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STRESS-INDUCED ANISOTROPY IN ELASTIC MEDIA

Ludwig ENGELHARD*

The linear Hooke’s law for elastic media represents in general the first order approximation 
of a nonlinear stress-strain relation for small stresses and strains. If also second order expressions 
are considered, the influence of static stresses on the propagation of elastic waves will be included 
in the wave equation. These effects are discussed in view of applications to seismic work. The 
microscopic origin of stress-induced anisotropy is reviewed. The stress-field due to the overburden 
pressure is responsible for a stress-induced transverse isotropy, while horizontal tectonic stresses 
additionally generate azimuthal anisotropy, leading to a splitting (birefringence, double refraction) 
of vertically propagating shear waves. Inherent and stress-induced anisotropy can be distinguished 
from their different symmetry properties.

Keywords: stress-induced anisotropy, shear-wave splitting, birefringence, nonlinear elasticity, 
Murnaghan constants

1. Introduction

Stress-induced anisotropy in solid materials is well known in optics. This 
anisotropy leads to a splitting of the electromagnetic (transverse) waves into two 
components that travel at different velocities in the medium: This is termed 
birefringence or double refraction. Both wave components show a time delay 
against each other after they have passed through the medium, leading to 
distinct interference phenomena which can be used for stress analysis in engin­
eering modelling [see e.g. M e u t h  1973, B l ü m l  et al. 1982]. Similarily, during 
the past decade, the application of stress-induced elastic anisotropy, appearing 
as birefringence of elastic transverse waves (“shear wave splitting”) has found 
growing interest for testing materials with regard to internal stresses by ultra­
sonic shear waves [e.g.: Hsu 1974, B l in k a  and S a c h se  1976, K in o  et al. 1979, 
Sc h n e id e r  and G oebbels  1982].

In addition, increasing consideration has been given to the study of stress- 
induced elastic anisotropy by seismic waves both for understanding the 
origins of anisotropy in general and for the intention of deriving the tectonic 
the origins of anisotropy in general and for the intention of deriving the tectonic 
stress field from seismic measurements. A first attempt to formulate a rigorous 
and general theory on wave propagation in an elastic medium under stress was 
made by B io t  [1940], but it was H u g h e s  and K elly  [1953] who derived ex­
pressions in closed form from the stringent framework given by M u r n a g h a n
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[1951] for the theory of elasticity in the case of finite deformations. On this basis 
many other authors treated their study of waves in prestressed solids, e.g. 
W a lto n  [1974], Bo n a fed e  et al. [1978], B a c h  and A sk e g a a r d  [1979]. Reference 
is also made to S eeger  and M a n n  [1959] and Seeger  and Bu c k  [1960] and, for 
collateral reading to the fundamental article of H u g h e s  and K elly  [1953]. 
T r u esd ell  and N o l l  [1965] present expressions for the velocities in the medium 
under stress in a different notation, but these can be transformed into those of 
H u g h es  and K elly  [1953] in terms of the Murnaghan constants (see Appendix 
B). Corresponding considerations on stress-induced anisotropy of elastic wave 
propagation were made by T o lsto y  [1982] and N o r r is  [1983]; they regard 
implicitly the (finite) strain caused by the static stress in terms of a generally 
nonlinear elasticity and superimpose the small strains of the elastic wave in 
terms of linear elasticity.

The application of stress-induced anisotropy for stress evaluation is still in 
its initial phase. A g g s o n  [1978] proposed a sonic tool for borehole measure­
ments of the tectonic stress by observation of the interference between the SV- 
and S//(tangential)-wave, caused by shear-wave splitting. The analysis of shear 
wave (SH) vertical seismic profiles by consideration of the change of the state 
of polarization as well as by cepstral analysis for tectonic stress estimation has 
been studied by T ö n n ies  [1986]. Z o b a c k  [1985] proposed that the horizontal 
polarization of tube-waves recorded on vertical seismic profiles may be used to 
measure the tectonic stress.

2. Phenomenological structure of stress-induced anisotropy

In this contribution, let us neglect any inherent (intrinsic) anisotropy of the 
medium. Thus, we consider a homogeneous medium which is isotropic if there 
are no stresses applied. Since we wish to consider the influence of high static 
stresses (overburden pressure, tectonic stress) on the propagation of elastic 
waves, we can no longer use the linear Hooke’s law as a stress strain relation. 
Instead, the strength of the static stress field makes it necessary to take into 
account the nonlinear elasticity of the medium. Up to the quadratic order, we 
have to deal with a stress-strain relation of the following form, in symbolic 
notation :

a = (А, ц)е + (/, m, n)e2 ( 1 )
where a indicates the tensor (of second rank) of stress, e the tensor (of second 
rank) of strain, (A, fi) represents the tensor (of fourth rank) of the elastic moduli 
for linear elasticity, which, for a homogeneous and isotropic medium, consists 
of only two independent parameters, the Lamé moduli A and //, in this notation. 
Correspondingly, (/, m,  n) indicates a tensor of elastic moduli of the sixth rank, 
describing the quadratic component in the stress-strain relation ; for a medium 
which is homogeneous and isotropic in the stress-free state, it contains three 
independent parameters, which are the Murnaghan constants /, m, n in this 
notation [M u r n a g h a n  1951]. A different choice of notation is presented in
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Appendices A and B. Thus Hooke’s law, which is the linear approximation of 
a generally nonlinear elastic stress-strain relation, is extended to the quadratic 
order and three further elastic constants -  the Mumaghan constants -  are 
involved for a homogeneous and initially isotropic medium. We will use the 
term elastic for a medium described by a nonlinear stress-strain relation in order 
to express that we assume no elastic hysteresis to be present, the latter property 
usually being ascribed as anelastic. Occasionally the term hyperelastic is used 
for the nonlinear medium without hysteresis [T r u e sd e l l  1961] if the stress- 
strain relation can be derived from an energy function — as is the case in our 
problem (see Appendix B).

Furthermore, in the frame of a nonlinear theory of elasticity, we must take 
into account that the strain tensor e is also nonlinearily related to the displace­
ment vector u, which is neglected in linear elasticity:

1 ( дщ дик\  1 du: du:
e* ~ 2 { t e ,  + ï ï J  + 2 ^ ' e ï ,  <2)

where u„ represents the component n of the displacement vector u and xm is the 
mth coordinate. In equation (2) and in the following, we make use of a summa­
tion convention requiring that all expressions must be summed up from one to 
three over that index which appears twicefold within the expression. As a 
consequence of the nonlinearity in equation (2), the Lamé moduli of linear 
elasticity will also appear in addition to the Mumaghan constants in nonlinear 
terms in the wave equation for the displacement u. The wave equation for the 
displacement u is derived in the usual way, starting from Newton’s law (summa­
tion convention on index k\):

d2U: dO:i
(3)dt2 dxk

where q  is the mass density.
Inserting the nonlinear stress-strain relation (equation (1)) as well as the 

nonlinear relation of strain and displacement (equation (2)) we get the following 
wave equation in symbolic notation :

42 .. 4 2 . .  4 -  4 2 . ,  d(Js,a,ic

(4 )
d 2u d 2u du ô 2u d<rî‘ka,ic

őu д 2и
In this symbolic formulation, the derivatives — and represent any of the

L a  (j X

vectorial derivatives curl, div, grad div and curl curl, as they occur in the 
equation, q0 indicates the density of the medium in the undeformed state.

d o T ic
dxk

represents the divergence of the static portion of the total stress field

acting on the medium. In geophysics, this includes tectonic and gravity forces.
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If now the total displacement u is regarded as consisting of a static part 
Ujfatir and of a wave part uwave

a us(a(ic + uwave (5)

we see immediately that the wave equation can no longer be split — as in the 
case of linear elasticity — into separate equations for only the static displace­
ment and only the wave displacement. The reason is the existence of nonlinear 
expressions in the wave equation (4), which also comprises mixed terms of the 
form

â5iai(C d uvvaiJe 
dx dx2

Such mixed terms express a coupling of the wave propagation with the static 
stress field.

The static displacement is time independent by definition, viz:

~  = 0 (6)

and hence, using the partition of the displacement in equation (5), we derive 
from equation (4) the following form of the wave equation in the lowest order 
of nonlinearity:

d2u„
Qo dt2

(Я, ц) + (Я, //, /, m, ri)
<3u„

+ (Я, ц) + (Я, fi, l, m, n)

dx

du

*siatic ik

dx

dx2

d2u„

dxb

dx2
(7 )

terms of the form Ő ^ w a v e  ^  ^ w û i ; €

dx dx2
that are neglected

Although this equation is nonlinear in the total displacement (and also in the 
static displacement), it is, in this order of approximation, linear in that portion 
of the displacement which is caused by the wave. I will therefore term this 
approximation “quasilinear”.

In this quasilinear approximation, the wave equation, equation (7), is 
formally separable into an equation for the static displacement and an equation 
for the wave displacement, if we formally introduce a new, stress dependent 
tensor of elastic moduli by

(Я, ц) + (Я, /г, /, m, п) ^^sía tic

dx
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This tensor of stress dependent moduli (А*, p*) contains in general more than 
two independent parameters and it formulates the anisotropy of the medium as 
a function of the static stress. The wave propagation then is formally described 
in terms of linear elasticity. This is the reason why linear elasticity works so well 
for the elastic wave propagation in the Earth, if only pressure dependent wave 
velocities and occasionally anisotropy are allowed. In simplified words, we may 
regard a general nonlinear stress-strain relation (see Fig. 1) and introduce “new” 
stress dependent moduli, thus expressing the curvature of the stress-strain 
curve. The wave propagation is then governed in terms of linear elasticity by

d<7
the slope of the tangent, (A*, p*) = — , to the stress-strain curve at the valued£
of the static load. In this treatise, however, we will prefer the explicit formula­
tion of nonlinear elasticity in terms of stress-independent elastic moduli. The 
inhomogeneous wave equation (7) can be solved in two steps:

a) In the absence of a seismic wave

a nonlinear equation holds for the static displacement alone, depending on the 
static stress field <x',a"c;

b) Once the static displacement vtslatic is derived as a function of static stress, 
this solution can be inserted into the entire wave equation (7) and a linear wave 
equation for uwave will be left.

stress a
Fig. 1. Nonlinear stress-strain curve 

with tangent modulus do/de at a load

I. ábra. Nem lineáris 
feszültség-alakváltozás függvény 

a dojde tangens modulussal, 
terhelésnél

Рис. 1. Нелинейная функция 
напряжение-деформация 

с тангенсовым модулем do/de при 
нагрузке гг”““

The solution of this problem was given by Hughes and Kelly [1953] for three 
typical conditions:
1) For pure hydrostatic (lithostatic) pressure p (isotropic stress)

во V\ = (A + 2/z) -  -~[10/r + 7A + 6/+4m] (8a)

3(A + 2^) + 3m - - nP
3 Кво Vl = P (8b)
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where vP,vs are the compressional and shear-wave velocities, respectively, and 
К  is the bulk modulus

К  = 2 + - ц (9)

Equations (8a) and (8b) represent a description of the pressure dependence of 
the wave velocities in terms of the pressure independent Lamé and Mumaghan 
constants;
2) For axial compressive stress a parallel to the direction of wave propagation

Q0Vp = (2 + 2ц)~  —(10// + 42 + 4m) + 2 + 2 /j (10a)

Qov s =  V -  “ ^ 4( / / + 2)  +  "  +  ( 10b)

3) For axial compressive stress perpendicular to the direction of wave propaga­
tion

в о П

Qo^Sx

0О^||

(Я + 2 /0 -
22

3 К 

a
3К 

a
3К

21- — (2 fi+X + rn)
V J

m - 2 2 -
fi + X 

2ц ■ ]

(Я+2 ц) + т +
4ц ■ ]

(lia)

(lib)

(11c)

where the symbols 1 and || indicate if the polarization of the shear wave is 
perpendicular or parallel, respectively, to the stress.

Hence, the medium becomes anisotropic, as soon as the stress field is not 
isotropic. In this order of approximation, the corrections describing the in­
fluence of the stress field on the wave propagation are linear in the stress. 
Therefore, the solutions given in equations (8), (10), and (11) can be additively 
superposed in order to apply to the general case.

3. Geophysical relevance of stress-induced anisotropy

We will not treat in this contribution the geophysical consequences of 
anisotropy in general, but present instead discussions on special cases of stress- 
induced anisotropy. For general reading on wave propagation in anisotropic 
media, irrespectively of its origin, the reader is referred to the other contribu­
tions in this volume and e.g. to Helbig [1981], Crampin [1981], Helbig [1983], 
Crampin [1984a, b, c], Crampin et al. [1984], Helbig [1984], Crampin [1985] and 
for the more practical aspects see e.g. Todd et al. [1973], Winterstein [1986], 
Hake [1986] and Thomsen [1986].
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3.1 Transverse stress-induced isotropy

Suppose there are no horizontal tectonic stresses, then, in a homogeneous 
and originally isotropic formation, the overburden pressure generates a non- 
lithostatic (anisotropic) stress field at depth (see e.g. p. 108 of Turcotte and 
Schubert [1982], or Jaeger and Cook [1976], p. 113 and p. 369):

= ggz = Sv (overburden pressure) 
I

^  X X  t j y y Â + 2 p Qgz
1 — V

ggz = SH
( 12)

where z is the depth, ozl and oxx, oyy are the principal stresses in the vertical and 
horizontal directions, respectively, for which also the notation for the vertical 
and SH for the horizontal stress may be used. The stresses are defined as positive 
in this treatise if they are compressive, v is Poisson’s ratio. The ratio

V

Î v (13)

is independent of depth. For a Poisson ratio of v= 1/4 the ratio SH/SV becomes 
1/3. The pressure p , being the isotropic part of the stress field, is given by

P = ^ (Px : + <7 +<t„) = -(2  SH + SV) = \g g z
1 + v
1 —  V

(14)

while the deviatoric stresses S'v and S'H are

and hence

, 2 l -2 v
Sv = S y -p  = - ggz- -----

3 1 -  v

~ $h P ~
1 l -2 v
ïW * - —  3 1 — v

Sh = _ 1 
S'y 2

S y -S 'H = ggz
1 — 2v

(15)

(16)

While pressure p leads, according to equations (8) to an isotropic change 
of the velocities, depending on the magnitude of the Lamé and Mumaghan 
elastic constants as well as on the sign of the Mumaghan constants, the devi­
atoric stress components lead to transverse isotropy according to equations (10) 
and (11). For the P-wave, the vertical velocity follows from equation (10a) for 
a being Sy, plus the pressure dependent part of equation (8a) for p. Correspond­
ingly, the horizontal P-wave velocity follows from S'y being inserted in equation
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(lia) plus p being inserted in equation (8a). Similarity, but in a more com­
plicated way, the stress-induced transverse (azimuthal) isotropy affects the shear 
wave. For the vertical shear-wave velocity, equation (10b) -  with a being S'y plus 
equation (8b) with p according to equation (14) -  must be taken. For the 
horizontal shear-wave velocity, equation (1 lb) or (1 lc) -  depending on whether 
it is an SH- or S’F-polarized shear wave, with a being S'v plus the pressure 
dependence from equation (8b) -  is valid. Thus, a general polarization direction 
leads to a splitting of the horizontally propagating shear wave into two com­
ponents {SH and SV) that travel at different velocities (double refraction, 
birefringence).

For a general direction of wave propagation, care must be taken that the 
stress-dependent expressions in equations (10) and (11) transform as com­
ponents of a tensor of second rank. Shear-wave splitting will occur whenever 
the shear wave is not purely SH  polarized and propagates in a non-vertical 
direction. Thus, for a homogeneous layer, anisotropy in the form of transverse 
isotropy will always be present from stress-induced anisotropy. This contributes 
to other sources of transverse isotropy like lithological and stratigraphic (fine 
layering) anisotropy. W interstein [1986] demonstrates impressively how 
seriously transverse isotropy influences the stacking velocities. His conclusion 
that these effects contain information on lithology can be specified for the 
stress-induced part of transverse isotropy in the remark that the Murnaghan 
constants may be regarded as lithological parameters.

3.2 Azimuthal anisotropy

We assume now, in addition to the stress field which is generated by the 
overburden pressure, a horizontal tectonic (axial, compressive deviatoric) stress 
S[. If the tectonic axial stress alone would be present, not in addition to the 
vertical deviatoric stress, it would induce a transverse isotropy with a horizontal 
axis of symmetry. In the general case, for the F-wave, the anisotropy must be 
described for the vertical direction of propagation by equation (11a), with S', 
being inserted for a, plus the stress-dependent part of equation (10a), with a 
being S'y, and with the pressure influence of equation (8a). The horizontal 
F-wave velocity follows correspondingly from equation (11a), with the perpen­
dicular tensorial component of the horizontal tectonic stress S', plus S'y, inserted 
for a, plus the parallel tensorial component of S', for a in equation (10a), and 
with the pressure influence of equation (8a).

The situation becomes even more complicated for shear waves. Therefore, 
for simplicity, let us regard the case of a vertically travelling shear wave (SH ), 
as it occurs in practice for shear-wave vertical seismic profiles (VSP) or for 
nearly vertical rays in shear-wave reflection seismics. The tectonic stress S', is 
then perpendicular to the propagation of the wave. In addition to the pressure 
influence in equation (8b) and the influence of the vertical deviatoric stress S'v
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in equation (10b), the tectonic stress in equations (lib) and (11c), respectively, 
gives different velocities, depending on whether the tectonic stress lies in the 
plane of polarization or perpendicular to it. Thus, a shear wave of an arbitrary 
orientation of its polarization direction will split into a parallel and a perpen­
dicular component, which travel at different velocities.

As a result, from the time delay between both components, an originally 
linearly polarized shear wave becomes elliptically polarized after the passage of 
a finite path length; the general relation between time delay of orthogonally 
polarized waves and the state of polarization may be found, for example in 
monographs on optics, like Born and Wolf [1980]. For a transient shear-wave 
signal, as seismic wavelets are, with a beginning and an end, the faster travelling 
component determines the polarization of the beginning of the recorded signal, 
while its end is determined by the slow wave component. In the main phase of 
the recorded signal, the composition of both components generally leads to 
elliptical polarization. Thus, we need only to know which is the parallel and 
which is the perpendicular component, respectively, the slow or the fast shear 
wave, in order to derive the orientation of the tectonic stress from polarization 
studies; in general (see below) it is the component polarized parallel to the stress 
that travels faster. In Figure 2 such a change of the state of polarization over 
the duration of the recorded wavelet is demonstrated in a sequence of synthetic­
ally generated hodographs for the stress assumed to act with an angle of 30° with 
respect to the x-axis in a mathematically positive sense [after Tönnies 1986]. The 
plane of polarization of the source is rotated in steps of 10 degrees. The source 
signal is a Ricker wavelet of 25 Hz dominant frequency, and a time delay of 40 
ms is assumed between both components. Furthermore, the spectrum of the 
composed wavelet will periodically be modulated by an interference structure 
caused by the interference of the two components of the wave from their time 
delay (cf. Appendix C). Aggson [1978] has proposed that the frequency interval 
between these maxima and minima be used to estimate the strength of the 
tectonic stress field from shear-wave borehole logging and Tönnies [1986] has 
given synthetic examples for such evaluation by cepstral analysis.

Quantitatively, we derive for the time delay At between the parallel and 
perpendicular to the stress polarized shear wave :

where Az is the length of the travel path. By use of equations (1 lb) and (11c):

Az _ Az V\ -  Vf 
V, ~ V„ ■ V± V± + V„

(17)

Az fi 1 4 n + n
(18)

y t • У ,  Qo V X + V t V  *

a being the axial stress perpendicular to the propagation direction (equal to S', 
for the tectonic origin of this stress). Furthermore,
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Fig. 2. Variation of the form of the hodograph as a function of the azimuth of the polarization 
of the source. The axis of the tectonic stress is assumed to be oriented at 30° with respect to the

x-axis [after Tônnœs 1986]
2. ábra. A hodográf alakváltozásai a hullámforrás polarizációs azimutja függvényében. 
Feltételezzük, hogy a tektonikai feszültség tengelye az x tengellyel 30°-os szöget zár be

[Tönnies 1986 nyomán]
Puc. 2. Изменения годографа в зависимости от азимута поляризации источника волн. 

Предполагается, что ось тектонических напряжений составляет угол 30° с осью х
[по Tönnies 1986].
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-  = V lo  ( 19)
во

where У so is the (isotropic) shear-wave velocity in the medium without stress. 
In this order of approximation, which includes only expressions that are linear 
in stress, we estimate in equation (18)

V± + V ^ 2 V S0
V, ■ V, ~  Vlo

We then have for the time delay A t:

At = as

(20)

(21)

where <xs is termed the “constant of stress induced birefringence”.
4fi + n
Sp2

(22)

Vso in equation (21) may be taken in practice as the geometric or arithmetic 
mean velocity, according to equations (20). Since

lo — (23)

is the mean travel time of the shear waves, we can rearrange equation (21) in 
the form At

—  = <V (24)
‘o

3.3 Order o f magnitude o f stress-induced anisotropy

The magnitude of the stress-induced anisotropy is determined by the 
strength of the axial stresses and by the magnitude of the Lamé and Mumaghan 
elastic constants. While the Mumaghan constants are known for a variety of 
“laboratory materials”, like pure metals or synthetic materials, only very few 
measurements of these constants for minerals and rocks are reported in the 
literature. In Figure 3, the measurements on granite, presented by Aggson 
[1978], show the stress-induced shear-wave splitting to be of remarkable order 
of magnitude. This diagram allows one to estimate the constant of stress- 
induced birefringence as for this sample of granite; the difference between the 
velocities at zero stress indicates the presence of inherent anisotropy in this rock 
sample. Walton [1974] presented a set of Lamé and Mumaghan constants for 
Barre granite, and Tönnies [1986] derived another set for Barre granite from 
the data of N ur and Simmons [1969]. These data, together with corresponding 
sets of elastic moduli of some other materials for comparison, are presented in 
Table I. While the Mumaghan constants for metals are in general of the order
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0 1000 2000 3000 4000 5000 (psi)
ST R E SS

Fig. 3. Measurement of stress-induced shear-wave splitting in granite [after Aggson 1978]

3. ábra. A feszültség által kiváltott nyíróhullám kettős-törés mérése gránitban 
[Aggson 1978 nyomán]

Puc. 3. Измерение двупреломления поперечных волн, вызванных напряжениями, 
в гранитах [по Aggson 1978].

of five to ten times the magnitude of the Lamé constants, they seem to be far 
greater in rocks. This may be caused by the micro-heterogeneity in the interior 
of rocks (see section 4). The negative sign of as for most of the materials 
indicates that the shear wave polarized parallel to the stress travels faster.

Thus, for granite, we estimate the order of magnitude of shear-wave 
splitting induced by stress to be

a, = -2 .3  (dry) ... -4 .8  (wet) GPa-1

The axial tectonic stress may typically be of the order of some ten MPa, hence 
from Eq. (24) M

— «  -0.05 
to

This means that the time delay between both shear-wave components will be 
of the order of 20 ms for a mean shear-wave travel time of t0 = 400 ms, which 
may correspond to a travel path length of about 1000m in granite. The time 
delay expressed in terms of the phase delay A<p between both shear-wave 
components turns out to be



Stress-induced anisotropy in elastic media 71

Material X
in GPa

M
in GPa

/
in GPa

m
in GPa

n
in GPa

во
in g/cm3 in GPa“1

Barre-granite (dry) 1) 1.16 18.38 -3 6 0 0 -6 5 4 0 -6 3 0 0 2.650 -2 3 0 3  ■ IO"3
Barre-granite (wet) 2) 29.7 25.3 -4 8 0 0 -8 4 0 0 -25000 2.66 -4 8 6 2 -  I 0 '3
Granite 3) -4 4 9 5 -  10~3
Stone—Mountain-

granite 4) 4.0 15.4 2.614
Polystyrene 5) 2.89 1.38 -  19 - 1 3 - 1 0 1.056 -2 9 3  • 1 0 -3
Pyrex;glass 5) 13.5 27.5 + 14 + 92 + 420 +  88 ■ IO"3
Armco-iron 5) 110 82 -3 4 8 -1 0 3 0 + 1100 + 2 7 - 10"3
Iron 6) 113 81 -1 6 7 -7 5 5 -1 4 9 0 - 2 2 -  IO"3
Copper 6) 105 47 -1 5 7 -6 0 8 -1 5 6 0 -  78 - 10“3
Steel 7) 115.8 79.8 -2 4 8 -6 2 3 -7 1 4 - 8  • 1 0 '3

1) Tönnies [1986], based on N ltr and Simmons [1969]
2) Walton [1974]
3) Aggson [1978]
4) Landolt—Börnstein [1982], p. 42 (included in this compilation to dem onstrate the large variations that the same type o f rock 

may exhibit in its elastic properties)
5) Hughes and Kelly [1953]
6) S e e g e r  and B u c k  [1960]
7) E g l e  and Bray [1976]

Table I. Lamé and Murnaghan constants and the constant of stress-induced shear-wave
birefringence for some materials

I. táblázat. A Lamé és Murnaghan állandók, valamint a feszültség által keltett nyíróhullám
kettős-törés konstansa néhány anyagra

Таблица I. Константы Ламэ и Мурнагана, а также константа двупреломления поперечной 
волны, вызванной напряжением, для некоторых веществ.

At I о
А<р = — 2п = -  2п cts о (25)

where Т  is the period of the shear wave. Hence, the phase delay Acp becomes 
2я if t0/T  equals about 20 (for the values that have been assumed above). Thus, 
for a wavelet of a dominant frequency of 20 Hz, a phase delay of 2n occurs if 
t0 is about 1000 ms. Remember that a linearly polarized wave becomes circularly 
polarized for a phase delay of Atp = тг/2 if both orthogonal components are of 
equal magnitude [for details, see Bo r n  and W o l f  1980]. All the other effects of 
stress-induced anisotropy, as discussed above, may be of the same order of 
magnitude. Note that the deviatoric vertical stress S 'v’,>according to equation 
(15), is of the order of 10 MPa at a depth of 1000 m for q = 2.6 • 103 kg/m3 
(granite) and a Poisson number of v= 1/4, and increases linearly with depth. The 
data presented in Table I also confirm that it was necessary, for the derivation of 
a theory of stress-induced anisotropy, to deal not only with tne nonlinear 
relation of the strain and displacement (equation (2)), but also with the non­
linear stress-strain relation (equation (1)). In fact, in the stress-dependent 
expressions of equations (8), (10) and (11) the terms of the Murnaghan con­
stants become the overwhelming parts compared with those of the Lamé moduli.
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4 . Further remarks on the nature of stress-induced anisotropy

Nothing is said in the frame of this theory about the petrophysical origin 
of stress-induced anisotropy on a microscopic scale (“microscopic” with respect 
to the wavelength), because our description is purely phenomenological. Several 
causes may contribute, whereas in any given formation one of the phenomena 
will be expected to be dominant. In preference, the oriented closure and/or 
oriented generation of microcracks by stress is mainly discussed in the literature 
[Nur and Simmons 1969, Todd et al. 1973, Crampin et al. 1980, Crampin and 
M cGonigle 1981, Crampin et al. 1984, Crampin and Atkinson 1985, Roberts 
and Crampin 1986, Brooks et al. 1987]. But we also think of such sources of 
stress-induced anisotropy like the change of the shape of pores (e.g. spherical 
pores become ellipsoidal under stress), the change of the contact between the 
individual grains in a preferred direction, the elastic differential rotation of 
nonspherical grains if they are embedded in a matrix of different elastic prop­
erties, and the change of structure of the crystal lattice in the grains. The last 
phenomenon dominates in the studies of stress-induced anisotropy in solid-state 
physics, e.g. Birch [1947], Seeger and M ann [1959], Seeger and Buck [1960], 
Bateman et al. [1961], Thurston [1965] and, is a main part, in acoustoelastic 
imaging of internal stress fields by ultrasonic shear-wave birefringence. All the 
other phenomena mentioned above account for the material heterogeneity. 
These dominate in natural rocks and thus the excess of Mumaghan’s constants 
for rocks in relation to homogeneous materials may be explained. Obviously, 
the Mumaghan elastic constants express the readiness of the material to close 
or generate cracks, to change the shape of the pores, to change the contact of 
the grains, the ability of elongated grains to rotate and the facility to change 
the structure of the crystal lattice.

In view of the prospect of deriving information on the stress field in the 
Earth from the observation of stress-induced anisotropy, the distinction be­
tween inherent and stress-induced anisotropy is of major importance. In ultra­
sonic experiments M ahadevan [1966] found the inherent shear-wave birefrin­
gence to depend on the frequency whereas the stress-induced part proved to be 
frequency independent. Schneider et al. [1985], who have analysed this effect 
in more detail, successfully applied a procedure on this basis to separate both 
portions of anisotropy. It seems questionable whether similar effects occur in 
seismics, but careful studies should be executed in the future. In general, the 
separation of stress-induced and inherent anisotropy is possible by taking 
advantage of the difference in symmetry of the medium, expressed in different 
symmetry properties of the modulus tensor cijkl [Thurston 1974, p. 227, K ing 
and Fortunko 1983, Thompson et al. 1984, N ikitin and Chesnokov 1984]. 
This tensor of elastic moduli itself depends on the stress to account for the 
nonlinearity of the stress-strain relation (this is, in the first order expansion of 
c i j k i  w>Ih respect to the stress, fully equivalent to the formulation of equation 
(1), see K ing and Fortunko [1983]). It turns out, that
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e ( v f j - v j i)
aif -  оjj for stress-induced anisotropy 
0 for inherent anisotropy (26)

where is the velocity of a shear-wave propagating in the i direction and 
polarized in the j  direction. Equation (26), indicates the lower symmetry of 
stress-induced anisotropy compared with inherent anisotropy. Furthermore it 
implies as a consequence that the abbreviated Voigt notation for the modulus 
tensor, as used by many authors to describe anisotropy [e.g. T h o m sen  1986], 
cannot be used for stress-induced anisotropy [T h u r s t o n  1974]. Hence, it fol­
lows from equation (26) that the stresses can also be derived from shear-wave 
anisotropy observations in the presence of inherent anisotropy if the material 
is traversed by rays in orthogonal directions and correspondingly mutually 
exchanged polarization directions; this is easier to achieve in the laboratory with 
ultrasonic experiments than in seismics. In seismic work, one may observe 
shear-wave anisotropy from a steep ray and from oblique rays under different 
azimuths and polarization directions and use equations (10) and (11) in tensorial 
rotated form, corresponding to the directions of the ray and of the polarization.

Anisotropy depending on the stress field has also been observed in the 
subcrustal lithosphere and in the upper mantle [e.g. Crampin 1977, Ando et al. 
1980, Ando and Ishikawa 1982, Ando et al. 1983, Fuchs 1983, F ukao 1984, 
Shearer and Orcutt 1986]. Two models for the origin of this anisotropy have 
been subject to discussion, the crack alignment model and the olivine alignment 
model [Ando et al. 1983]. While in the crack alignment model magma filled 
cracks in a preferred direction are assumed, in the olivine alignment model, 
which is now widely favoured [Crampin et al. 1984], the orientation of olivine 
crystallites—which themselves show a crystalline anisotropy—by flow processes 
is supposed [Fuchs 1983, Christensen 1984, Artyushkov 1984, Shearer and 
Orcutt 1986, Sayers 1987]. Although this type of anisotropy is j/ress-influ- 
enced, hence allowing for stress analysis in these depths, it is due to rheology, 
that is not based on elasticity as described by equation (1) but that accounts also 
for the flow [see e.g. F uchs 1983]. In view of this it does not strictly belong to 
the class of stress-induced anisotropy, whereas flow-induced anisotropy seems 
to characterize this type of anisotropy more precisely.

5. Conclusions

The study of stress-induced anisotropy from seismic observations is not 
only of importance for the analysis of the Earth’s stress field but also for 
lithological information in the sense of W in t e r s t e in  [1986], from the estimation 
of third-order (Mumaghan) elastic moduli. Laboratory measurements of the 
Mumaghan elastic moduli for a variety of sedimentary and crystalline rocks are 
now urgently required to estimate the order of magnitude of the stress-induced 
anisotropy in more detail than is done in this treatise in section 3.3, and to get 
an idea of its lithological span of variability. On the other hand, more observa-



74 L. Engelhard

tional data under controlled conditions, like shear-wave vertical seismic profiles 
(VSP) using 3-component geophones in the borehole, are needed. Care must be 
taken that the polarization direction of the shear-wave source is neither parallel 
nor perpendicular to the tectonic stress otherwise no shear-wave splitting would 
occur; thus, in general, at least two polarization orientations, forming an angle 
of 45° to each other, should be chosen.

In shear-wave polarization studies, furthermore, attention must be paid to 
changes of the state of polarization due to other origins, such as from trans­
mission and reflection at dipping interfaces [Douma and Helbig 1987] or from 
the effect of the free surface [Evans 1984].

The linear increase with depth of the vertical deviatoric stress S'y (cf. 
equation (15)) suggests that stress-induced transverse isotropy may play a 
significant role in the lithosphere. This assumption is consistent with the model 
of Dziewonski and Anderson [1981] and Anderson and Dziewonski [1982] 
for a general transverse isotropy in the lithosphere.

At last, the author wishes to draw attention to higher order elastic effects, 
which influence the frequency of a seismic wave. In equation (7), we have 
neglected terms that describe an interaction of the propagating wave with itself. 
These terms involve nonlinear spectral mixing leading to the generation of 
harmonic frequencies. A theory in closed form like that for the quasilinear 
approximation has not yet been published. If such effects would become notice­
able in seismic work, depending once more on the magnitude of the Mumaghan 
elastic moduli, they would influence spectral studies as, for example, seismic 
attenuation determinations. Observational indications, on the other hand, have 
been reported by Agnew [1981] and by Beresnev et al. [1986].

APPENDIX A
Murnaghan’s elastic moduli in Eulerian and Lagrangian coordinates

In a theory of finite elastic deformations, attention must be paid to a strict 
and persistent definition of the variables, since initial coordinates and final 
coordinates are no longer interchangeable. The choice of the initial coordinates 
as independent variables is called “Lagrangian formulation”, while the choice 
of final coordinates as independent variables is termed “Eulerian formulation” 
[Hughes and Kelly 1953]. Care must be taken if use is made of the literature, 
whether Eulerian or Lagrangian coordinates are used since the set of third order 
elastic moduli is different in both formulations. In general, however, the Lagran­
gian description is preferably used in the literature—as it is in this contribution. 
Seeger and Mann [1959] presented the relations that allow the conversion 
between both representations. If /, m, n are Murnaghan’s moduli in Lagrangian 
formulation and /', m', ri are those as defined in Eulerian formulation, then the 
following interrelations hold :
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/ = -  2(3 A + 4//) + 3 / + ni

m = — 2ц — -  n i (А- l)

n = -  12// + n'

i  = 2(2+2//) + -(l+2m )

m' = - 4 ц - 2m (A-2)

n' = 12//+ «

APPENDIX В
Other than Murnaghan notation of elastic third order moduli

The elastic energy density in Lagrangian representation <p(eik), where sik are 
the components of the strain tensor, reads in the formulation according to
Murnaghan [1951]:

<P = ~Poh+  —y ^ - ^ i - 2  fil2+ — y ^ - l \ - 2 m l ll 2 + nl3 ( Bl )

p0 is the initial (hydrostatic/lithostatic) pressure, À and ц are the Lamé-, and 
/, m, n the Murnaghan elastic moduli, and I u I2, / 3 the first, second, and third 
tensoria! invariants:

Л

h

h

= eu = Tr(eiJk)

= det (£ik)

+ det ■22

■32
(B-2)

Recall the summation convention as defined in Section 2, following equa­
tion (2), also for the following. The stress-strain relation in initial coordinates
is given by (cf. Seeger and Mann [1959]):

°ik (B-3)

where the Jacobian matrix J^, connecting the final coordinates x\ with the initial
coordinates Xj is

dx\ dut
J,j = dx] = Ôij+ Jxj (B-4)

where the щ are the components of the displacement vector.
Truesdell and Noll [1965] use in their treatise the following formulation 

of the elastic energy density for vanishing initial pressure p 0 (their equation
(93.1)):
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(В—5)

Therefore, from comparison with equation (В-l) , this notation can be con­
verted into Mumaghan’s expression by

On the other hand, these authors compare the stress-strain relation, following 
from (B-5), with an expression which they define as the second-order stress- 
strain relation for general elastic materials (their equation (66.3)), and they 
derive that

where a, are the elastic constants as introduced in a second-order expansion of 
the stress with respect to the strain. Substituting Mumaghan’s constants from 
(B-6) into (B-7), and a, being A///, we derive:

This result, however, is inconsistent with the conversion they themselves give 
on p. 230 of their work.

If, on the other hand, these conversions (B-8) are inserted into their own 
expressions for the velocities in their notation, then using a„ one gets exactly 
the velocities as given by Hughes and Kelly [1953], see equations (8), (10), and 
(11). Hence, we conclude that the conversion in the form (B-8) and not the 
conversion of Truesdell and Noll [1965], p. 230, for a, into Mumaghan 
constants is valid [Tönnies 1986].

nßi = l+2m 
ßßi -  -2 m
/Фз = n

(B-6)

« 3  =  “ a l  +  3/?! + / ? 2

a4 = ßl ß$
a5 = 2a, — 2 — /J2 — /?з
a6 = 4 + /?3

(B-7)

ца.г = -А  + /
/ia4 = —2 m + n 
цл5 = 2X — 2fi +  2m — n 
ц<х6 = 4n  +  n

(B-8)
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APPENDIX C
Structure of the spectral interference pattern for a double-refracted shear wave

Consider, for simplicity, the case of a vertical seismic profile (VSP), where 
a horizontally polarized shear-wave travels in the vertical direction. Since the 
orientation of the horizontal tectonic stress will not be known in general, we 
assume the angle of the polarization direction with respect to the direction of 
the tectonic stress to be a. By the double refraction in the medium the shear wave 
splits into components polarized parallel and perpendicular with respect to the 
stress :

Ф ) = s 0(t)- cos a ,r _ n
j x(0 = so(t) ' sin a  ̂ ’

where s0 is the source wavelet in the time domain.
The orientation of a horizontal geophone at depth will generally not be 

under control, although it may be known, for example, from a compass signal. 
Let ß be the angle of the geophone orientation against the stress direction, then 
the signal sG, recorded by the geophone, will be

sG(t) = 5n(0 cos ß + s±{t + ô) sin ß (C-2)
where ô is the time delay (positive or negative) between both shear-wave 
components, caused by the birefringence. Together with equation (C-l) follows 
the equation

*g( 0  =  ű í o( 0  +  ^ o( í +  <5)

where
a = cos a cos ß 
b = sin a sin ß.

By Fourier transformation, we derive for the spectrum of the geophone 
signal :

SG(w) = S0(a>) [a + be‘íoS] (C-5)

where S0(co) is the source spectrum. The expression within the brackets re­
presents the spectral interference pattern, superposed upon the source spectrum. 
For the power spectrum of the geophone signal we get

|SG(cu)|2 = |S0(w)|2 [a2 + b2 + 2ab cos (œâ)]. (C-6)

(C-3)

(CM)

The power spectrum of the interference pattern is schematically depicted in 
Fig. 4. Its amplitude, and thus its sensitivity for detection from experimental 
data, obviously depends on the product ab, which is maximal for a = ß = 
= л/4 : (a b )^  = 1 /4. Depending on the signs of a and b, respectively, the
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interference can also begin with a minimum at zero frequency. Since the spectral 
modulation by the interference is periodic, a cepstral analysis is appropriate for 
analysing the modulation quefrency, i.e. to derive the time delay Ö.

Fig. 4. Power spectrum of the interference pattern 

4. ábra. Az interferencia kép teljesítményspektruma 

Рис. 4. Спектр мощности интерференционной картины.
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FESZÜLTSÉG ÁLTAL KIVÁLTOTT ANIZOTRÓPIA RUGALMAS KÖZEGBEN

Ludwig ENGELHARD

A rugalmas közegekre vonatkozó lineáris Hook törvény általánosságban a nemlineáris ter­
helés-alakváltozás összefüggés első rendű közelítésének tekinthető, kis feszültségekre és alakvál­
tozásokra. Ha másodrendű tagokat is figyelembe veszünk, akkor a hullámegyenlet tartalmazza a 
statikus feszültségek hatását a rugalmas hullámok terjedésére. Ezeket a hatásokat tárgyalja a cikk, 
szeizmikus szemszögből. A feszültség által okozott anizotrópia mikroszkopikus eredetéről áttekin­
tést ad. A fedő terhelés okozta feszültségtér indukált transzverzális izotrópiát hoz létre, a horizon­
tális tektonikai feszültségek pedig iránytól függő anizotrópiát idéznek elő, amely a vertikálisan 
terjedő nyiróhullámok kettős töréséhez vezet. Az eredendő és a terhelés által indukált anizotrópia 
megkülönböztethető az eltérő szimmetria tulajdonságok alapján.

АНИЗОТРОПИЯ, ВЫЗВАННАЯ НАПРЯЖЕНИЯМИ В УПРУГОЙ СРЕДЕ

Людвиг ЭНГЕЛЬХАРД

Линейный закон Гука, описывающий упругие среды, в общем может рассматриваться 
в качестве первого приближения зависимости деформации от нелинейных нагрузок, действи­
тельного при малых напряжениях и деформациях. Если учесть и члены второго порядка, то 
в полученном волновом уравнении будет содержаться и влияние статических нагрузок на 
распространение упругих волн. В статье рассматриваются именно эти соотношения с упором 
на сейсморазведку. Дается обзор микроскопического происхождения анизотропии, вызван­
ной напряжениями. Полем напряжений, возникающим из-за нагрузок со стороны кровли, 
обуславливается поперечная изотропность, в то время как горизонтальными тектонически­
ми напряжениями вызывается азимутальная анизотропия, приводящая к двойному прелом­
лению поперечных волн распространяющихся в вертикальном направлении. Первичная 
и вызванная нагрузками анизотропия может различаться по неодинаковым особенностям 
симметрии.






