibits a complicated topography and when the
primary inducing field is not uniform.

8. Conclusions

The electromagnetic field components at the surface of the earth have been
derived in terms of the distribution of the currents flowing underground. From
the derived relationships, some of which are listed in Table I, physical meanings
closely related to subsurface currents have been given for the surface impedance,
the apparent resistivity and the magnetotelluric phase.

Based on the relations summarized in Table | the magnetic fields Hy or Hx
are determined mainly by the total current; the electric fields, Ex or Ey, on the
other hand, are closely related to the first moment of these currents. The surface
impedance (i.e., the ratio of the current moment to the total current, multiplied
by - icon) represents a complex depth which can be interpreted as a combination
of the depth to the centre of gravity of in-phase and the mean depth of
out-of-phase subsurface currents. This definition is somewhat different from
that of Schmucker [1970] and Weidelt [1972]. The surface impedance is closely
related to this complex depth :

— in the one-dimensional configuration the real part of the impedance is
proportional to the mean depth of the out-of-phase currents, while the
imaginary part is proportional to the depth of the centre of gravity of the
in-phase currents;

— in A-polarization the one-dimensional proportionality between the surface
impedance and the complex depth of the subsurface current centre can be
extended if one substitutesjE = jx- dH./dy forjx(orjF—jy+dHJdx forjy);

— in A-polarization the one-dimensional complex current depth must be cor-
rected with terms which describe the dip-variation of the vertical electric
component; the origin of these is essentially related to the appearance of
surface charges at resistivity discontinuities.

The apparent resistivity curves reflect the period-dependence of certain
functions of the mean depths of out-of-phase and/or in-phase currents. The
phase curve (the phase difference between horizontal electric and magnetic
components at the surface) is closely related to the ratio of these two depths.

The only assumptions made in this paper were (1) that displacement
currents could be neglected, (2) that the electromagnetic fields as well as their
first moments vanish at infinite depth, and (3) that electric permittivity and
magnetic permeability are constant, independent of time and position. The
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formulae derived for the surface can easily be extended to any measuring point
inside the conductor. All subsurface electromagnetic parameters can be explicit-
ly described in terms of the currents flowing below the observation point only.

The direct connection revealed in this paper between the commonly-used
parameters in surface electromagnetic sounding methods and the subsurface
current distribution makes it possible to propose a new and different physical
interpretation of the governing electromagnetic phenomena based on the distri-
bution of the subsurface currents.
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ELEKTROMAGNESES PARAMETEREK VEZETO FELTER FELSZINEN, A VEZETON
BELULI ARAMELOSZLAS FUGGVENYEBEN

SZARKA Laszlé és Gaston FISCHER

Az elektromos és magneses teret egy vezet6 vizszintes felszinén (pl. a fold felszinén) a mélyben
folyé aramok segitségével irtuk le. Az dsszefiiggések barmely természetes vagy mesterséges elektro-
magneses gerjesztés esetén érvényesek. A magnetotellurika alapeseteiben — azaz az egy- és kétdi-
menzids problémakban — a latszélagos fajlagos ellenéllas és a fazis az dsszefiiggésekbdl vilagos
fizikai jelentést kapnak. A felszini impedancia képzetes része példaul megadja a felszini magneses
térrel azonos fazisi aramok stlypontjanak mélységét; a valés rész pedig a 90°-kal eltolt fazisu
aramok atlagmélységével van szoros kapcsolatban. A latszélagos fajlagos ellenallas — a definiciétdl
figgé moédon — mindig a felszin alatti &ramrendszer komplex mélysége valés és/vagy képzetes
részének periédusfiiggését tikrozi, mikozben a fazisszog tangense a fazisban levé és a 90° faziseltola-
s aramok atlagmélységének hanyadosat adja meg. £-polarizaciéban, amikor a vizszintesen folyé
aramok a vertikalis magneses komponens délésiranyu valtozasa miatt médosulnak, minden formu-
lat ki lehet fejezni az egydimenzids esethez hasonlé médon. A A-polarizaciés impedancia azonban
két tag Osszegeként irhatd fel: az elsé egy egyszer( egydimenziés kifejezés, a masodik pedig a
flgg6leges elektromos tér délésiranyl valtozasat tukrozi (a mélybeli aramok teljes dsszegére nor-
maiva), s e masodik hatas a hatarfeluleti toltések kovetkezménye. Az elektromégneses térnek a
vezet§ belsejében torténé szamitasahoz elegend6 a megfelel integralasi hatarokat megvaltoztatni.

3NEKTPOMATHWUTHBIE MAPAMETPbl HA MOBEPXHOCTU NMPOBOAALLEN
NMONYCNPOCTPAHCTBA B3ABUNCNMOCTWN OT PACNPEOENEHWA TOKA MO
MPOBOAOHWKY.

NNacno CAPKA un lNactoH ®ULLEP

3neKTpUYeCKoe N MarHUTHOE MoJie Ha FOPM30HTaNbHOM MOBEPXHOCTU MPOBOAHMKA, Hanpu-
Mep, Ha MOBEPXHOCTU 3em/n, OMUCLIBAETCA C MOMOLLbLIO TY6UHHBIX TOKOB. YCTaHOB/IEHHbIE
3aBMCMMOCTU AeNCTBUTENbHbI B C/ly4ae N1060ro eCTeCTBEHHOrO WAN UCKYCTBEHHOMO 3/1IeKTpomar-
HUTHOIO BO3MYLLEHUA. 10 3TUM 3aBUCUMOCTSAM [/I OCHOBHbIX C/lydaeB MarHUTOTENNypUKN —
0N OfHO- U ABYXMEPHbIX Cryvaes KadKyLLeeca yfieNlbHOe CONpoTMB/IeHME 1 (ha3a nosydatT
ACHOE (hM3NYeCKoe TO/IKOBaHWe. MHVMas YacTb NOBEPXHOCTHOrO UMMefaHca onpefenset rnyouHy
LeHTpa TSXKeCTU TOKOB, MMEILWNX (hasbl, coBnagaroLLne ¢ hazamm NoBepXHOCTHOIO0 MarHUTHOroO
nons; a feliCTBMTEeNbHAA YacTb HaxXo4MTCS B TECHON CBA3W CO CpefHeli rny6uHON TOKOB, (hasbl
KOTOpPbIX CMeLleHbl Ha 90°. Kaxyleecs y/Ae/ibHOe CONPOTUBIEHNE — B 3aBUCUMOCTU OT MeToja
onpefeneHns  oTobpaxkaeT 3aBUCMMOCTb A€NCTBUTENLHOW W/MAN MHUMOI YacTu rny6uHbI NOA-
3eMHOIi CUCTEMbI TOKa OT Nepyoja nons, B TO BPeMS, Kak TaHreHc (ha3oBOro yrna faeT COOTHoLLe-
HUWe rnybuHbl 04HO(Aa30BbIX M CMeLLeHHbIX No (ase Ha 90° TokoB. B nonspmsaumm E — korga
ropu3oHTaNbHble TOKM M3MEHSIOTCA BCNEeACTBME U3MEHEHUS NafeHns BepTUKaNbHOW MarHWTHOW
KOMMOHEeHTbl — BCe (POPMY/ibl MOXHO BbIpasUTb Kak ANA OAHOMEPHOro cay4yas. A uMmnegaHc
H 3anvcbiBaeTca Kak CyMMa ABYX Y/IEHOB : MepBbIi — MPOCTOe 0AHOMEPHOE BblpaXKeHWe, a BTOPOWA
— OoTpaXkaeT W3MeHeHWe NafileHUsi BEPTUKA/IbHOIO 3/1eKTPUYECKOro nonst (HopmanusoBaHbl Ha
CYMMY TOKa) W ABNSAETCA CNeCTBMEM 3apsAf0B, HAXOAALLMXCA Ha FPaHUYHbIX NMOBepXHOCTAX. [ns
pacyeTa 3/1eKTPOMArHMTHOIO NOJIA, HaxXOAALLerocsa BHYTPU MNPOBOAHMKA, JOCTATOYHO BblOpaTb
COOTBETCTBYIOLLbIe MHTErpasibHble rpaHuLbl.
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DIRECT INTERPRETATION OF MAGNETIC ANOMALIES DUE TO
SPHERICAL SOURCES — A HILBERT TRANSFORM METHOD
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A direct interpretation of magnetic anomalies due to spherical sources is devised from the first
horizontal and vertical derivatives of the vertical component of the field. The vertical derivative of
the field is computed from the horizontal derivative by means of the Hilbert transform. The
parameters of the sphere are obtained as a function of the abscissae of the points of intersection
of the derivatives, as illustrated in the text. Two theoretical examples demonstrate the utility of the
method. Moderately good results are obtained on field data pertaining to the vertical magnetic
anomalies over spherical sources in the Bankura area of West Bengal, India, and the Louga
anomaly, in the USA. This interpretation is applicable to horizontal and total magnetic anomalies
too. Gravity and self potential anomalies can also be interpreted by similar methods. This procedure
can easily be programmed.

Keywords: magnetic anomalies, spherical models, direct problem, Hilbert transform

1. Introduction

Point poles, magnetic doublets and spheres are some of the most important
three-dimensional models in mining geophysics. Many methods are available
in geophysical literature to interpret magnetic anomalies of ground and air-
borne magnetic data. [Henderson and Zietz 1948 and 1967, Smellie 1956, G ay
1965, Radhakrishna Murthy 1974, Rao et al. 1973]. These methods are
subject to certain assumptions and are relatively cumbersome in their approach.

A more recent paper of Mohan et al. [1982] proposes a novel interpretation
of spherical sources by means of spectral analysis, although it again involves
tedious mathematical operations. In this paper, we present an elegantly simple
mathematical procedure to extract the parameters of the sphere, namely the
depth to the centre, the polarization angle and the radius. This process involves
the computation of the first horizontal derivative of the vertical magnetic
anomaly, and hence the vertical derivative by means of the Hilbert transform.
Making use of these two derivatives, the parameters are obtained by means of
simple mathematical expressions.

The application of the Hilbert transform in the interpretation of ground-
magnetic anomalies has been gaining greater importance of late. [Nabighian
1972, Mohan et al. 1982, Sundararajan 1982 and Sundararajan et al. 1983,
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1985]. In all these papers the concept of amplitude of the analytic signal is used
in precisely locating the origin. However, a mention can be made that this
amplitude curve can also be used to delineate the sources from regional magnet-
ic or gravity surveys. For all practical purposes, this method can also be realised
by simple programming.

2. Vertical magnetic effect of a sphere

The geometry of the model is shown in Figure 1, with Z as the depth to
the centre, R as the radius and Q as the magnetic polarization angle. The vertical
magnetic effect of such a model is given by

222—xZ}sin Q- 3xZ cos Q

_4 (
V(= TR (x2+z282 &

where / is the intensity of magnetisation [Rao et al. 1973].

Fig. 1. Geometry of the spherical model
1. dbra. A modell geometriaja

Puc. 1. F'eomeTpuna mogenu.

Differentiating equation (1) separately with respect to x and Z we obtain
the first horizontal and vertical derivatives:
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where / is the intensity of magnetisation [Rao et al. 1973].

Fig. 1. Geometry of the spherical model
1. &bra. A modell geometriaja

Puc. 1. 'eomeTpmna mopfenu.
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1972, Mohan et al. 1982, Sundararajan 1982 and Sundararajan et al. 1983,

* Centre of Exploration Geophysics, Osmania University, Hyderabad—500 007, India
Manuscript received (revised version): 14 April, 1989
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1985]. In all these papers the concept of amplitude of the analytic signal is used
in precisely locating the origin. However, a mention can be made that this
amplitude curve can also be used to delineate the sources from regional magnet-
ic or gravity surveys. For all practical purposes, this method can also be realised
by simple programming.

2. Vertical magnetic effect of a sphere

The geometry of the model is shown in Figure 1, with Z as the depth to
the centre, R as the radius and Q as the magnetic polarization angle. The vertical
magnetic effect of such a model is given by

4 , (2Z22—x2)sin Q- 3xZcos Q
- )
where / is the intensity of magnetisation [Rao et al. 1973].

Fig. 1. Geometry of the spherical model
1. dbra. A modell geometriaja

Puc. 1. l'eomeTpus Mogenu.

Differentiating equation (1) separately with respect to X and Z we obtain
the first horizontal and vertical derivatives:

4/3a23
WK(X) = (Y2+z 272 “K* +z ) (2x Smq + 3Z cos Q) +

+ 5X((2Z2- x2) sin Q- 3XZ cos £7)]

A3rrn3y  r o,
vz(x) = X2+ Z2)72"'[(* +z )(4ZSIn0 _ 3* ASq) -

- 5Z((2Z2- X2) sin Q- 3xZ cos Q)] &)
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According to Nabighian [1972], the horizontal and vertical derivatives of
a potential field forms a Hilbert transform pair. It can be represented here
symbolically as:

For mathematical convenience [Sundararajan 1982], either the positive
or negative of the vertical derivative can be taken as the Hilbert transform of
the horizontal derivative, since in both cases the magnitude of the field is the
same, with a 180° phase difference to each other.

The relationship between the vertical and horizontal derivatives can be
given in the form of Hilbert Transform equation as

+ CO

Vi) = \efy) = - +P )\(”_*’yk) dx @)

where P is Cauchy’s principal value of the integral [Thomas 1969].
This can be expressed in the form of convolution as:

Vz(x)= VX(x)*ﬁx (5)

where * denotes the convolution.

3. Interpretation

The location of the source—indispensible in geophysical interpretation—
can be determined by solving a simple equation of the horizontal and vertical

derivatives of the form
Ax) = [VAx)2+ Vz(x)2]1/2 (6)

The function A(x) is termed the amplitude curve of the analytic signal in
geophysical literature [Nabighian 1972 and Sundararajan 1982]. The graph
of A(x) attains its maximum value over the causative body. This is true for 2-D
and 3-D structures.

At x=0, equations (2) and (3) reduce to,

cos Q

vao) 3K 74 (7)
sin Q

Vz(0) 6K 24 (8)

where K - énRa.
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Dividing equation (8) by equation (7) we obtain the angle of polarization as:

— ' Vz(0)
Q=1tn" o) ©)

From Figs. 2 and 3 we see that the horizontal and vertical derivatives
intersect at three distinct points. Therefore we can consider,

W(x)=Mz(x) at x=xu x2and x3
where xu x2 and x3 are the abscissae of the points of the intersection of the
derivatives, as cited above. Then, using equations (2) and (3) the polynomial
equation will be
F(x) = 3x3(sin Q+ cos Q)+ 3x2Z(4 cos Q- 3sin Q) -
- 12xZ2(sin Q+ cos Q) —3Z3(cos Q- 25sin Q)

Fig. 2. The first horizontal (Vx) and vertical derivatives (Vz) of the vertical magnetic anomaly
and their amplitude curve (J1(x)) due to a sphere (Model I., for model parameters see Table 1)

horizontalis (\X) és vertikalis (F2 derivéltja, valamint az ezekb6l képzett amplitddé gorbe (J1(x))

Puc. 2. MNepsasa ropmsoHTanbHas (VX) n BepTukanbHasa (Vz) npoussogHas aHoManuu AZ,
06yCNOBIEHHON cthepnyecKoi Bo3myLLatoLLeil cuioi (Mogenb |, mapameTpbl ee CM.B Tabn.l),
a TaKke MnonyyeHHas No HUM amnanTygHas kpusas (A(X)).
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According to Nabighian [1972], the horizontal and vertical derivatives of
a potential field forms a Hilbert transform pair. It can be represented here
symbolically as:

H
VX (x) - VZ(X)

For mathematical convenience [Sundararajan 1982], either the positive
or negative of the vertical derivative can be taken as the Hilbert transform of
the horizontal derivative, since in both cases the magnitude of the field is the
same, with a 180° phase difference to each other.

The relationship between the vertical and horizontal derivatives can be
given in the form of Hilbert Transform equation as

V() = \e(y) = - +P @

where P is Cauchy’s principal value of the integral [Thomas 1969].
This can be expressed in the form of convolution as:

Vz(x) = Vk(x)*ﬁx (5

where * denotes the convolution.

3. Interpretation

The location of the source—indispensible in geophysical interpretation—
can be determined by solving a simple equation of the horizontal and vertical
derivatives of the form

A(x) = IK(x)2+Vz(x)212 (6)

The function A(x) is termed the amplitude curve of the analytic signal in
geophysical literature [Nabighian 1972 and Sundararajan 1982]. The graph
of A(x) attains its maximum value over the causative body. This is true for 2-3
and 3-D structures.

At x=0, equations (2) and (3) reduce to,

(7)

)

where K = énRSI.
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Dividing equation (8) by equation (7) we obtain the angle of polarization as:
Q =tan-1 9

From Figs. 2 and 3 we see that the horizontal and vertical derivatives
intersect at three distinct points. Therefore we can consider,

W)= M(x) at x=xI5x2and x3
where xI5 x2 and x3 are the abscissae of the points of the intersection of the
derivatives, as cited above. Then, using equations (2) and (3) the polynomial
equation will be
F(x) = 3x3(sin Q+ cos Q)+ 3x2Z(4 cos Q—3sin Q) —
- 12xZ2(sin Q+ cos Q)- 3Z3(cos Q- 2sin Q)

Fig. 2. The first horizontal (\&) and vertical derivatives (\Vz) of the vertical magnetic anomaly
and their amplitude curve (/t(.r)) due to a sphere (Model I., for model parameters see Table I)

2. dbra. Egy gémbi haté (I. modell, paramétereit lasd az I. tablazatban) tsZ anomalidjanak els6
horizontalis (\k) és vertikalis (V2) derivaltja, valamint az ezekb6l képzett amplitidé gorbe (A(Xj)

Puc. 2. MepBasa ropusoHTanbHaa (ty v BepTUKanbHasa (K2 npousBofHas aHoOManuu AZ,
06yCNOBIEHHON cdepryecKoii Bo3myLLatoLLeil cunoli (Mogens |, napameTpbl ee cM.B Tabn.l),
a TaKke MonyyeHHas No HAUM amnanTygHas kpusas (A(X)).
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Fig. 3. The first horizontal (Vx) and vertical derivatives (K) of the vertical magnetic anomaly
and their amplitude curve (A(x)) due to a sphere (Model II., for model parameters see Table 1.)

3. abra. Egy gdmbi hat6é (Il. modell, paramétereit lasd az I. tdblazatban) AZ anomalidjanak els6
horizontalis [VX) és vertikalis (V2 derivaltja, valamint az ezekbdl képzett amplitidé gorbe (A(x))

Pac. 3. MepBasa ropusoHTanbHas (U,) n BepTukanbHas (\z) nponssogHas aHomanun AZ,
cthepuyeckoii Bo3myLLaloLLein cunbl (Mogens I, napameTpbl ee cM. B Tabn.l), a Takxke
nosiy4eHHas no HUM amnanTygHas kpusas (A(X)).

This cubic equation in a could easily be solved for Z, i.e., the depth to the
centre of the sphere is obtained as:

Z3= (A/B)A] B2 .a3 (11)

Where x 1, x2and a s are the three real roots of equation (10), which also implies
that equations (2) and (3) possess these roots. The constants A and B are given

as:
A =sinQ+cos Q
B = cos Q—2sin Q

Since Q is already known, the depth Z to the centre of the sphere could easily
be obtained from equation (11).
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Squarring and adding equations (7) and (8) we get K as:

Z4 VM 2+ VzV»s V2
K~T 4-3 cos2Q

Thus, K vyields either the radius (R) of the sphere or the intensity of
magnetization (7) given as:

(12

\
. bl ®
= k3 (44

4. Theoretical examples

The procedure outlined above is demonstrated with two theoretical exam-
ples (Table 1). Using equations (2) and (3), the first horizontal and vertical
derivatives of the magnetic field are computed and shown in Figures 2 and 3.
These figures include the amplitude curve of the derivatives. It is observed that
there are three distinct abscissae at the points of intersection of the horizontal
and vertical derivatives.

The parameters, namely the magnetic polarization angle (Q), the depth to
the centre of the sphere (Z) and the radius (R), are evaluated using equations
(9), (12) and (13). The results are presented in Table | and it can be observed
that the assumed and interpreted values agree very closely, thereby supporting
the validity of the method.

Parameters Q* z* R*
Assumed 45 2.00 1.00
values

MODEL 1
Evaluated 45 1.96 1.00
values
Assumed 60 2.50 0.75
values

MODEL 1l
Evaluated 60.14 2.49 0.75

values
(* in arbitrary units and + in degrees)
Table I. Theoretical examples

I. tdblazat. Elméleti példak

Tabnuua I. TeopeTnyeckme npumepsbl.
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5. Field examples

The technique under discussion is tested on two field examples, the first
pertaining to the vertical component of the magnetic field in the Bankura area
of West Bengal, India (Fig. 4), and the second to the Louga anomaly in the
USA (Fig. 6, after Nettleton 1976). Both anomalies can be approximated by

spherical models.

(a) The Bankura Anomaly, West Bengal, India

The total length of the Bankura anomaly is around 9.28 km and it is
digitized into 100 equal parts at an interval of 92.8 meters. The first horizontal
derivative is computed manually and then it is convolved with (1/x) to obtain
the discrete Hilbert transform. Also the amplitude curve is computed, using
equation (6). The horizontal derivative, the discrete Hilbert transform and the
amplitude curve are shown in Fig. 5. Using equations (9), (11) and (13) the
parameters, namely the polarization angle (Q), the depth to the centre of the
sphere (Z) and the radius of the sphere are evaulated. Thus, the results obtained
(Table 11) are compared with that of Rao et al. [1977], and with those obtained
by the method of Monan et al. [1982].

Fig. 4. The vertical component of the magnetic
anomaly in the Bankura area of West Bengal,
India

4. &bra. Nyugat Bengalidban Bankura teriileten
(India) mért AZ anomalia

Puc. 4. AHomanua AZ, 3amepeHHas
B TeppuTopumn BaHkypa B 3anagHoii BeHranuu
(NHawnsa).

THE BANKURA ANOMALY, WEST BENGAL, INDIA

Parameters Z (km) R (km) Q
Hilbert Transform method 1.252 1.099 41.52°
Spectral Analysis method [Mohan et al. 1982] 1.312 0.993 41.50°
Rao et al. [1977] 1.32

Table lia. Field examples 1la. tablazat. Terepi példak Ta6nuua Ma. MoneBble NprUMepsI.
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Fig. 5. The first horizontal derivative (FJ, the Hilbert transform (FJ and their amplitude curve
(J1(x)) of the vertical component of the magnetic anomaly in the Bankura area of West Bengal,
India

5. &bra. A Bankura AZ-anomalia els6é horizontélis derivaltja (FJ, ennek Hilbert transzformaltja
(FJ és az ezekbdl képzett amplitidé gorbe (/)(.*))

Puc. 5. MepBas ropmusoHTanbHaa npoussogHas (FJ aHomanun AZ B baHkypa, ee Buj (FJ no
TpaHcgopmaumn MmabbepTa 1 NosyvyeHHas MO HUM aHoManbHasa Kpusas (A(X)).

(b) The Louga Anomaly, USA

Figure 6 shows the profile of the vertical magnetic anomaly on a north-
south line and a cross section of the probable source, a heavily magnetised
spherical body, after Nettieton [1976].. The entire length of the profile of
around 65 km is digitised into 101 equal parts, and then the horizontal deriva-
tive is computed. As in the previous case the vertical derivative and the am-
plitude curve have been calculated and shown in Figure 7. The parameters are
evaluated based on the procedure detailed in the text. The results obtained agree
very well with that of N ett1eton [1976], presented in Table Il. In addition, these
results are also compared with those of Monan et al. [1986], who used the
Mellin transform method for the integration of the gravity anomaly.
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MAGNETIC CENTER,

OBSERVED MAGNETIC / <*

o o ACALCULATED MAGNETIC o)

ZERO DATUM FOR MACNETIC CALCULATION A
7 MACNETIC \
/ POLARIZATION \
I (OIPZATD-*. I
SPHERE FO R ——T LOUGA ANOMALY

MACNE TIC CALCULATION
Fig. 6. The vertical component of the magnetic anomaly of Louga, USA, and the probable
source [after Nettleton 1976]
6. abra. A Louga (USA) ztZ-anomalia és a valészin( haté [Nettleton 1976 nyoman]

Puc. 6. AHomanua AZ B Jlyra (CLUA) v BepossiTHas Bo3myLlalroLwasa cuna
[no HeTTnetoHy, 1976].

Fig. 7. The first horizontal derivative (\%), the Hilbert transform (VJ and the amplitude curve
(A(x)) of the vertical component of the magnetic anomaly of Louga, USA

7. é&bra. A Louga (USA) méagneses AZ-anomalia elsé horizontdlis derivaltja (Vx), ennek Hilbert
transzformaltja (Vz) és az ezekbdl képzett amplitidé gorbe (A(x))

Puc. 7. MepBas ropmsoHTanbHas npoussogHas (KJ, ee Bug no TpaHchopmaumm Munbbepta (K.)
M NOMyYeHHas No HUM amnnuTyaHas kpmeas (A(X)).
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THE LOUGA ANOMALY, USA

Parameters Z (km) Q
Hilbert Transform method of the authors 9.78 19.40°
The method of Nettleton [1976] 9.88 20.00°
Mellin transform method [Mohan et al. 1986] 9.31

Table lib. Field examples lib. tablazat. Terepi példdk Tab6nuua lib. MoneBble NpumMepsl.
6. Conclusions

The method of interpretation of magnetic anomalies over 3-D sources by
the Hilbert transform is very accurate, reliable, simple and effective in its
approach. The amplitude curve of the analytic signal is extremely valuable for
the interpretation of sources of arbitrary shape as well.

REFERENCES

Gay S. P. 1963 : Standard curves for interpretation of magnetic anomalies over long tabular bodies.
Geophysics 28, 2, pp. 161-200

Henderson R. G. and Zietz |. 1948: Analysis of total magnetic-intensity anomalies produced by
point and line sources. Geophysics 13, 3, pp. 428-436

Henderson R. G. and Zietz I. 1967: Magnetic-doublet theory in the analysis of total intensity
anomalies, in Mining Geophysics. Vol. Il. 490. SEG

Mohan N. L., Sundararajan N. and Seshagiri Rao S. V. 1982: Interpretation of some two-dimen-
sional magnetic bodies using Hilbert transforms. Geophysics 47, 3, pp. 376-387

Mohan N. L., Anandababu L. and Seshagiri Rao S. V. 1986: Gravity interpretation using the
Mellin transform. Geophysics 51, 1, pp. 114122

Nabighian M. N. 1972: The analytic signal of two-dimensional magnetic bodies with polygonal
cross-section; its properties and use for automated anomaly interpretation. Geophysics 37,
3, pp. 507-517

Nettleton L. L. 1976: Gravity and magnetics in oil prospecting. McGraw-Hill, New York

Radhakrishna Murthy I. V. 1974: Analysis of total field anomalies of magnetised spherical ore
deposits. Geoexploration 12, 1, pp. 41-50

Rao B. S. R., Radhakrishna Murthy l. V. and Visweswara Rao C. 1973: A computer program
for interpreting vertical magnetic anomalies of spheres and horizontal cylinders. Pure and
Applied Geophysics 110, pp. 2056-2065

Rao B. S. R, Prakasa Rao T K. S. and Krishna Murthy A. S. 1977: A note on magnetized
spheres. Geophysical Prospecting 25, 4, pp. 746-757

Smellie D. W. 1956: Elementary approximations in aeromagnetic interpretation. Geophysics 21,
4, pp. 1021-1040

Sundararajan N. 1982: Interpretation techniques in Geophysical Exploration using the Hilbert
transform. Ph. D. Thesis submitted to Osmania University, Hyderabad, India

Sundararajan N., Mohan N. L. and Seshagiri Rao S. V. 1983: Gravity interpretation of
two-dimensional fault structures using Hilbert transforms. Journal of Geophysics 53, 1, pp.
3441

Sundararajan N.. Mohan N. L., Vijaya Raghava M. S. and Seshagiri Rao S. V. 1985: Hilbert
transform in the interpretation of magnetic anomalies of various components due to a thin
infinite dike. Pure and Applied Geophysics 123, 4, pp. 557-566

Thomas J. B. 1969: An introduction to statistical communication theory. John Wiley, New York



Direct interpretation of magnetic anomalies... 183

GOMB ALAKU HATOK OKOZTA MAGNESES ANOMALIAK ERTELMEZESE
- EGY HILBERT TRANSZFORMACIOS MODSZER

N. SUNDARARAJAN, B. UMASHANKAR, N. L. MOHAN és S. V. SESHAGIRI RAO

Gomb alaku haték okozta magneses anomaliak kozvetlen értelmezésére dolgoztunk ki egy
modszert a magneses tér elsé horizontalis és vertikalis derivaltjai felhasznalasaval. A tér vertikalis
derivaltjat Hilbert transzforméciéval szamitottuk ki a horizontélis derivaltbél. A gémb paramétere-
it a derivaltak metszéspontjai abszcisszai fliggvényeként hataroztuk meg. Két elméleti példan
bizonyitjuk a mddszer hasznalhat6sagat. Mérsékelten j6 eredményeket nyertiink a Nyugat-Benga-
liai Bankura és az egyesilt allamokbeli Louga tertleten, a gémb alakd hat6é okozta AZ-anomaliak
értelmezése sorén. Ez az értelmezés alkalmazhaté AH- és AT-anomalidkra is. Gravitacios és termé-
szetes potencial anomalidkat is értelmezhetiink hasonlé moédszerekkel. A médszer elénye, hogy
kénnyen programozhaté.

MHTEPMNPETALUWA MATHUTHbBIX AHOMANNA, BbIBBAHHbBIX COEPUYECKUMMU
BO3IMYWAKOWNMN CUNTAMN, METOAQOM TPAHC®OPMALUUN TUNBBEPTA

X. CYHOAPAPALXAH, B. YMALUXAHKAP, H. J1. MOXAH n C. B. CECXATVPN PAO

[ns HenocpefCcTBEHHOW WHTeprnpeTauMnm aHOManuii BblpaboTaH MeTOA, OCHOBaHHbIA Ha
MCMOMNb30BaHUN MNePBbIX BEPTUKA/IbHBLIX W FOPU30HTA/IbHBIX MPOU3BOAHBLIX MarHWTHOrO Mons.
BepTukanbHas Npov3BOAHas paccUUTbIBAeTCA M3 FOPU3OHTaNbHOM MPOM3BOAHONM TpaHcthopMma-
uvei MunbbepTa. MapameTpbl chepbl ONPeAensOTCA Kak 3aBUCUMOCTM abCumce TOYeK rnepeceye-
HVA NPOM3BOAHbLIX. BO3MOXbHOCTL MPUMEHEHUSA METO/a A0Ka3blBAETCA Ha [iBYX TEOPETUYECKUX
npumepax. OTHOCUTENBHO XOpOoLUKe pesynbTaTbl 6blM Nony4veHsbl AN baHkypa (3anagHas beHra-
nns) n gns Jlyra (CLUA) npy nHTepnpeTaumm aHomanuin AZ. MeTof UCNOJb3yeM U ANs MHTepnpe-
Tauuy aHoManuii AH 1 AT. Togo6HbIMM MeTOAaMMN BO3MOXKHA TaKXXe MHTepnpeTauus rpaButaum-
OHHbIX @aHOManuini M aHOManuin ecTeCTBEHHOro noTeHuuwana. MpenmyLiecTBO MeToAa - ferkas
BO3MOXHOCTb KOMMbOTEPU3AL NN,
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MAGNETIC SUSCEPTIBILITY ANISOTROPY MEASUREMENTS ON
MIOCENE IGNIMBRITES FROM BUKKALJA, HUNGARY

Robert BORDAS*

The results of susceptibility anisotropy measurements of Miocene ignimbrite samples from
4 localities in Bukkalja, Northeastern Hungary, are presented. It is concluded that the magnetic
fabric of the rocks was affected by Miocene or younger stress fields. Using the intermediate
susceptibility axes two compression directions can be identified: 11'—191”for Bogéacs (upper ignim-
brite level) and 135°-315° for Saly (lower ignimbrite level) and these are in good agreement with
compression directions derived from microtectonic measurements.

Keywords: magnetic susceptibility, anisotropy, Miocene, ignimbrite, Hungary, Bukk Mountains

1. Introduction

The anisotropy of low-field magnetic susceptibility can provide informa-
tion about the magnetic fabric of rocks. The principal susceptibility directions
are related to the geological structural elements and the stress field, e.g. the
schistosity plane and bedding plane, respectively, the compression axes, etc.
Several authors have used anisotropy data in geological structural analysis [e.g.
Hrouda, 1979, 1982; Rathore 1985; Hirt €t al. 1988; Rochette 1988]

In the Bukk Mountains the existing fault zones as well as the distribution
of the Miocene volcanism indicate a rather complicated stress pattern. The
ignimbrites of the Bilkkalja that we measured also show clear magnetic aniso-
tropy which we attempt to interpret here in structural geological terms.

2. Geology and sampling

There was a large-scale and recurring volcanic activity in NE Hungary
during the Miocene age. Rhyolitic and dacitic tuffs were forced up during
eruptions which covered the whole Bilkkalja area and even the Biikk Moun-
tains. Ignimbrites formed two levels in the rhyolite tuff:

a) the lower level resembles rhyolitic lavas and contains many dark grey perlitic
or pitchstone inclusions of fluidal texture;

b) the upper level is of dacitic composition. The rock is hard, dark grey, brown
or red, vitrophyric-porphyric, contains pitchstone and often has a fluidal texture
[Balogh and Ronai 1965]

* Eotvos Lorand Geophysical Institute of Hungary, Budapest P.O.B 35, H-1440, Hungary
Manuscript received (revised version): 22 March, 1989
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Stratigraphical dating of the Bukkalja ignimbrites is problematic. Batogh
and Resnai [1965] claim that the two types of ignimbrites are of different age:
a) is considered as lower Helvetian (Ottnangian) and b) as Tortonian
(Badenian).

Radiometric dates range from about 60 to 12 Ma [Hamor et al. 1979].

78 independently oriented samples were drilled from 4 localities (Bogacs:
upper ignimbrite level;, Kécs, Saly and Kisgydr: lower ignimbrite level) both for
palaeomagnetic and anisotropy measurements (Fig. 1). The samples were
collected from several sampling points at Bogécs (4 points), Saly (2), Kisgy6r
(4) and from one point at Kacs. Either the visible fabric and colour of the rocks
at these points was different, or the sampling points represent different blocks
of rock. One to four standard size specimens were cut from each sample.

The macroscopic texture of the ignimbrites showed well developed foliation
at all localities. This foliation plane is subhorizontal, the dip ranges from 0 tol

Fig. 1 Ignimbrit outcrops in the Bikkalja region, from Balogh and Rénai [1965]. a: lower
ignimbrite level; b: upper ignimbrite level. Dots—sampling localities: B — Bogéacs, Ka — Kacs,
S — Saly, Ki — Kisgyér

1. &bra. Ignimbrit feltarasok a Bikkaljan Balogh és Rénai [1965] utan. a: als6 ignimbrit szint;
b: felsé ignimbrit szint. Pontok — mintavételi helyek: B — Bogéacs, Ka — Kaécs, S — Saly,
Ki — Kisgy6r

Puc. 1 NrHumGpuTOoBble 06HaXKeHUs1 B BlokKanbs no Banory n PoHau [1965]. a: HWXKHWIA
UTHUMOPUTOBBIA FOPU30HT; 6: BEPXHWUI UTHUMOPUTOBBLIN FOPU3OHT. TOYKN — MecTa B3SATUA
npo6: B — boray, Ka — Kau, S — LlUaii, Ki — Kuwgbep.
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3. Susceptibility anisotropy and data evaluation

The magnetic susceptibility is a general property of rocks. In a weak
magnetic field, H, there is a linear relationship between H and the induced

magnetization, J, as follows:
J = /[1xH

where p0 = 4x 10”7 A/m and K is a symmetric tensor of second rank, called
the ‘susceptibility tensor’ [Hrouda 1982]. Tensor K can be represented by a
triaxial ellipsoid (susceptibility ellipsoid) of which the directions and length of
the principal axes define the directions and the magnitudes of the so called
principal susceptibilities (fonax /crte, tomn), respectively.

The following anisotropy parameters have been found useful [Hrouda
1982]:
anisotropy degree:

P - m.aX °
in
magnetic lineation:
L = "max?
~Ninter
magnetic foliation:
F - 'l'ﬂlt-er ?
in
ellipsoid form :
F Kifiter
Knax'\gmin
and

mean susceptibility:

— Amax  “inter A min

It is these parameters through which the magnetic anisotropy data can be
related to the geological structure.

The directional susceptibility of the specimens was measured on a low-field
susceptibility bridge (Kappabridge KLY-2) which is capable of measuring
susceptibilities up to 2x 10“1 SI with a precision of 5x 10-8 (or 0.1%).

15 directional susceptibilities are measured [Jelinek 1977] and the elements
of matrix Kk, its eigenvalues and eigenvectors determined by a computer program
written for on-line measurements with an IBM PC/XT. A least square approach
is used for estimating the standard error of the measurement, the error angles
of the principal directions, etc. An F-test is performed to decide whether the
anisotropy of the specimen is significant. The principal directions are plotted
on a stereographic projection for each site or locality to monitor the grouping
of the principal directions in the geographic and/or tectonic system.
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In the course of the measurements it turned out that the principal directions
and the respective anisotropy parameters of the sister specimens differ conside-
rably. To determine the origin of these differences the measurements were
repeated three times and it was found that the three measurements of the A sister
differ significantly from those of the B sister, i.e. the principal directions within
the sister are closer than the ones between sisters (Fig. 2). The same is apparent
in the variability of the anisotropy parameters (Table I). It can be concluded
that these features are caused by the different magnetic fabric of the sisters (e.g.
inhomogeneous distribution of ferromagnetic minerals) and not by measuring
errors. To eliminate the effect of heterogeneity, the anisotropy tensors of the
sisters were averaged for each sample and the averaged tensors served as input
for a statistics program. The latter was written for the evaluation of the aniso-
tropy data on a group of specimens representing a geological body making use
of Jelinek’s statistical approach [Jerinex 1978]. The mean anisotropy tensor and
its parameters were determined for each sampling point and locality. A ~-sta-
tistics was used for characterizing the significance of the anisotropy at the 0.05
probability level.

// AL \
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Measurements Mean susc. (10 6 SI) P L F
Sister 1 2 3 1 2 3 1 2 3 1 2 3
A m 169 170 1.030 1.030 1.029 1.006 1.007 1.006 1.024 1.022 1.022
B 156 155 155 1.055 1.052 1.055 1021 1.020 1.020 1.033 1.032 1.034

Table I. Mean susceptibility and anisotropy parameters of three repeated measurements of two
sister specimens (A and B. see Fig. 2 for corresponding principal directions). ic\ mean
susceptibility; P: anisotropy degree; L: magnetic lineation, F: magnetic foliation

/. tablazat. Egy minta két példanyan végzett haromszori mérés atlag szuszceptibilitasai és
anizotrépia paraméterei (A és B mintapéldanyok, a megfelelé féiranyokat lasd a 2. dbran), k:
atlag szuszceptibilitas; P: anizotrdpia fok; L : magneses lineaci6, F: méagneses foliacio

Ta6bnuua I. MapameTpbl aHM30TPOMMUU U CPeAHUE UYBCTBUTENILHOCTY TPOEKPATHOr0 M3MepeHus,
BbIMO/IHEHHOTO Ha fBYX 06pasuax npo6bl. (A 1 B - 06pasLbl, COOTBETCTBYHOLLUE [NaBHble
HanpaBfieHNsl CM. Ha puC. 2). K: CPefHsAst BOCMPUMMUYUBOCTL; P: cTeneHb aHm3oTponuu; L :

MarHUTHasi IMHeNHOCTb; F: MarHUTHas gonmayms.

Fig. 2. Repeatability of anisotropy measurements (cf. Table I)

a) Principal directions from three repeated measurements of sisters A and B of sample No.
4938. Stereographic projection, lower hemisphere. Squares: maximum, triangles: intermediate,
circles: minimum susceptibility directions
b) Frequency distribution of angular distance (<) between the minimum directions of sisters
¢) Frequency distribution of angular distance (/) between the minimum directions of repeated
measurements of one specimen

2. abra. Anizotrépia mérések ismételhetdsége (Id. I. tablazat)

a) A 4938 sz. minta A és B példanyain végzett haromszori mérés féiranyai. Sztereografikus
vetiilet, alsé félgomb. Négyzetek: maximum, haromszogek: kozepes, korok: minimum
szuszceptibilitas iranyok
b) Mintapéldanyok minimum irényai kozotti szégtavolsag (¢ gyakorisagi eloszlasa
c) Egy mintapéldany ismételt méréseinek minimum irdnyai kozotti szogtavolsag (i//) gyakorisagi
eloszlasa

Puc. 2. MoBTopsieMOCTb M3MepeHNA aHM30Tponuu (cMm. Tabnuyy ).

a) [naBHble HanpaB/fieHUsA TPOEKPATHOro M3MEPEHUs, NPoBefeHHOro Ha obpasuax A 1 B npobbl
N 4938. CTtepeorpagmyeckas NpoeKLusl, HUKHSAA nonychepa. HanpasneHUs MaKcUManbHOWM
(kBagpatbl), CpefHeid (TPeyroibHUKKN), MUHUMa/IbHOW (Kpyrn) BOCMPUUMYNBOCTH.

b) YacToTHOe pacrpefeneHns yrnoBoro paccTossHUA (&) Mexay MUHUMaNbHbIMU
HanpasfeHniMu.
€) YacToTHOe pacnpefeneHve yrinoBoro paccTosaHuns (y) mexgy MUHUMabHbIMU
HanpaBfeHNSMU MOBTOPHbIX U3MepeHUli Ha 0OfHOM 06pasLe Npobbl.
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4. Results

The mean susceptibilities have lower values for the lower ignimbrite level
(Kécs, Saly, Kisgy6r: 1.5—4x10-4 Sl) than for the upper level (Bogécs:
2-6 X10-3 SI). The anisotropy degree is rather low: 1.02—1.07 for the lower
level and 1.01 —L1.03 for the upper level. The natural remanent magnetization
(NRM) intensities vary between 2 x FKO”2and 3 x FO-1 A/m for the lower level
while the upper level shows a variation in intensity between 10_1 and 10° A/m.

Fig. 3 shows the variation of the anisotropy degree with the mean suscep-
tibility (a), respectively the NRM intensity (b) for each sampling point. At
Bogacs a weak correlation is suggested while for the other three localities there
is no correlation either between the anisotropy degree and the mean susceptibil-
ity or between the anisotropy degree and the NRM intensity.

Fig. 4 shows the NRM intensity versus mean susceptibility for each spe-
cimen of the lower ignimbrite level. As the mean susceptibility is below 10-3
Sl units, it can be assumed that the susceptibility anisotropy is dominated by
the paramagnetic minerals present [Rochette 1988]. The trend of the NRM
intensity versus mean susceptibility leads to an estimation of the paramagnetic
susceptibility to be about 10”4 SI units.

Despite the low anisotropy degrees found, the principal directions, espe-
cially the minimum directions, form well defined groups. The latter are near
vertical and the magnetic foliation plane (defined by the maximum and inter-
mediate directions) is subhorizontal, i.e. very close to the macroscopic foliation
observed in the field.

Fig. 5 shows two typical patterns of the distribution of the principal
directions. At Bogacs (Fig. 5a) all the three directions cluster while at Kéacs
(Fig. 5b) only the minimum directions group and the maximum and inter-
mediate directions show no preferred orientation in the foliation plane. From
the other two localities, the principal directions resemble the first pattern at Saly
and the second one at Kisgy®r.

Fig. 6 is an L —F (lineation vs foliation) diagram for the studied localities
from which it is clear that the foliation is dominant over lineation for all
localities. Flowever, the foliation/lineation ratio (ellipsoid shape) is lower for
Bogacs and Saly than for the other two localities.

Fig. 3. Anisotropy distribution of sampling point means
a) versus mean susceptibility
b) versus NRM intensity

3. &bra. Mintavételi pontok atlagértékeinek anizotrépia fok eloszlasa
a) az atlag szuszceptibilitas fliggvényében
b) a természetes remanens magnesezettség (NRM) fliggvényében
Puc. 3. PacnpegeneHuvie cTerneHn aHU30TPOMUM CPEAHUX 3HAYEHWI Mo Toukam oT6opa npoo,

a) B 3aBUCMMOCTUN OT cpefHeli BOCMPUMMYUNBOCTM
b) B 3aBMCMMOCTM OT eCTECTBEHHOW OCTaTO4YHOlM HamarHuyeHHocTn (NRM).
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0 100 200 300 400 B00
rEAN SUSC. ( 1E-06 SI)
OrACS ASALY OtISGYOR

Fig. 4. NRM intensity vs mean susceptibility for the susceptibility range < 1CI'3 Sl units
(specimen values)

4. adbra. NRM intenzitds az atlag szuszceptibilitas fiiggvényében a < 103 Si egység
szuszceptibilitas tartomanyra (mintapéldanyok értékei)

Puc. 4. IHTEHCUBHOCTb €CTECTBEHHOW OCTCTO4YHOM HamarHuyeHHocT (NRM) B 3aBMCUMOCTU
OT CpeAHel BoCMpUMMYMBOCTM Ana obnactu < 10“3 Sl (3HayeHusi no o6pasuam).

Table 11 summarizes the anisotropy results of the studied localities giving
the anisotropy parameters and the principal directions, in polar coordinates
(azimuth/inclination), of the mean anisotropy tensor for each locality with the
confidence angles between the pairs of the principal directions. The lower E12
confidence angles for Bogéacs and Saly show that the clustering of the inter-
mediate and maximum principal directions (Fig. 5a) is statistically significant.
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Fig. 5. Principal directions of specimens from a sampling point of Bogacs (a) and Kéacs (b).
Stereographic projection, lower hemisphere. Squares: maximum, triangles: intermediate, circles:
minimum susceptibility directions

5. &bra. Bogéacs (a) és Kacs (b) egy mintavételi pontjarél szarmazé mintapéldanyok féiranyai.
Sztereografikus vetiilet, alsé félgomb. Négyzetek : maximum, haromszogek : kozepes, korok :
minimum szuszceptibilitas iranyok

Puc. 5. naBHble HanpaBneHus 06pasLoB, B3ATbIX C y4acTkoB Boray (a) n Kau (b).
CTpaTurpaduyeckas npoekuus, HWKHAA nonycdepa. HanpaBneHns MakcuManbHOW (KBagpatbl),
cpegHeli (TpeyronbHUKKN), MUHUMaNbHOW (Kpyru) BOCMPUMMUYUBOCTU.

L VS F PLOT

Fig. 6. Lineation vs foliation plot for sampling point means
6. abra. Lineacio-foliacié diagram mintavételi pontok atlagértékeire

Puc. 6. inarpaMmma NMHelHOCTb-(hoNmaLnsa cpefHUX 3HaueHuii o Toukam oT6opa npob.
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Spec/  Mean Principal directions (D/I) Confidence angles

Locality Sa’?n le susc. P L F E
P (10°6SI) MAX INTER MIN E12 E23 E31
Bogécs 63/30 3637 1.0225 1.0022 1.0202 1.0180 98.9/19.0 191.0/56.8 297.3/70.1  30.7 2.6 4.6
Kécs 21/15 310 10371 10023 1.0348 1.0324 75.4/8.3 166.1/4.2 282.6/80.7 47.9 11 44
Sély 15/8 389 1.0359 1.0050 1.0308 1.0257 45.2/0.1 135.2/1.7 312.5/883 26.0 13 73

Kisgy6r 46/25 201 10336 1.0023 1.0313 1.0289 311.5/120 42.0/2.2  142.3/77.8 46.3 2.4 32

Table Il. Anisotropy results for the localities studied. N/NO: number of specimens/samples; k:
mean susceptibility; P: anisotropy degree; L : magnetic lineation; F: magnetic foliation; E\
ellipsoid shape. kTax, Kinter, Amin: principal directions in polar coordinates (azimuth/inclination).
E12, E23 and E31 are confidence angles between two principal directions (1—maximum,
2—intermediate, 3—minimum)

1l. tdblazat. Anizotrépia eredmények a vizsgalt mintavételi helyekre. N/NO: példanyok/mintak
szdma; K: atlag szuszceptibilitas; P: anizotrépia fok, L : magneses lineacié; F: magneses
foliacié; E: ellipszoid alak. kTag Kinter, Kmjn: f6iranyok polarkoordinatdkban (azimut/inklinacio).
E12, E23, és E31 két féirany kozti konfidenciaszégek (1—maximum, 2—kozepes, 3—minimum)
Tabnuua Il. PesynbTaTbl aHM30TpONUM No yvactkam oT6opa npo6. N/NO: KonnyecTso
06pa3LoB/npob; K: CPefHSAA BOCMIPUUMUYMBOCTb; P: cTeneHb aHM3oTponuu; L: mMarHutHas
NVHeRHocTb; F: MarHnTHaa donvauus; E: anannconganbHas dopma; WTax, KTler. XTT:
rnaBHble Hanpas/ieHUs B NONSAPHbLIX KOOpAuHaTax (asumyT/cKnoHeHue). E12, E23, n E31

- [OBepuUTesbHbIE YI/bl MO ABYM rMaBHbIM HanpasneHnsM (1—maKcumymM,
2—cpefHee 3HaveHue, 3—MUHUMYM).

5. Discussion and conclusion

Palaeomagnetic and rock magnetic experiments of the samples, which will
be reported elsewhere, show that the main carriers of the remanence are mine-
rals of the magnetite type. In this case the susceptibility anisotropy is controlled
by the shape anisotropy and the preferred orientation of the longer axes of the
grains [Hrouda 1932].

The high mean susceptibility values as well as the existing correlation
between the anisotropy degree and the mean susceptibility and between the
anisotropy degree and the NRM intensity for the upper ignimbrite level, show
that the susceptibility anisotropy at Bogacs must be caused predominantly by
ferromagnetic minerals. However, for the localities of the lower level there is no
significant correlation between these parameters, but the NRM intensity in-
creases with the mean susceptibility. This supports the hypothesis that the
paramagnetic contribution plays a dominant role in the anisotropy of the lower
level.

Both the magnetic and the macroscopic foliation is subhorizontal, with the
minimum susceptibility axes being very close to the normal of the visible
foliation plane as with sediments deposited in a low energy environment.
However, the clustering of the maximum and intermediate axes in the foliation
plane shows that the anisotropy of the ignimbrites was most probably affected
by some additional orientation mechanism. The clustering has statistically
significant confidence parameters for two localities, i.e. for Bogacs from the
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upper ignimbrite level and for Saly from the lower level. At the other two
localities of the lower level, i.e. at Kacs and Kisgydr, the paramagnetic contribu-
tion is higher than at Saly, as can be seen from the lower values of the mean
susceptibility (Table Il). The planar orientation of the paramagnetic minerals
overprints the linear orientation of the ferromagnetic grains: the mean suscep-

tibility ellipsoids are more flattened.

The linear-planar anisotropy pattern of both ignimbrite levels is similar to
that of the sediments affected by weak horizontal stress [Graham 1966]. In such
cases the compression directions can be related to the direction of the inter-
mediate axes. Fig. 7 shows the minimum and intermediate directions of the

Fig. 7. Principal directions for the localities studied and their correlation with microtectonic
results. Stereographic projection, lower hemisphere. Circles: minimum, triangles : intermediate
directions; thin arrows: azimuthal direction of intermediate susceptibilities; arcs: confidence
angles of respective intermediate directions; heavy arrows: compression directions from
microtectonic measurements

7. &bra. A vizsgalt mintavételi helyekre vonatkozé féiranyok és korrelacidjuk a mikrotektonikai
eredményekkel. Sztereografikus vetilet, als6 félgémb. Kordk: minimum, haromszégek: kézepes
irdnyok; vékony nyilak: kdzepes szuszceptibilitdsok azimutdlis iranyai; ivek: a megfelel6
kdzepes iranyok konfidencia szogei ; vastag nyilak : mikrotektonikai mérésekbél szarmazé
nyomasiranyok

Puc. 7. [NaBHble HanpaBneHUs MO y4acTKam 0T6opa Mpo6 1 UX KOppensuus ¢ pesynbtatamu
MUKPOTEKTOHUKM. CTpaTurpacgurueckasi NpoeKLUusi, HUXKHAS nonychepa.
MwuHUManbHble (Kpyru), cpefHve (TPeyrofibHUKM) HAnpaB/eHus ; TOHKUE CTPEKM
asMMyTa/ibHble HanpaBfeHUs CPefHMUX BOCMPUUMUMBOCTEN ; Ay : AOBEPUTESbHbIE YI/bl
COOTBETCTBYIOLLUX CPEAHUX HAMPaB/EHWIA; YTOMLEHHble CTPEKN: HAanNpaB/eHUs CXaTuid,
onpegeneHHble MUKPOTEKTOHUYECKMU U3MEPEHUSIMU.
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mean anisotropy tensor for the studied localities. For Bogacs and Sély the
horizontal projections of the confidence angles of the intermediate directions
(E12, arcs) are also indicated. As these do not overlap, two horizontal com-
pression directions can be identified, i.e. 1-19" for Bogéacs (upper ignimbrite
level) and 135°-315° for Saly (lower ignimbrite level).

Microtectonic measurements in different Miocene rocks of the Biikkalja
area [Bergerat and Csontos 1988; Tari 1988] have indicated compression
directions of 10°-190° and 120°-300° at Saly and Kisgy6r, and of 10°-190° at
Bogéacs (Fig. 7, heavy arrows), and it can be concluded that the anisotropy
derived compression data are in good agreement with these.
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MAGNESES SZUSZCEPTIBILITAS ANIZOTROPIA MERESEK BUKKALJAI MIOCEN
IGNIMBRITEKEN

BORDAS Rébert

A tanulmany a Biikkalja 4 mintavételi helyérél szarmazé miocén ignimbrit mintakon végzett
szuszceptibilitds anizotropia mérések eredményeit mutatja be. Arra a kdvetkeztetésre jut, hogy a
kézetek magneses szdvetére hatassal volt a miocén vagy annal fiatalabb feszlltségtér. A kozepes
szuszceptibilitas tengelyek alapjan két nyomasirany ismerhet6 fel: Bogacsra (fels6 ignimbrit szint)
1r-19r, Salyra pedig (als6 ignimbrit szint) 135°-315°. Ezek a meghatdrozasok megegyeznek a
mikrotektonikai mérésekkel felismert nyomasiranyokkal.

MW3MEPEHUA AHU3OTPOMWN MATHUTHOW BOCMNPUUMUYNBOCTMU
MMWOLUEHOBbBIX NTHUMBPNTOB B BIOKKAJIbA.

Po6ept BOPAALL

MprBOAATCA pe3ynbTaTbl M3MEPEHU aHW30TPOMUM BOCMPUUMYUYMBOCTM, MPOBEAEHHbIE Ha
obpasLax MMOLEHOBLIX UTHUMOBPUTOB, 0TOBPaHHbIX Ha 4-X yyacTkax Blokkanbs. [lenaetcsa BbIBOA,
4YTO HA MAarHUTHYIO CTPYKTYPY MOPOJ OKasblBaso B/MSHUWE NOJE HANPSHXKEHUS MUOLEHOBOr0 Wn
6onee monogoro Bospacrta. o ocam cpegHeit BOCNPUMMUYMBOCTY ONpejensieTca fBa HanpasieHns
naBneHus: B boray (BepXHWA MIHTMMOBPUTOBBIN Fopn3oHT) — 1le—191e; B LLait (HVXHWUIA UTHUMGPK-
TOBbI TOPU3OHT) — 13e—135e. MpuBeaeHHbIE pe3ynbTaTbl COBMajaloT C HAMPaBEHUSIMU CXXaTUs,
YCTAHOB/IEHHBIMWU MUKPOTEKTOHNYECKUMWU N3MEPEHUSAMMU.
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THE PROPAGATION OF CHANNEL WAVES IN A COAL SEAM WITH
HORIZONTAL AND VERTICAL INHOMOGENEITIES

V. N. DANILOV*, M. DOBROKA** and V. SZ. YAMSHIKOV*

The complex dispersion relation and the amplitude functions were derived for Love seam
waves propagating in an inhomogeneous waveguide. To describe the inelastic behaviour of the
medium, the constant 2-model method is used. The density and the complex shear modulus of the
coal are assumed to be weakly dependent on the vertical and horizontal coordinates, so the WKBJ
method can be used. Numerical solutions for the absorption-dispersion equation are given to
demonstrate the influence of horizontal and vertical inhomogeneities on the channel wave propaga-
tion properties.

Keywords: in-mine seismics, coal seams, Love waves, channel waves, wave dispersion, wave absorption,
shear modulus, waveguide, WKBJ solution

1. Introduction

In the analysis of channel wave propagation properties the simple three-
layered geological model is often used because the most important features of
seam waves can easily be discussed by means of this model and the results can
be extended to more complicated structures in a straightforward way. The
absorption-dispersion characteristics of Love seam waves in a symmetric hor-
izontally layered (layer-wise homogeneous) dissipative structure has been dis-
cussed by Krey et al. [1982]. Dobréka and Ormos [1983] analyzed the influence
of the asymmetry of the three-layered structure on the propagation characteris-
tics of Love-type seam waves. Using the finite difference method, synthetic
seismograms for channel waves were given by Bodoky et al. [1982]. The dis-
placement field of Love seam waves was analytically derived by Buchanan
[1978] for a symmetric three-layered model. The results were extended to an
asymmetrical model by Yamshikov et al. [1986]. The effect of weak horizontal
inhomogeneities on channel wave propagation was first discussed by Dobréka
[1987] while the problem of weak vertical inhomogeneities was first analyzed by
Danilov et al. [1987]. In this paper, assuming weak variations in the material
characteristics of the coal seam along both horizontal and vertical directions,
we give analytical solutions to the equation of motion, and derive the complex
dispersion relation for Love seam waves that propagate in a three-layered
weakly inhomogeneous waveguide.

* Moscow Mining Institute, Dept. Physical-Technical Control of Extraction, Moscow, Lenin
prosp. 6

** Technical University for Heavy Industry, Dept, of Geophysics, Miskolc Egyetemvaros, H-3515,
Hungary

Manuscript received (revised version): 24 October, 1989
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Symbols used in the paper

n displacement vector
n displacement component
Q density
K shear modulus
(9] angular frequency
V= ufp transformed displacement variable
R shear velocity
Q . quality factor
e~ q
N body wave refractive index
n channel wave refractive index
KO constant with the dimension of
wavenumbers

K = kOn channel wave wavenumber

© hase veloci
W Re(i} P v

o group velocity
Vg 9(Re{k})
a = Im{k} absorption coefficient
H=2d the seam thickness

b, ¢, AQ, BO, /1], Bj ] constants introduced for the calcula-
X2, 2j, 22 j tions
' aconstant parameter in the case of ver-
tical inhomogeneity
a slowly varying function of the hor-
I izontal coordinate when the medium is
vertically and horizontally inhomoge-
neous at the same time2

2. Analytical solutions

In weakly inhomogeneous media one can, to a good approximation, neg-
lect coupling between transverse and longitudinal waves. This offers the possi-
bility of discussing Love seam waves — as horizontally polarized shear waves
— separately. If we restrict ourselves to the more simplified problem of the
horizontal inhomogeneities occurring only along a specific direction (say
and discuss wave propagation parallel with xt, then for Love seam waves the
displacement vector can be taken as s=(0, u, 0). If we assume el to be a
separated time factor, the equation of motion takes the form
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gw2u+pAn+grad pgrad u = 0

where p(x1;n:3) is the bulk density, p(xl,x3) is the complex shear modulus.

In the framework of the constant Q model p —p* (1+ifi) and e(n:l, x3 =
= 1/Q(x1, x3), p*(xt, x3) being the real shear modulus, Q being the frequency

independent quality factor.
Introducing the v = uj~p variable the equation of motion gives

Av+KYNYV+ T . f~Ap v=0
4 I > y 2p P
where the notations kO = co/R0 (R0 is a constant phase velocity) and N = RIRO
has been used with B = fpjg (complex shear velocity). In weakly inhomoge-
neous media, as a good approximation, we can write

le (grad p)2- 2 Ap « k2\NV

so our equation for the v = ufp variable takes the form
Av+k@N2v = 0. )

The quantity N = N(xy, x3) can be considered as a complex-body-wave
refractive index with different Nj values for the layers (j=0, 1, 2) (Fig. 1).
For Love channel waves the solution of Eg. (1) can be separated as
*3) = @3, N(xi, x3J) r*(Xi) )
where v is the x3 dependent amplitude (with Xj dependence only in x3
and v* the function describing the wave propagation along the x 1axis. Inserting
the form (2) into Eq. (1) we get
1f d2v \ lda~
v\dxj ) v*dxj
The last term of the equation doesn’t contain quantities dependent on x3, so

introducing the separation function (to be determined later) -k On2 (kOH,
*Ao(*i, *3=0), NO(xu x3= - H), Nu N2) we can write the separated equations

Sor*
ZY+kin*k =0 3)

dov

iz TKEN2=n2y = 0 (@
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Fig. 1 The geometry of the three-layered inhomogeneous waveguide, Qj-s are the densities, /if-s
are real shear moduli, § = 1Qj, where Qj-s are quality factors (j=0, 1, 2 withj= 0 for the
coal seam)

1 &bra. A haromrétegli inhomogén hullamvezet§ geometridja. Q a slir(iséget, /if a valédi nyiréasi
modulust jel6li, § = \/Qj, ahol Qj a min&ségi faktor (j=0, 1, 2,j=0 a széntelepet jeldli)

Puc. /. TeomeTpusi TpexcnoHOro Heof4HOPOAHOro BoNHOBOAA. Yepe3 O — 0603HayeHa
NOTHOCTb, Yepe3 //,—UCTUHHbIA MOAYNb CKanbiBaHusA ; § = 1/ 2 rae Qj — ¢akTop KadvecTsa
(j=0, 1, 2; yepe3j= 0 0603HauYeH YrosbHbIiA NNacTb).

In a second order WKB approximation the solution of Eg. (3) can be
written as

| kg /v
Ve )
if the condition
1 Sn
Kon2Sxj ©)

is valid [Budaden 1966]. Similarly, in the same approximation the solution of
Eq. (4) takes the form

1 iAo~ [ M2 n2dz —i Ao~ "N2—n- dr
Ae 0 +Be O (7)
\n2-n2
if the condition
1
« 1 (8)

KO(N2- n2)  0a3

is met. As vertical inhomogeneities were assumed only in the coal seam, the
solution of the wave equation in the upper and lower half spaces is the same
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as those derived for horizontally inhomogeneous wave guides [Dobréka 1987].
So the displacement functions (regular at ;c3->+ oo) can be written as

J ik@ ( ndx
Alékmre O x3>0
1 U il
1 i*0 I13fngyt - iko / modr\  i£0 [ ndx
Are +B0e - H<x3<0
9]
2 i~ol ndx
u2= -— BZ~ikn2x 0
Hbf

where nij = )Jn]- n2and the quantities, ZI5 A0, BO, B2 can be determined by

means of the boundary conditions.
At the rock-coal interfaces (x3= 0 and xb= —H), the displacements as well
as the @32 stresses must be continuous. This gives the set of homogeneous linear

equations
cA! = A0+ BO

1
bBry  AOX0+BO

n2 no

CZIA1= Aq—Bq )

—b7Z2B2— = AgXg—B0—

ny An

where the notation
IA'0 1modr . "
AO=e Xy — e|k0HVNI- 2
. N\-n2 7 = Bi Ni —n2

Mo(*3=°) f NI(x3=0)-n2’ ’ Mo(x 3 H) I NI(x3~ —H)-—n2

c= Mo(x 3 = 0)""?0(*3 = 0) b= Mo(x3= - H) m0(x3=- H)
Mi M
has been used. In order to have non-trivial solutions, the determinant of the set

of equations (9) must vanish. This gives the complex dispersion relation for
Love seam waves propagating in our three-layered inhomogeneous model

molfifNAdz  2—Z, 1-Z,

N FS EF Y2 a0
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Using this result, the amplitude functions take the form
1 ABIW2

. if 3>0
c(1+Zi) e
ifco J nax 1r i<rOOP|~"2dZ-;_ 1_ Z,A -i*obDI~n2dr
u(xu x3) = 2A0e - - —
( ) 2 1+ Zi
if -97x370
-"O--"Z —ifc0@38 + A) |/N"—na2 |f X3<' H
LA (i-z2

3. Numerical results

In order to analyze the absorption-dispersion properties of the Love seam
wave propagating in a vertically inhomogeneous channel, Eqg. (10) should be
solved numerically. Let us define a parabolic inhomogeneity as

Po = 1300 [1+ ax3] (kg/m3),
B0 = 1000 [1 + axf] (m/s), (1D
£0 = 0.0341 + ax/]

with a=0.01 and wuse the parameters in our numerical solution
0!'=02= 2000 kg/m3,81=R2=2000 m/s, £j = e2= 0 for the roofand floor. Func-
tion (10) results in a change of the waveguide parameters of the order of 4%.
By means of Eg. (10), the complex dispersion relation, the phase and group
velocities and the absorption coefficient, a (Fig. 2), can be determined. For
comparison, the results computed for homogeneous models defined by the
above functions at x3=0 (model 1) and x3= H (model 3) are also shown. It can
be seen that the phase and group velocities as well as the absorption coefficient
for the Love seam wave that propagates in a vertically inhomogeneous channel,
are between those computed for models 1and 2. It is shown by the figure that
the inhomogeneity of the seam dominates at high (above the Airy-) frequencies.
This is proved also by Fig. 3, where the derivative d log v/ d log a is plotted as
a function of the frequency.

In order to demonstrate the effect of the horizontal inhomogeneities on the
wave propagation properties, we define the a quantity as

a=00le WH>. (12)

Using Egs. (11) with Eq. (12) we can solve the complex dispersion equation
numerically. The result found at/-d= 300 Hzm is shown in Fig. 4. For the sake
of comparability, the change in the phase and group velocities as well as that
in the absorption coefficient (relative to the ones at x {=0) are plotted as a
function of the relative coordinate xJH.
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4. Conclusions

Results proved that the WKBJ method can be employed to determine the
amplitude functions and the absorption-dispersion relationship for Love seam
waves propagating in a weakly (both vertically and horizontally) inhomoge-
neous waveguide. The numerical analysis of the dispersion equation shows that
the inhomogeneity of the seam is dominant near to or above the Airy-frequency.2

Fig. 2. Phase- and group velocities as well as dimensionless absorption coefficient (a «d) of Love
seam waves versus frequency times half thickness (/¢ d). The parameters of the roof and floor
layers are gl=g2= 2000 kg/m3, /?; = /2= 2000 m/s, e{=e2= 0 while for the coal seam they are
computed by means of Eq. (11) with v3=0 for model 1, 0<x3< # for model 2 and x3=H for

model 3

2. &bra. A fazis (Vp) és csoportsebességek (Vg), valamint a Love tipusu csatornahullamok
dimenzié nélkili abszorpciés koefficiense (a «d) a frekvencia és fél vastagsag szorzata (f md)
fuggvényében. A feki és fedi paraméterei =02 = 2000 kg/m3, /?, =32= 2000 m/s, e, =e2=0;
mig a széntelepre all. egyenlettel kapjuk meg a paramétereket x3= 0-val az 1. modellre,
0<x3< A-val a 2. modellre és x3= A-val a 3. modellre

Puc. 2. CkopocTu ¢asosble (Vp) 1 rpynnoBble (\f), a Takxe 6e3pasmepHblii ab6copbLMNOHHbIN
KO3 (hMLMeHT (a *d). KaHaNbHbIX BOIH TUNa JlaBa Kak (yHKUMS MPOU3BeeHUs 4acToTbl Ha
nonymowHocTh (f-d). MapaMeTpbl NepekpbIBalOLWNX WU NOACTUNAKOLWNX 06pa3oBaHWNii:

QL= = 2000 Kr/m3 /1, —/L—2000 m/c, r, = £2= 0; B TO e BpPeMsi napamMeTpbl Yro/bHOro njaacra
onpefensaTca No ypaBHeHuto 11 npu xb=0 ana mogenn 1, npu 0<x3<H pgna mogenn 2 v npu
x3=H gna mogenun 3.
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Fig. 3. The derivatives dlogv/dloga and dloga/d log a — characterizing the sensitivity of the
phase velocity and absorption coefficient with respect to weak vertical inhomogeneities — as
a function of the freauencv times half thickness

3. 4bra. Adlogv/dlogaésdloga/dloga derivaltak a frekvencia és fél vastagsag szorzatanak
flggvényében. A derivaltak a fazissebesség és az abszorpcids koefficiens érzékenységét jellemzik
a gyenge vertikalis inhomogenitasokra

Puc. 3. OuddepeHymansl d log v/ dlog «un d loga/ d log a pyHKLMM Npon3BeAeHUI 4acToT Ha
nonymowHocTu. AuddepeHumnanbl xapakTepusyoT YyBCTBUTENIbHOCTL (Da30BO CKOPOCTM
1 abcopbLUMOHHOr0 KoepdumLmeHTa K cnabblM BePTUKa/IbHbIM HEOLHOPOLHOCTSAM.
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A CSATORNAHULLAMOK TERJEDESE HORIZONTALISAN ES VERTIKALISAN
INHOMOGEN KOSZENTELEPBEN

V. N. DANILOV, M. DOBROKA és V. SZ. JAMSHIKOV

Komplex diszperzié- és amplitid6 dsszefliggéseket vezetnek le inhomogén hullamvezet6ben
terjed6 Love telephullamokra. A kozeg anelasztikus sajatsagainak leirasara a konstans (J-modellt
hasznaltak. A szén siir(iségét és komplex nyirasi modulusat a vertikalis és horizontalis koordinatak-
tél gyengén fuggdnek tételezik fel, tgyhogy a WKBJ mddszert lehet hasznalni. Az abszorpci6-disz-
perzi6 egyenletre numerikus megoldasokat adnak, amelyekkel szemléltetik a horizontalis és vertika-
lis inhomogenitasok hatasat a telephullam terjedésére.

Fig. 4. Phase velocity as well as dimensionless absorption coefficient in a vertically and
horizontally weakly inhomogeneous waveguide. The inhomogeneities are defined by means of
Egs. (11) and (12)

4. abra. A fazissebesség és a dimenzié nélkili abszorpciés koefficiens vertikalisan és
horizontalisan gyengén inhomogén hullamcsatorndban. Az inhomogenitasokat a (11) és (12)
egyenlettel definialtuk

Puc. 4. ®a30Bble CKOPOCTU U 6e3pasmepHble abCoOpPOLNOHHbIE KO3PHULMEHTbI B ciabo
HEO4HOPOLHOM MO FOPM30HTANN N BEPTUKaIM BOTHOBOM KaHasne. HeofHOPOAHOCTH
onpegensnucb ypasHeHuamu (11) mn (12).
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PACIMPOCTPAHEHWE KAHA/IbHbIX BOJIH B HEOAHOPOAHOM IO
FTOPU3OHTANIN N BEPTUKANWN YITOJIbHOM MNNACTE

B. H. JAHM10B, M. JOBPOKA U B. C. AMLNKOB

BbIBefeHbl KOMMM/IEKCHbIE YPaBHEHUS AMCMEepCUii U aMnauTys ANns NAacToBbIX BOH J1aBa,
pacnpocTpaHsaoLWmMXcs B HEOAHOPOAHOM BOJSIHOBOAE. HeynpyrocTb cpefbl OMNMUCLIBANMCL CMOCO-
60M MOCTOAHHOM 0-Mogenu. MA0THOCTb M KOMMEKCHbIA MOAYy b CKa/lbIBaHWA Yr/ieil npeanonara-
I0TCA CNabo 3aBUCUMbIMU OT BEPTUKAIbHbLIX U FOPU3OHTANIbHBIX KOOPAUHAT, TaK YTO MMeeTcst
BO3MOXHOCTb M0/Ib30BaTbCS MeTogoM WKBJ. [na ypaBHeHusl abcopbums—anucnepcns aarTcs
UMC/EHHble PeLLIeHUsl, KOTOPbIMU WTIOCTPUPYETCS BO3CTBME TOPU3OHTANIbHBIX U BEePTUKASIb-
HbIX HEOHOPOAHOCTEN Ha pacnpocTpaHeHWe MIacTOBON BOSHbI.
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PARAMETER SENSITIVITY OF UNDERGROUND DC
MEASUREMENTS

Akos GYULAI*

Parameter sensitivities are useful for comparing underground dc techniques and for planning
surveys. After defining the thickness (depth) sensitivity and the resistivity sensitivity, the parameter
sensitivity functions for different deposit models (coal, bauxite) are presented then, based on these,
some characteristic features of underground measurements.

Keywords: electric methods, resistivity, in-mine geophysics, direct current methods, parameter sen-
sitivity

1. Introduction

Various in-mine geophysical, among them dc, methods have been de-
veloped to determine the rock and deposit parameters and the disturbances of
deposits. Usually, reliable geological interpretation required by the mining
industry can be achieved by the combined application of several methods. The
efficient use of these methods is possible if the resolution of the individual
methods is known and utilized. Selection of the methods making up the opti-
mum measurement set is harder and more complex than in surface geophysical
surveys, because underground measurements are carried out in a whole space;
in other words, the investigation can be directed downwards, upwards or
laterally. A further drawback is that up till now we have far less empirical
experience.

2. Determination of the layer parameters

Underground geoelectric measurements have several new possibilities. If
one gets closer to the object to be investigated not only can geological deviations
undetectable by the known surface methods be revealed but there are also novel
possibilities for field generation and measurement. Using these possibilities the
sensitivity of geoelectric surveys, thus their efficiency, can be increased by
several orders of magnitude.

Underground measurements also offer the special possibility of measuring
with vertical dipoles in drifts and boreholes. Soundings can be carried out at

* Technical University for Heavy Industry, Department of Geophysics, Miskolc-Egyetemvaros,

H-3515, Hungary
Manuscript received (revised version): 21 July, 1989
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several levels below ground. A further underground method is the trans-
illumination of the space between drifts, between a drift and a drillhole, and
between drillholes.

One type of survey task is represented by investigating the seam itself by
determing the seam thickness, seam disturbances and seam quality. Geoelectric
seam-sounding and seam-transillumination methods can solve these tasks
[Csokas 1974, csokas et al. 1986, Dobroka €t al. 1987b, Kiraly-Szigeti
1985].

Investigation of the layers over- and underlying the seam represents an
other group of tasks. The geoelectrical methods used for these purposes can be
summarized under drift-sounding and -profiling [Gyurai 1979, Gyurai 1985,
Szabo6-G éresi 1983]

To determine the layer parameters of a coal-bearing complex the above
methods are combined [Breitzke et al. 1987]. Several possibilities offer them-
selves for comparing different methods. One of the procedures is to compare
the penetration depths [Egerszegi 1980]. Another way of comparison is to
examine the sounding curves of various models. Let us choose this method first
to compare seam-sounding, roof-sounding and floor-sounding. Figure 1 shows
sounding curves calculated for a five-layer model with different seam résistivités.
(It is assumed that the thickness of the first layer, Mu can be considered
infinite). It can be seen that for a vertical dipole (Fig. 1/c) the apparent resistivity
values (ga) increase when the resistivity of the seam (@2) increases, and this effect
is even more pronounced at larger separations. In roof- (Fig. 1/a) and floor-
soundings (Fig. 1/b) a considerably smaller increase is experienced than in the
previous case.

Changes caused by an increase in the seam resistivity can be better observed
in Fig. 2. which shows the deviations from the quasi-four-layer model. Diffe-
rences between the different electrode arrays can be seen as well. Seam-sounding
(Fig. 2/c) is very sensitive to changes in seam resistivity. In the case of drift-
soundings, that one is more sensitive to the changes in seam resistivity which
is measured on the side of the host rock that has higher resistivity.

3. The parameter sensitivities

Different electrode arrays can most simply be compared if the measure of
variations in apparent resistivity curves caused by the changes in layer para-
meters is examined. That array is considered to be the most favourable which
exhibits the highest sensitivity.

The relation between apparent resistivity (g8 and parameter (Mh gf)
changes can be defined by the equations

= (@Mi_= S(n oa _
SM, ga e(in Mi) )
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dQa(h = d(In Qa)
M@ 8(In Mt

i/ and ta are the so-called thickness and resistivity sensitivities [Dobréka et al.
1987a]. The sensitivities can be described by the following formulae as well:

2

1 = d(In Qa)
o, OMI ©)
and
baj_ = 8(n Q) @
8@ 8d
a_patom)
9, A M
Y/ /A V f//.
9, B N
R4
P2 P3 P4 P5 M M3 \

205 10 60 10 (fim) 2 10 4 (m)
60 10 60 10 (fim) 2 10 4 (m)
100 10 60 10 (fim) 2 10 4 (m)
400 10 60 10 (fim) 2 10 4 (m)

Fig. 1. Apparent resistivity (gJ curves for five-layer models. Basis for comparison:
A quasi-four-layer ~p2) model. Model parameters can be seen in the lower right corner,
the electrode arrays are shown near the respective curve
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding

I. abra. Latszélagos fajlagos ellenallas (ga) gorbék otréteges modellekre. Osszehasonlitasi alap:
a négyrétegesnek tekinthet6 (gt ~p2) modell. A modell paraméterek a jobb alsé sarokban,
az elektréda elrendezések a megfelel6 szondazasi gorbék mellett lathatok
a) FedGszondazas; b) Fekiiszondazas; c) Telepszondazas

Puc. 1. KpuBble KaXYLUMXCS YAeNbHbIX CONPOTUBNEHWI (gj ANA NATUCNONHBLIX Mogeneit.
OcHoBa fns conocTaBneHuii: mogen (Pi~£?2> KoTopas MOXeT paccMaTpuBaThbCsA B KauyecTBe
YeTbIPEeXC/ONHOM. MapaMeTpbl MOAENN - B MPABOM HWXKHEM Yy, NPY KPUBbLIX 30HAMPOBAHUS,
COOTBETCTBYIOLLMX YCTAHOBKE.

a) 3oHAMpOBaHMe KPoBAKM; b) 30HAMpPOBaHME NOYBLI; C€) 30HAMPOBaHMWE njacTa
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PL P2 P3 P4 p5 w2 M3
20 20.5 10 60 10 (fim) 2 10 4 (1)
20 60 10 60 10 (fim) 2 10 4 (T)
20 100 10 60 10 (fim) 2 10 4 (1)
20 400 10 60 10 (fim) 2 10 4 (1)

Fig. 2. Deviation (£) of the sounding curves shown in Fig. 1 from the quasi-four-layer curve
which contains no coal seam
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding

2. éabra. Az 1 &bréan lathaté szondazasi gorbék eltérése (E) a szénréteget nem tartalmazo,
négyrétegesnek tekinthetd gorbétél
a) Fed6szondazas; b) Fekiliszondazas; c) Telepszondazas

Puc. 2. OTknoHeHve (F) KpuBoli 30HAMPOBaHUA Ha puc. 1 0T KpuBOli paspes3a 6e3 yrosbHoro
nnacrta, Kotopasi MoOXeT pacCMaTpuBaTbCA B KauyeCcTBe YeTbIPEXCNOMHON,
a) 3oHAupoBaHue KpoBnu; b) 3oHAMpoBaHMe No4Bbl; C) 30HAMPOBaHME NiacTa

or by the quantities
©)

S
dQ

Figure 3 shows such curves. When sounding curves are interpreted they are
compared in a lgga- lg AB/2 system thus it is expedient to use the quantities
defined by Egs. (I)-(4) which contain logarithmic gradient. The use of formulae
(1) and (2) is the most advantegous because these characterize the relation
between the apparent resistivity function and the parameter changes in a dimen-
sionless form. It should be noted that in inversion methods either relations (1)
and (2) or (3) and (4) are used [Koefoed 1979]. The information matrix which

n= (6)
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is used to characterize the reliability of statistical interpretation [Golc’man
1976, Salat et al. 1982] is derived from derivatives (1) and (2).

It can be seen in Fig. 3 that functions m, y/* and y/ change sign at small
thickness. This is of interest to us for two reasons: on the one hand, there exists
a critical thickness at every separation in the vicinity of which change in
thickness does not manifest itself in apparent resistivities, on the other hand,
at thicknesses smaller or larger than this a change in thickness may cause a
change of opposite direction in apparent resistivity.

In addition it can be seen in the figure too that although the depth sensitiv-
ity changes, there exists a depth interval in which it can be considered constant.
For example, for function y/, \i/ equals - 0.46 between 12 and 33 m, where ft and
similarly if* and m, is the mean value of yj in the given interval. It means that
in this thickness (depth) interval a 0.46% decrease in apparent resistivity sug-
gests a 1% increase in thickness.

y,:10@_
s - sl 1

M9 =2.5T /,AY M N / B/

-In IR=50T
M3

60

Fig. 3. Thickness sensitivity (y/, y/*, m) curves of the model and electrode array shown in the
figure as a function of the thickness of the layer underlying the coal seam (J1/3)

3. abra. Vastagsag érzékenység (y/, y*, T) gorbék az abran lathaté modellre és elektréda
elrendezésre, a széntelep alatti fekiiréteg vastagsaganak (M?3) fliggvényében.

Puc. 3. KpuBble YyBCTBUTENILHOCTM K MOLLHOCTU (y/, Y/*, T) AN MOAeNu W yCTaHOBKMY,
1306paXKeHHbIX Ha PUCYHKE, KaK (yHKUMA MOLLHOCTY cnos (J1/3, NoacTUNAIOWEro yrofbHbIi
nnacr.
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Let us see, based on the sensitivities defined by (1) and (2), what kind of
further statements can be made concerning the already mentioned model and
soundings. In Fig. 4 the sensitivity to the seam resistivity can be seen as a
function of the seam resistivity (g2) for different arrays. The low sensitivity of
the floor-sounding can be observed: at a separation of 100m and (@) = 300 i2m
(02 is less than 0.05. It means that a 10% increase in the seam resistivity causes
a 0.5% increase in the apparent resistivity. The sensitivity of the roof-sounding
is twice as high as the previous one. The (® sensitivity of the seam-sounding is
outstandingly high; in an optimum case q®is 2. This feature of the measurement
with vertical dipoles becomes apparent at large separations, but the sensitivity
already reaches the favourable value of 1at about R=5m. It is important to
note that the high resistivity sensitivity related to the layer situated between the
vertical dipoles can be observed at low resistivity contrasts, too.

node!
re-92 -18-68-1e (fim) r-imMm .)
R-S [m]
------------- Rrr [m:
R-100 Cnj
B - RAD )

Fig. 4. Resistivity sensitivity (& curves at four separations as a function of coal seam
resistivity (p2)
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding

4. &bra. Fajlagosellendllas érzékenység (ip) gorbék négy kiillénboz6 teritési tavolsagra, a széntelep
ellenéllasanak (q2) fuggvényében
a) Feddszondazés; b) Fekiiszondazas; c) Telepszondazas

Puc. 4. KpuBble 4yBCTBUTENLHOCTU K COMPOTUBEHNIO (4 ANS YeTbIPeX pas/IMyHbIX PasHOCOB,
Kak (PyHKLMA MoLHOCTM (M2 yronbHOro nnacra,
a) 3oHAMpoBaHMe KpoBaW; b) 3oHAMpPOBaHWe MouBbI; C) 30HAMPOBaHME Mmnacta
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Figure 5 shows the seam thickness sensitivity (1 2). It is valid of the thick-
ness sensitivity, too, that the sensitivity of the roof-sounding is twice as high as
that of the floor-sounding. Thickness sensitivity can be calculated from the
apparent resistivities of the vertical dipole measurement, too, but completely
different results will be obtained. This kind of sensitivity is approximately the
same as the resistivity. If the resistivity of the seam is high (q2=400 M) the
sensitivity approximates the value of 2 in thin seams and only at large separa-
tions. High thickness sensitivity means that the vertical dipole array can advan-
tageously be applied to investigate the thickness variations of the seam between

the electrodes.

mode 1:
20-400-10-60—10 [AT] 72:10-4 m
- R-5 O
— - R-20 O
----------------------------------- R-100 Cm
----------------------------------- R-200 On

Fig. 5. Thickness sensitivity (y/) curves at four separations as a function of coal seam
thickness (M2)
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding

5. abra. Vastagsag érzékenység (y/) gérbék négy kilénboz6 teritési tavolsagra, a széntelep
vastagsaganak (M?2) fuiggvényében
a) Fed6szondazas; b) Fekiiszondazas; c) Telepszondézas
Puc. 5. Kpusble 4yBCTBUTENLHOCTU K MO HOCTH (y/) LNA 4YeTblpex pa3NMyHbIX pPa3HOCOB,

KaK PYHKUMS MOLWHOCTH (MZ YyronbHOro nnacrta,
a) 3oHAMpoBaHMe KpoBNKu; b) 3oHAMpPOBaHWE NOYBLI; C) 30HAWPOBAHME nNnacTa
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In Figs. 6. and 7. the resistivity sensitivities of the measurements performed
in a bauxite deposit can be seen. The measurements are carried out somewhere
within the deposit and the effect of the lower (floor side) and the upper part (roof
side) of the deposit is examined. Fig. 6 shows the sensitivity to the floor side of
the deposit, Fig. 7 that to the roofside. The sensitivity of the Schlumberger array
at larger separations (R =50, 100 m) hardly differs from zero in Fig. 6; this kind
of measurement is insensitive to changes in the high resistivity floor side. In the
case of deposit changes in the roof side (® is greater than 0;5 at the same
separations and it increases with the resistivity of this deposit part (contrary to
the previous case). At shorter separations (/?= 10, 20 m) the sensitivities are the
same in both directions. It is noted that at larger separations the sensitivity of
the vertical dipole array is ~ 1.5, in addition, gBis positive in the R=10- 100 m
interval. Sensitivities related to the deposit part outside the vertical dipoles
hardly differ from zero at shorter separations (10, 20 m) in Fig. 7; at larger
separations (50, 100 m) the sensitivity increases though it is opposite in sign
compared to the sensitivity related to the deposit part between the vertical
dipoles.

It can be seen that the investigation can be directed downwards or upwards
even if the complex is not cut in two parts by a high resistivity layer (e.g. coal
seam). Further it can be stated, too, that the sensitivity related to the layer
between the vertical dipoles is high in every case thus this array can favourably
be applied not only to coal seam models (seam-sounding).

Figure 8. shows underlying layer thickness sensitivity functions for a coal
seam model. This model corresponds to a case in which a water saturated sand
layer (g4= 60 Qm) can be found in the underlying sequence and this is separated
from the coal seam (g2) by a low resistivity clay layer, the so-called protective
layer.

Let us take a closer look at the behaviour of the sensitivity functions:
— for roof-sounding ~3~0, therefore this is unsuitable for investigating the
protective layer,

— for floor-sounding at 77=5 m and M 3~b m the sensitivity is favourable:
y/3= —0.5 but it rapidly decreases with increasing thickness of the protective
layer; the optimum of the sensitivity function is at J1/3= 8- 10 m for R=20 m:
y/3~ 0.4; the sensitivity has a critical point at R = 50 m, M3= 10 m (y/3~ 0) and
the sensitivity changes sign; at R= 100 m, y/3is positive for M3=2—20m, i.e.
when the thickness of the low resistivity layer increases the apparent resistivity
increases, too (contrary to our expectation),

— sensitivities of the seam-sounding fall between —0.2 and 0.2, they are
positive at R =50, 100 m in the thickness interval under consideration.

The effect of variation in the deposit thickness for a bauxite model is shown
in Figs. 9, 10 and 11. for different drift-sounding arrays. These curves were
calculated for a dolomite basement having a resistivity of 2500 Qm. It can
already be seen in Fig. 9 that from the resistivity sounding curves of the model
containing a 20 m or 30 m thick bauxite layer the largest deviation appears in
the curves of the dipole-dipole array. The highest value of the deviation is 10%
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Fig. 6. Resistivity sensitivity (/5 curves of a bauxite deposit model, at four separations,
as a function of the resistivity of the lower, floor-side 30 m thick part of the deposit
a) Schlumberger sounding carried out in the roof-side part of the deposit, at the boundary
between the constant and variable resistivity parts
b) Sounding carried out with vertical dipoles spanning the 30 m thick, floor-side, variable
resistivity part of the deposit

6. abra. Fajlagosellenallas érzékenység () gorbék egy bauxittelep modellre, négy teritési
tavolsagra, a telep also, feku fel6li, 30 m vastag része ellenallasanak fliggvényében
a) A telep fedd oldali részében, az allandé és valtozo ellenallast részt elvalaszté fellileten végzett
Schlumberger-szondazas
b) A telep feki oldali, valtozé ellenallasinak tekintett. 30 m vastag részét atfogd fiiggéleges
dipélokkal végzett szondézas

Puc. 6. KpviBble 4yBCTBUTENIbHOCTM K COMPOTUBAEHMIO () ANA MoAenn 6OKCUTOBOW 3anexu npu

YeTbIPUX PasINyHbIX pasHocax, Kak PYHKLMS COMPOTUBAEHNA HWXKHER, NPUMOYBEHHOW YacTu
3a/1eXX1 MOLLHOCTbIO 30 M.

a) 30HAMpoBaHMe ycTaHoBKOM LLntombepyke, BbINOSHEHHOE B MPUKPOBENbHOW YacTyh 3anexu, Ha

NOBEPXHOCTU, pasgensioLleli 061acTv NOCTOAHHbIX W MePeMeHHbIX CONPOTUBAEHUIA.

b) 30HAMpPOBaHME BEPTUKAIbHBIMW AUMNOMASAMU, 0XBaTbIBAIOLWMMY MPUMOYBEHHYIO YacTb 3a/1eXMn

MoLHOCTbIO 30 M, paccMaTpMBaeMylo Kak 061acTb MepeMeHHbIX CONPOTUBEHUIA.
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Fig. 7. Resistivity sensitivity (<) curves of a bauxite deposit model, at four separations,
as a function of the resistivity of the upper, roof-side, 15 m thick part of the deposit
a) Schlumberger sounding carried out in the roof-side part of the deposit, at the boundary
between the constant and variable resistivity parts
b) Sounding carried out with vertical dipoles spanning the 30 m thick floor-side, 90 flm
resistivity part of the deposit

7. abra. Fajlagosellenallas érzékenység (9) gorbék egy bauxittelep modellre, négy teritési
tavolsagra, a telep felsd, fedd fel6li, 15 m vastag része ellenallasanak fiiggvényében
a) A telep fed6 oldali részében, a valtozé és allando ellenallast részt elvalasztd feltileten végzett
Schlumberger-szondazas
b) A telep feki oldali, 90 iim fajlagosellenallastinak tekintett, 30 m vastag részét atfogo
fligg6leges dip6lokkal végzett szondazas

Puc. 7. KpuBble 4yBCBUTENBLHOCTY K COMPOTMBAEHMIO () AN MOLeNN GOKCUTOBOW 3anexu npu
YeTbIPUX PasINyHbIX pasHocax, Kak yHKLWS CONPOTMBAEHUSI BEPXHER, MPUKPOBENbHOM YacTu
3a/1eXXM MOLLHOCTbIO 15 M,

a) 30HAMpOBaHWe ycTaHOBKOW LLIntombepxke, BbINOMHEHHOE B MPUKPOBENbLHOM YacTy 3anexu,
Ha MOBEPXHOCTU, pas3fensioLeint 061acT NOCTOSHHbIX U NePeMEHHbIX CONPOTUBEHUA.

b) 30HAMpPOBaHWE BEPTUKA/IbHLIMU AUMONAMM, 0XBATbIBAIOLWMMY NMPUNOYBEHHYIO YacTb 3a/1eXu
MoLLLHOCTbIO 30 M, paccMaTpMBaeMyto Kak 061acTb ¢ conpoTusneHnem B 90 OM-M.



Parameter sensitivity of underground dc measurements 219

Fig. 8. Thickness sensitivity (y/) curves of a model with a coal seam, at four separations,
as a function of the thickness of the layer underlying the coal seam (Af3)
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding
8. &bra. Vastagsag érzékenység (y/) gorbék egy széntelepes modellre, négy teritési tavolsagra,
a széntelep alatti fekiiréteg vastagsaganak (M 3) fliggvényében
a) Fed6szondazas; b) Fekiliszondazas; c) Telepszondéazas
Puc. 8. KpvBble 4yBCTBUTENILHOCTU K MOLLHOCTK (y/) ANA MOAENN YronbHOro mnacra npu
YeTbIpex pasNMyHbIX pasHocax, Kak QyHKUmMA MoLwHocTK (J1/3) cnosi, NOACTMNAIOLLErO YrobHbIN
nnacr.
a) 3oHAMpoBaHWe KpoBaW; b) 3oHAMPOBaHWE NoOYBbLI; C€) 30HAMPOBaHKE niacta

for the two-electrode array (AM), 15% for the Schlumberger array (AMNB)
and 20% for the dipole-dipole array (ABNM) (Fig. 10). The various thickness
sensitivities are shown in Fig. 11. The sensitivity is unfavourable for the Schlum-
berger array, at 77= 100 m in the depth interval of 15-25 m, |*j*0.05
(Fig. 11/b). Such little values of sensitivity occur for other arrays as well
(Figs. 11/a, 1l/c).

Figure 12. shows sounding and sensitivity curves for different levels of
measurement. Based on the apparent resistivity curves we would expect that the
sensitivity conditions for detecting a high resistivity layer (basement) are most
favourable if the level of measurement is as close to it as possible. (The effect
of the high resistivity layer can unambiguously be seen in curve 4 only.) The
sensitivity curves demonstrate that the sensitivity does not change observably
by changing the level of measurement at AB/2=5and 10 m. At AB/2=20 and
50 m, however, the sensitivities are different for each level.
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Fig. 9. Sounding curves for measurements carried out within a bauxite deposit, 5 m below the
overlying layer. The high resistivity basement is 15 and 30 m below the level of measurements
a) Roof-sounding; b) Floor-sounding; c¢) Seam-sounding

9. 4bra. Szondazési gorbék a bauxittelepen belll, a fed6t6l 5 m-re végzett mérésekre.
A nagyellenallasu fekii a mérés szintje alatt (M) 15, illetve 30 m-re van
a) Kételektrodas-; b) Schlumberger-; c¢) Dipdl-dipdl elrendezés

Puc. 9. KpuBble 30HAMPOBaHWA 415 U3MePeHWIA, BbINOMHEHHbIX B Npejenax 60KCUTOBOM
3a/1eXXM, Ha PaccToOAHUN 5 M OT KPOB/W. BbICOKOOMHAsA novsa HaxXOAUTCH HUXE YPOBHS
namepeHunii (Al) Ha 15 1 30 m.

a) [ByxaneKTpojHas ycTaHoBKa; b) YcTtaHoBka LLntombepxe; C€) YcTaHOBKa AUMNO/Mb-AUN0b
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Fig. 10. Deviation (E) curves of the sounding curves shown in Fig. 9
a) Two-electrode; b) Schlumberger; c¢) Dipole-dipole array

10. &bra. A 9. 4bran lathaté szondazasi goérbék eltérés (E) gorbéi
a) Kételektrédas-; b) Schlumberger-; c¢) Dipél-dipél elrendezés
Puc. 10. KpuBble 0TKN0OHeHWI (E) KpUBbIX 30HAMPOBaHUA Ha puc. 9.

a) [ByxanekTpofHasa ycTaHOBKa; b) YcTtaHoBKa LLintombepxe; ¢€) YcTaHOBKa AUNONAb-AUNONb
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Fig. 11. Thickness sensitivity {u/) curves obtained for the model shown in Fig. 9 as a function of
separation between the measurement level and basement (M), for four electrode separations
a) Two-electrode; b) Schlumberger; c) Dipole-dipole array

11. &bra. A 9. dbran lathaté modell esetén kapott vastagsag érzékenység (i//) gorbék
a fekitavolsag (M) fuggvényében, négy teritési tavolsagra
a) Kételektrodas-; b) Schlumberger-; c¢) Dip6l-dipél elrendezés

Puc. 11. KpuBble YyBCTBUTENLHOCTU K MOWLHOCTU ((y) A1 Mogenun puc. 9 Kak yHKLMS
paccTosiHMA Ao noysbl (M) npu YeTbipex pas/NYHbIX pasHocax,
a) AByxaneKTpojHas ycTaHoBKa; b) YcTaHoBKa LLnombepxe; C) YcTaHoBKa AWMNO/b-AUMNO0Nb

In the sensitivity curves for R = 20 m and 50 m we have marked those points
which represent the thicknesses belonging to the respective levels. By connecting
these points (dotted line) the curve showing the variation of sensitivities for
different levels of measurement is obtained. It is mentioned that at R = 20 m (and
for a bauxite thickness of 15 m) the sensitivity is highest at the 2nd level and
lowest at the 4th level.

4. Summary

In the planning of underground measurements the sensitivities are essential
parameters. The basic concept of planning is that a measuring technique and
separation should be utilized whose sensitivity is high in relation to the layer
parameter to be studied and low in relation to the others. Based on the ex-
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Fig. 12. Schlumberger soundings carried out at different levels above the high resistivity
basement within a 15 m thick bauxite layer
a) Apparent resistivity (ga) curves; b) Thickness sensitivity (¥/) curves at four
separations; (numbers refer to levels of measurement, for other symbols see text)

12. 4bra. 15 m vastag bauxitrétegben, a nagyellenallasu aljzat felett kiilonb6z6 szinteken végzett
Schlumberger-szondazasok
a) Latszélagos fajlagos ellendllas (&) gorbéi; b) Vastagsag érzékenység (il/) gorbéi négy teritési
tavolsagra (az dbrakon a szdmok a szinteket jeldlik, a tobbi jel magyarazatat lasd a szévegben)
Puc. 12. 3oHagupoBaHus ycTaHOBKON LLIntoM6epye B npefenax 60KCUTOBOM 3aniexu Ha
pa3IMYHbIX BEPTUKAIbHbBIX PacCTOAHMAX OT BbICOKOOMHOW MOYBbI,
a) KpuvBble KaxXyLUMXCs yaenbHbIX CONPOTUBAEHUN (43).
b) KpuBble 4yBCTBUTENBHOCTU K MOLWLHOCTU (Y/) ANS YeTblpex pas/IMUHbIX PasHOCOB.

perience gained from the underground measurements carried out up to now it
seems that measuring techniques with i/, (#<0.1 are not worth applying.

In the interpretation of soundings, sensitivities belonging to several separa-
tions should be considered. Statistical interpretation methods [Golc’ man 1976,
Salat et al. 1982] provide a possibility for that both in the period of planning
and in the interpretation of field measurements. Such a study is currently being

prepared.
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FOLDALATTI EGYENARAMU MERESEK PARAMETERERZEKENYSEGE
GYULAI Akos

Foldalatti egyenaraml mérési mdédszerek 6Osszehasonlitasdhoz, a kutatds megtervezéséhez
célszerl az Un. paraméterérzékenységek bevezetése és alkalmazésa. A mélység- (vastagsag-) érzé-
kenységek és a fajlagos ellenallas érzékenység definialasa utan kiilonboz6 telepes modellekre (szén,
bauxit) szadmitott paraméterérzékenység fuiggvényeket, majd ezek alapjan a féldalatti mérések
néhany jellegzetességét mutatja be a dolgozat.
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YYBCTBUTEJ/IbHOCTb NMAPAMETPOB MNMAACTA MNP 30HANPOBAHUMNAX
METOAOM MOCTOAHHOIO TOKA B NOA3EMHbIX YCJ/ZTOBUNAX

Akow OAbKOJTAN

[Lns conocTaBneHnss MeToA0B 3/1eKTPO30HANPOBAHNA MOCTOSIHHLIM TOKOM B MOA3EMHbIX
YCNOBUSAX, ANs MNAHUPOBAHWS UCCNENoBaHUIA HEOGXOAMMO BBeAeHWe W ynoTpeGieHne MOHATUS,
TaK Ha3blBAaeMOi, YyBCTBUTENLHOCTY MapaMeTpoB niacTa. Hapsaay ¢ onpeaeneHem YyBCTBUTE b-
HOCTU MOLLHOCTU (FNY6UHBI) U yAenbHOro COMpPOTUBAEHUS MPUBOAATCS 3aBMCUMOCTM YYBCTBU-
TeNbHOCTY MapamMeTPoB NacTa, pacuMTaHHble Ha MOAENSX Pa3NNYHbIX 3anexeit (yrns, 60KcuTa),
a TaKXKe HeKOTOpble 0COGEHHOCTW 30HAMPOBAHWUS B MOA3EMHbIX YCNOBUSIX.
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