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THE STATISTICAL PROPERTIES OF PALAEOMAGNETIC
POLARITY-TIME SCALES

Janos MITNYIK*

The aim of the statistical investigation of the palaeomagnetic polarity-time scales is to get
information about the average behaviour of the reversals in time, and to utilize these to construct
models in which the same statistical properties are reflected. The principal problem associated with
this objective was the description of the average behaviour in time. After the examination of the
newest polarity-time scales we concluded the following:

—the polarity intervals show a non-stationarity which can be approached by linear regression;
— a gamma distribution is shown by the polarity intervals; the parameters of the distribution had
changed during the Earth's history;
the independence of the polarity intervals cannot be investigated with the recent mathematical
statistical methods, but it can be proved analytically (if some conditions are fulfilled);
the stability of the geomagnetic field is the same for the two polarity states: the question is, how
the polarity bias is connected with the processes which cause the change of the A parameter of
the gamma distribution.

Keywords: polarity-time scales, polarity intervals, nonstationarity, gamma distribution, paleomagnet-
ism

1. Introduction

It is well-known that the dipole moment of the geomagnetic field has
changed polarity many times in the Earth’s history. This is not unigue in the
Universe; the Sun and some other stars change their polarity periodically. At
the moment the dipole moment of the Earth is decreasing rapidly. If this
decrease continues unchanged then the dipole moment of the magnetic field will
vanish within 1000 years. In order to obtain information about the polarity
changes, we have to initially investigate the marine magnetic anomalies. In this
way, polarity-time scales can be made with a retrospective effect, as from the
age of the oldest marine crust. The first polarity-time scale was made at the
beginning of the 60’s. Lacking the convenient divisions, these timescales were
not suitable for statistical investigations. The first timescale which was sufficent-
ly long (from O to 80 million years), was produced by Heirtzier €t al. in 1968.
Naturally, its statistical analysis began concurrently. The timescales used in this
text are by Heirtzi1er et al. [1968] (referred to hereafter as HDHPL-68) and
Ness et al. [1980] (referred to hereafter as NLC-80).

Eotvos Lorand Geophysical Institute of Hungary, POB 35, Budapest, H-1440, Hungary
M anuscript received (revised version): 3 March. 1988



296 J. Mitnyik

The change of magnetic polarity from one stable polarity state to the other
is called polarity transition. Plotting the normal and reversed polarity intervals
against time, we get a polarity-time scale (Fig. 1). The square-like wave illus-
trates that the polarity changes are momentary. If we investigate the statistical
properties of the timescales, we have to assume that a polarity change can occur
in an instant. It is acceptable to assume this because the length of the polarity
intervals are in hundreds of thousands years, while a polarity change has as a
length a multiple of ten thousand years. Futher on, let us see a sufficiently
extensive time period with long equidistant samples. Let us determine the
original polarity state of the samples. The proportion of samples with normal
polarity state to those with reversed polarity state shows the time the field has
spent in normal state. This is called the polarity quotient, (usually given in
percent). Fig. 2 shows the changing value of the polarity function plotted against
geological time [Irving and Pullaiah 1976]. When the polarity quotient is near
50%, then the field oscillates considerably. However when its value is high (90%)
or low (10%) for a long period, then no, or only a few reversals occur. Connected
with these long intervals some further terms can be defined. When the field has
dominantly normal polarization, it is called normal polarity bias and when the
field is reversed dominantly, it is the reversed polarity bias.

Fig. 1 Polarity-time scale for the last few million years
1 &bra. Polaritas-id6 skala az elmalt néhany millié évre

Pue. 1 Llikana nonsipHOCTb-BpeMs 415 NOCNEeAHUX HECKONbKUX MAH. fieT

Fig. 2. The change of the polarity quotient as a function of time
[after Irving and Pullaiah 1976]
2. dbra. A polaritdshanyados valtozasa a geoldgiai id6 figgvényében
[lrving és Pullaiah 1976 nyoman]

Puc. 2. M3MeHeHWe JONN MONAPHOCTU Kak (hYHKLMS Feon0r1yeckoro BpemMeHu
[no lrving and Pullaiah 1976]
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The dates of the polarity transitions are given by the polarity-time scales.
The time between two succesive polarity transitions is called the “polarity
interval”. This polarity interval series can be made for the whole time scale. It
is not the polarity-time scales which are investigated directly, but the polarity
interval series, which were produced from them.

2. The analysis of the polarity intervals

In the mathematical sense, the polarity intervals form a time series. Conse-
quently the polarity intervals can be analysed using time series analysis,
X,(t=1,2,...) representing the polarity intervals from the present to the past.

2.1 The stationarity of the polarity intervals

Assume that X, polarity intervals (t = 1,2...) form a stochastic process,
which consists of three parts:

Xt=qg+dt+Yt (/=1,2...) )

where @, is the trend, dtis a periodical function and Y, is a stationary time series.
Further on, we assume that the periodical component is equal to zero [Phittips
and Cox 1976 and Lutz 1985]. Consequently, only trend and stochastic com-
ponents are contained in our time series.

The first to try to determine the trend with the moving average method was
Naidu [1971], who analysed the HDHPL-68 timescale. He had investigated the
changeability of the mean and the variance of the intervals in independent,
8 million year long, windows. The mean and the variance was found constant
between 0 and 48 million and between 56 and 72 million years, while a discon-
tinuity was found between 48 and 56 million years. The same was found by
Phittips et al. [1975] and Pnirrips [1977], when they investigated the same
timescale using the moving average method. Fig. 3 shows the moving average
of the HDHPL-68 timescale with 95% confidence intervals. (Normal distribu-
tion was assumed for the polarity intervals, when the confidence intervals were
constructed—this is valid when the sample is large.) The HDHPL-68 timescale
shows an almost constant behaviour between 0 and 40 and between 50 and 65
million years. The moving average of the NLC-80 timescale is shown in Fig. 4.
A linear trend can clearly be seen. Other timescales—not demonstrated here
—show similar properties: the moving average of the timescales made before
1974 are similar to the moving average of the HDHPL-68 and the moving
average of the timescales since 1974 are also similar to the NLC-80 timescale.
Perhaps the reason for the difference is the better definition of the new time
scales. It must be said that the series of the trend values, so determined, gives
a rough picture about the phenomenon in time. We cannot use it for a more
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complete analysis or for forecasting. For these aims, the trend must be deter-
mined as an analytical function of time [e1+c+s €t al. 1982]. After this a linear
trend is fitted for different ranges of some time scales. Let us assume that the
time series has the next form:

X, =at+b (t=1,2..) @)

Fig. 3. The moving average of the HDHPL-68 timescale. Sliding window includes 20 intervals
of each polarity and shifts by one interval of each polarity each time. The dashed lines show the
95% confidence interval

abra. A HDHPL-68 id6skala 20 intervallumon keresztiil végzett mozg6 atlagolas utan.

3.
A szaggatott vonalak a 95%-0s konfidencia-intervallumok

Puc. 3. Lkana HDHPL-68 nocne ckonb3swero ycpegHeHuns no 20 nHtepsanam. pepbiBbICTbIE
MHUK - 95%-Hble MHTEpPBa/bl 4OBepUs

Fig. 4. The moving average of the NLC-80 timescale. Sliding window includes 20 intervals of
each polarity and shifts by one interval of each polarity each time. The dashed lines show the
95% confidence interval

4. abra. Az NLC-80 iddskala 20 intervallumon keresztil végzett mozgé atlagolas utan.
A szaggatott vonalak a 95%-o0s konfidencia-intervallumok

Puc. 4. LWkana NLC-68 nocne ckonb3siwero ycpefHeHus no 20 nHtepsanam. MpepbiBbICTbIE
NMHUN - 95%-Hblii MHTEpPBaN A0BEPUS
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The results by the least square method are shown in Table I. It can be seen from
the data that the trend changes at around 40 million years, and becomes steeper
by one order between 40 and 80 million years. M cFadden [1984] also inves-
tigated the nonstationarity of the time scales. We shall deal with this in the
chapter on the distribution of polarity intervals.

If the trend is subtracted from the original time series, we shall get the
stationary random component. AR, MA ox ARMA models can be fitted for this.
But, we shall see later that data for the time series do not exhibit the same
distribution function. Therefore if we fit a stochastic model it will be impossible
to interpret. At present the application of these stochastic models may only be
done if the data for the stochastic process show the same distribution.

We can conclude the following: non-stationary behaviour is shown by the
newest timescales. The moving average method is not a perfect test for stationar-
ity, because it gives little independent information about the data set. For
example if we have 100 samples and use a moving window with 25 data, we shall
get only 4 independent data items for the time series. This problem—as we shall
see in the next chapter—was solved by M cFadden [1984] using the maximum
likelihood principle.

TIMESCALE INTERVALfMa] a b
HDHPL-68 0-40 8.73 «10~4 0.28
HDHPL-68 0-72 3.14 m10~3 0.17
NLC-80 0-/10 158 « 10“3 0.15
NLC-80 40-80 21 10 2 0.38
NLC-80 0-80 4.52- 10“3 -0.02
LA-81 0-80 3.25 m10~3 0.13

Table /. The linear trends which were fitted to some different parts of some timescales
(A, = at+h)

| tablazat. Néhany id6skala kiilénb6z6 tartomanyaira illesztett linearis trend (X, = at+bh)

Tabnuua /. JInHeiHbld TpeHp (X, = at+b) pasnnyHbIX MHTEPBANOB HEKOTOPbIX LUKaA BPEMEHU

2.2 The distribution of the polarity intervals

If rough histograms of the length of the polarity intervals were made, we
could see that the exponential distribution fits very well (Fig. 5). However,
using a finer scale, the histogram changes according to Fig. 6. On the basis of
this, N aidu [1971] generalized the exponential distribution into the gamma
distribution. However, whether exponential or gamma distributions describe
the polarity intervals, only a gamma distribution can be observed, because there
are a lot of undetected polarity changes, which thin the original process.
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Number of intervals

1 Ma

Fig. 5. The distribution function of polarity intervals, with rough division. The exponential
distribution fits well

5. abra. A polaritas-intervallumok gyakorisagi gorbéje, durva felbontasban. Az exponencialis
eloszlas jol illik ra

Puc. 5. FUcTorpaMma MHTEPBANOB MOCTOSHHOWM MONAPHOCTM MK TPYGOM paspeLLeHunn.
[,0CTaTOYHO XOPOLLIO OMUCLIBAETCS €KCMOHEHUMaNbHbIM pacrnpeaeneHnem

Fig. 6. The distribution function of polarity intervals, with fine division. The gamma
distribution fits well

6. dbra. A polaritas-intervallumok gyakorisagi gorbéje nagyobb felbontadsban. A gamma-eloszlas
jol illik ra
Puc. 6. CMcTorpaMMa UHTEPBANIOB MOCTOSIHHOW NOMSPHOCTM NPU GOMbLUEM Pa3peLLeHUN.
XO0poLo ONMCbIBaeTCs raMma-pacnpeseneHnem

Let us determine the parameters of the supposed distribution. The maxi-

mum likelihood estimation, suggested by Cox and Lewis [1966], was made
unbiased by M cFadden [1984] for the two parameters of the gamma distribu-
tion. The PDF (probability density function) of the gamma distribution is

fix) = ®)
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where x> =0, A ke R+ (k) the gamma function. The mean is

K

B =, (4)

For this reason we may turn to p=kR parameter instead of A The maximum
likelihood estimations of p and k and their variance are:

. 1N
= varNg = Rf[ (5)
. N 1
NE- K&\ ,np- Tv-1 b, I
var(In ic) \ (6)
Alc ¥ $ ) - I_

where \p{k) is the digamma function, y/\k) is the trigamma function [Abra-
movitz and Stegun 1970]

The ic parameter can not be expressed in an explicit way because \p{k) is
not an analytical function. Therefore we have to approximate it numerically.
So, can we estimate the p and k parameters independently? Yes, because the
covariance matrix is diagonal with regard to p and k. Therefore there is no
correlation between them. Let us assume after this that k and Acan change in
time, and let us calculate the change of tc and Ain time, in 8 million-year-long
disjunct intervals (Fig. 7). It can be seen that £ is approximately constant, while
Adecreases linearly between 0 and 80 million years and it increases almost
linearly between 120 and 160 million years.

After this let us handle separately the normal and reverse polarity intervals.
M cFadden [1984] proved that there is no reason to reject the hypothesis that
the value of £ and Aare the same for both polarity states. (This assertion will
be taken into account in the chapter which deals with the stability of the polarity
states.) The change in time of the £ and Aparameters for both polarity states
is very similar to that shown in Figure 7.

Let us return to the investigation of non-stationarity, mentioned by
M cFadden [1984]. The Aparameter can be replaced with a linear trend

A= a+Rt 6)

in equation (3), and the value of £, < 3 were determined by the maximum
likelihood method. It is obvious, that the non-stationary nature was described
here in an analytical way without the moving average method and all data were
used in the computations. In conclusion we can say that the observed polarity
intervals show gamma distribution, and that its two parameters (k and A) have
changed in geological history.
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Fig. 7. The change of Xand «k in time for the NLC-80 (from 0 to 80 million years) and for the
Cox-83 (from 120 to 160 million years) timescales [McFadden and Merrill 1984]
7. abra. X és k id6beli valtozasa az NLC-80 (0-80 milli6 év) és a Cox-83 (120-160 millié év)
idGskalara [McFadden and Merrill 1984]

Puc. 7. N3meHeHne X 1 K BO BpeMeHu no wkanam NLC-80 (0-80 mnH. net) n Cox-83 (120-160
MSIH. neT) [McFadden and Merrill 1984]

2.3 The independence of the polarity intervals

A very important question in the statistical investigation of time series is
whether or not the time intervals between the polarity reversals are independent.
First N aiau [1974, 1975] made tests for the independence. The autocorrelation
function of the polarity intervals was constructed for the HDHPL-68 timescale
from 0 to 72 million years (Fig. 8). It can be seen that the autocorrelation
function significantly differs from the autocorrelation function of the white
noise. Therefore the independence can be rejected. The idea of Naidu was
correct, but as has been shown by U 1rych and Crayton [1976], the autocor-
relation analysis can be used only when the process is stationary. Therefore the
autocorrelation function was made for the HDHPL-68 timescale from O to 48
million years. We can assume the stationarity for this time interval as per
chapter 2.1. As Fig. 9 shows, we can accept the independence of the intervals
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Fig. 8. The autocorrelation function for the whole HDHPL-68 timescale. The dashed lines show
the 95% confidence interval [after Ulrych and Clayton 1976]

8. abra. A HDHPL-68 id6éskala autokorrelacios fliggvénye a teljes idéskalara. A vizszintes
tengelyen az eltolas, a fiigg6leges tengelyen a korrelacids egyitthaté lathaté. A pontozott vonal
a 95%-os konfidencia-intervallumot jeléli [Uirych and Clayton 1976 nyoman]

Puc. 8. dyHKLMA aBTOKOppensaymMm BpeMeHHoN wkanbl HDHPL-68 no Bceid Wwkane BpemeH. Ha
FOPU30HTA/IbHYI0 OCb HaHeCeHbl CMELLEHNS, & Ha BEPTUKaIbHYIO - KOI(MMULMEHTbI KOPPEeNaLmMiA.
IMyHKTUPHOI NMHMeR 0603HaYeH 95%-Hblii MHTepBan JoBepus
[mo Ulrych and Clayton 1976]

Fig. 9. The autocorrelation function for the HDHPL-68 timescale from 0 to 40 million years.
The dashed lines show the 95% confidence interval [after Ulrych and Clayton 1976]

9. abra. A HDHPL-68 id6éskala autokorrelacios fliggvénye a 0-40 millio éves id6szakra.
A vizszintes tengelyen az eltolas, a fligg6leges tengelyen a korrelacios egyttthatd lathato.
A pontozott vonal a 95%-os konfidencia-intervallumot jeldli [Uirych and Clayton 1976
nyoman]
Puc. 9. ®dyHKumMs aBTOKOppenauum BpeMeHHol wkansl HDHPL-68 no nHTepsany BpemeHun 0-40
MJIH. NeT. Ha ropu3oHTanbHY OCb HaHeCeHbl CMeLLEeHUs, a Ha BEPTUKaNbHYHO
- KO3(hpuLMeHTbI Koppenauunin. MyHKTUPHOA NMHMeR 0603HaveH 95%-Hblii MHTepBan A0BEpUs
[no Ulrych and Clayton 1976]
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for a 95% confidence limit. In his reply, N aidu [1976] admitted the validity of
Uirych and Crayton’s result, but maintained that the polarity intervals are
not independent between 48 and 72 million years. Practically the same investiga-
tion was made by Phittips et al. [1975]. They concluded that for the stationary
time intervals from 0 to 45 and from 45 to 76 million years, the intervals are
independent. Laj et al. [1979] found the same result for the whole HDHPL-68
timescale, with another method of building the autocorrelation function. It will
be worth investigating why the discontinuity does not appear around 48 million
years. We can see that the newer timescales are not stationary (therefore
autocorrelation analysis cannot be carried out on them). Furthermore the
samples do not originate from the same distribution, consequently statistical
tests for the independence cannot be carried out on them (for example differ-
ence-test [Meszhna and zihrmann 1981]), because these tests assume that the
samples originate from the same distribution. Consequently we can say nothing
about the independence of the polarity intervals with the mentioned methods.

However we can say something about the independence in an analytical
way. The sequence o f ideas was suggested by M cFadden in private communica-
tion. For simplicity let us assume that the reversals are generated by a Poisson-
process. Therefore the probability P(t) that a reversal will happen in the interval
[t, t+dt] is:

P(t)dt = A-e~hdt )

Further, let us assume that the 2.is a function of time, for example: A= x+[t.
Let us start from time t—0, and wait for the first reversal, which will have
happened in r, time moment. On the basis of equation (7) the probability density
function relating to  time moment is:

P(t) = a-e~«' ®)

The probability density function for the next interval length t2 upon condition
t, is given by

P(h\h) = (a+/2/i)exp{-(a +Bt1)t2} ©)

It is obvious, that we can not get rid of tt in equation (9), since interval t2will
depend on the previous t, interval. Thus the intervals are not independent.

3. The stability of the polarity states

To determine the stability of the polarity states we shall provide an equa-
tion which gives the probability of the next reversal as a function of the passed
time from the previous reversal. Therefore we have to consider that the elements
of the time series do not originate from the same distribution, namely k and A
change with time. Let us assume an event (for example normal polarity state)
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which is in process at the time t0. What is the probability that the event will be
over before t0+1? (i.e. will a polarity change happen?) (Fig. 10).

P(x A t0O+1117Mt0Q) = ?
where X is the length of the polarity interval. After a simple calculation:

y[K*o+ Q K] - y[Xt0, K]
1-A~oA]
where y[X, K] is the incomplete gamma function [Harter 1964]. Let us call this
probability the probability of reversals. Let us choose tO, that “first” time
moment which will follow after a reversal with an infinitesimal time, and let us

describe the probability of reversals for different geological dates with the help
of the values Xand k, which can be seen on Fig. 7 (Fig. 11). It can be seen that

P{x A t0+tIX"t0) (10)

NORMAL

+- —> where t 0> ©
to TIME t > o0
REVERSED
Fig. 10. A description of the polarity change

10. abra. Polaritasvaltas

Puc. 10. MepemeHa NonspHoOCTU

PROBABILITY OF REVERSAL

Fig. 11. The change of the probability of reversals with time, for different geological dates
11. abra. A térfordulasi valészinliségek alakulasa az idében, kiilonb6z8 geoldgiai id6pontokban

Puc. 11. M3MeHeHMe BEpPOSTHOCTM MepeMeHbl MONSPHOCTEl BO BPEMEHU AN Pa3UYHbIX
MOMEHTOB T€0/I0MYecKOro BpeMeHu



306 J. Mitnyik

until the Cretaceous Normal Interval (between 80 and 120 million years) the rate
of increase of the probability of reversals decreases, and after the Cretaceous
Normal Interval it starts to increase quickly (see Fig. 11). On the basis of this
we can understand, in a qualitative way, the existence of the long intervals with
the same polarity, because, if Aapproaches zero, the mean length of the polarity
intervals will become infinite. It may also be assumed that it is by chance as to
what kind of polarity will be a long polarity interval. Since according to chapter
2.2, the value of k and Aare the same for both polarity states, the probability
of reversals (or the stability of the two polarity states) are also the same.

Some remarks about the polarity bias. Until now, this problem was con-
nected with the question of the difference in stability between normal and
reverse polarity states [Pnhittips 1977]. If the stability of the two polarity states
are the same, then the phenomena is due entirely to other reasons, and will not
be valid for the models connected with this (e.g. the models of Cox [1981]). On
the basis of these calculations, the question of the polarity bias is connected with
those processes which cause the change of the A parameter of the gamma
distribution.
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A PALEOMAGNESES POLARITAS-IDO SKALAK STATISZTIKAI TULAJDONSAGALI
MITNYIK Janos

A paleomagneses polaritas-id6 skalak statisztikai vizsgalatanak célja, hogy informaciot
szerezzlink a térfordulasok atlagos id6beli viselkedésérél, és ezek felhasznalasaval olyan modellt
készitslink a jelenségrél, amely ugyanezeket a statisztikai tulajdonsagokat tiikrézi. E feladatok
koziil a dolgozat az atlagos id6beli viselkedés leirasat tlizte maga elé. A legujabb id6skalak vizs-
galataval a kovetkezé eredmények adddnak :
a polaritasintervallumok idében nem-stacionarius viselkedést mutatnak, amely linearis regresz-
szioval kozelithet6;

—az észlelt polaritasintervallumok gamma-eloszlast kovetnek; az eloszlas paraméterei valtoztak
a foldtorténeti multban;
a jelenlegi matematikai statisztikai modszerekkel nem vizsgalhat6 az intervallumok fliggetlen-
sége, analitikus uton megfelel6 feltételek esetén — azonban bizonyithato;
a tér stabilitdisa mindkét polaritasallapotra azonos; a polaritasallapotok tulstlyanak kérdése
Osszekapcsolodik a gamma-elosztas X paraméterének valtozasat el6idéz6 folyamatokkal

CTATUCTUYECKWE CBOMCTBA MAJIEOMATHUTHBIX LKA
MONAPHOCTb-BPEMHA

Avow MUTHbLUK

Llenb CTaTUCTNYECKOTO WCCNeA0BaHWS ManeoMarHUTHBIX LWKaa NOASPHOCTb-BPeMs 3aK-
NOYAeTCA B U3BNEUYEHUU MH(OPMALMU O CPeAHEM NMOBEAEHWM U3MEHEHUI NONSPHOCTW BO BPEMEHU
M B CO3AAHMUM C ee MOMOLLbI0 MOAENN, OTpaXalolei Te e CTaTUCTUYecKMe CBOMCTBA. M3 aTux
3a/1a4 B JaHHO/ CTaTbe paccMaTpPUBAETCs XapaKTepucTuKa CpeaHero noseaeHUs Bo BpemeHu. Mpu
U3yUeHWUI HOBEMLIMX LIKaN BPEMEHU MOXKHO MPUATH K CEAYHOUMM BbiBOAM:

— WHTepBa/bl MOCTOSAHHOM MONSPHOCTM OGHAPYXXMBAIOT He CTallMOHAPHOE BO BPEMEHM
nosefieHMe, KOTOPOE MOXET GbITb anmnpoKCUMUPOBAHO NIMHEHOM perpeccuei ;

— HabnoaaeMble MHTepBasbl NOCTOSHHOW NONSPHOCTM pacnpedeneHbl Mo raMma-3akoHy; napa-
METpPbl pacnpefenceHns MeHSNNCL B Xoae reosorMyeckoii uctopum ;

— He3aBUCUMOCTb MHTEPBAOB HE MOXET 6biTh U3yUYeHa U3BECTHLIMM MaTeMaTUYECKUMN METoAa-
MU, HO—TNPU HAfNeXaLMX YCNOBUSX—MOXeET 6biTb [JOKa3aHa;

— CTa6bUNbHOCTL NONS 0AWHAKOBA B 060MX COCTOSHMSX MOMSIPHOCTU; BOMPOC O MpeobnafaHnn
COCTOSHMA TOW WNW WHOI MOMAPHOCTW CBsA3aHa C MPOLECCAMU, Bbi3bIBAKOLMMU WN3MEHEHUS
napameTpa X raMma-pacnpeaeneHus.






