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LOVE WAVE SCATTERING DUE TO A SURFACE IMPEDANCE

P. S DESHWAL*

The paper presents a theoretical formulation for studying the problem of Love wave scattering
due to the presence of a surface impedance. The displacements are obtained in terms of Fourier
transforms by using the Wiener-Hopf technique. Evaluation of the Fourier integrals along suitable
contours in the complex plane gives the scattered Love waves appropriate to the surface impedance.
The scattered waves have a logarithmic singularity at the tip of the scatterer and behave as decaying
cylindrical waves at distant points. Numerical results for the scattering coefficient close to the
scatterer and the amplitude of the reflected wave versus the wavenumber have been obtained.
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1, Introduction

It is supposed that there is a discontinuity in the free surface such that there

is a thin smooth uniform distribution of matter on half of the surface x<0,

= - # and the other half of the surface x> 0, z= - H is free. The effect of

distribution of matter is such that it exerts surface traction proportional to the

acceleration in a direction perpendicular to the vertical plane through the
direction of propagation.

The model can be idealized to scattering of seismic waves due to irregu-
larities or discontinuities in the upper surface of the crust. For example, rigid
boundaries on the surface of the earth may resist the motion of the waves and
force the particles of the material beneath it to have horizontal polarization.
G regory [1966] studied the attenuation of Rayleigh waves due to the presence
of a surface impedance; Deshwal and Gogna [1987] have considered the
problem of diffraction of compressional waves due to surface impedance; the
problem of scattering of a Rayleigh wave due to the presence of the edge of a
thin surface has also been considered by Simons [1976]. The mathematical
formulation of the present paper is based on a paper by Sato [1961] who studied
the problem of propagation of Love waves for a surface layer of variable
thickness.

Here, we propose to discuss the problem of scattering of Love waves due
to the presence of an impeding surface. The method of solution is the applica-
tion of Fourier transformation and the Wiener-Hopf technique. A time-
harmonic Love wave is incident on the impeding surface (x<0, z= —H) from
the region x>0. The discontinuity at the surface gives rise to the Love waves
appropriate to the surface impedance and the waves scattered due to the
impedance.
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Let us consider a layered structure with a surface layer of thickness H with
its co-ordinate system at a point in the interface between the layer and a solid
halfspace (Fig. 1). The velocities of shear waves and rigidities are taken to be
v], prin the solid halfspace and v2, 1 2in the surface layer. Let the incident wave

be [Sato 1961]
VOA = Acos (z2tn H)yexp (-sitn z-ik UNX), z"O

V0,2 = Acos (B2N(z+ H)) exp (—ikINX), -H”AzA0 (i)
where
svn ~ J(kiN-kj), s2n=Ak2~kl N, )
and ky Nis a root of the equation
anden H=y" N, y= P ©)
BI.N PI
The wave equation in two dimensions is
(V2+kDM =0, j —1,2, \ky\<\k2\ @
and
1 ((@+ IE(u\
(( ( o ©)
v} ) ~ k'+ik

£>0 is a damping constant and the displacement has a time factor exp (—icat),
kj is complex whose imaginary part is positive and small. We define the Fourier

transforms

\ = &yje'pxdx, p = £+if] 6)
= Meixdx+ f \exdx
—00 0
= Vj-+Vj+
If for given z,
W\ ~ exp(-k'i'|x]) as |X| » @)

then vj+ is analytic for rj> —k" and £¢_ for rj< + K'[.
\j is therefore-analytic in the strip —k'(<r]<k’[ of the complex p plane.

( O,-H)

Fig. I. The geometry of the model
1 &bra. A felvett modell

Puc. I. F'eomeTpns mogenu
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2. Boundary Conditions

If the total displacements are denoted by

v = ®o0,i+ »i, z=0
V = V0'2 + V2, —HA”Z"0 —00<X<00

then the conditions on the boundaries are

o Vi@ =0 ©)
) v _dv ; onl— dv2 0o O
(il) thp. =p2p, O Yo =4 27 )
. av 8> _ _ A
(hi) R =0 o g = 0, z=—H, x"0 (ID
(iv) Y- on z=—H xS0, e,
dz
dv2 - .
p2-0-z----a[v2 + Aexp ( —Aj] NX)], = —H, xiSO (12)

where a is a constant depending upon the nature of the material of the impeding
surface. The boundary condition (12) may be interpreted as representing the
physical situations that (i) there is a thin smooth uniform surface distribution
of matter exerting surface traction proportional to the acceleration along a
direction in the horizontal plane perpendicular to the vertical plane through the
direction of propagation or (ii) at each point of the surface, there is a resisting
or a restoring force proportional to the velocity along the normal to the vertical
plane through the direction of propagation. G regory [1966] has given various
explanations for this condition in the case of Rayleigh waves.

3. Solution of the problem
We begin by taking a Fourier transform of (4) to find
~ -BjVj = 0, Bj = £ \ipr~kf) (13)

The sign before the radical in (13) is such that the real part of Rj*O for all p.
The solution to (13) is

i\{p,z) = B(p)e\p(-Bx2), z"O (14)

v2p,z) = C(p) exp (~B22) + D(p) exp (B), (15)
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Using the boundary conditions (9) and (10), we find

v2ip, 2) = I\E (02 cosh RBiZ-yRi sinh 322) (16)
Vi(p>2) = »i(p, 0)exp(-/?jz) ()]
vi(p,0)=B (18)

We use the notation (;,(/?) for r,(p, - ), etc. thus the conditions (11) and (12)
result in

t2+(/?) = 0 (19)
aA
= - , j < Im(kI N. 20
MV'i-(P) = ar2- + osin) 1 (kI'N (20)
Adding (19) and (20), we find
_ av? aA o1
VAP = T wap-kit) @
From (16), it is obtained that
_ B2cosh B2z —yRxsinh B2 -
V2AP.2) = r555sh 2H+y R sinh £ VAP (22
and from here, we get
7\ o RBisinh BiH+ yBlcosh RiH . , . 23)
V(P R2R2cosh B2H+yR 1 sinh B2H vaer
From (21) and (23), we obtain
7 2 sinh R2H+yRi cosh R2H]v2
avr aA _ [R2sinh 3 yRi cosh B2H]v2(p) 24)

M wAp-kN - B B2cosh B2H+yRi sinh R2H

We can solve the functional equation (24) for v2+ and fi2- by invoking the
Wiener-Hopf technique.
Let us write

R2cosh B2H +yRi sinh R2H
Up) f2ip) RisinhRzHfyRi cosh R2H

Lip) tends to las || tends to infinity. By an infinite product theorem [Noble
1958], L(p) can be factorized. Let £plnand tpx(n = 1 2, ...) be the zeros of
flip) and f 2(p) respectively. Then

(25)

ip2-pin) Plip) (26)

Up) = n=1 ip -Pin)_ p2p)
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where
®
Pi(p) = Fiip)l L | iP2~P\n)
' @)
Piip) = Flip)! [T ¢~ pin)
n=1
are non-zero functions of p. Further if
Pip) = P,iP)tP2iP) - P+iP)P-iP) (28)
then
1 log Ao
log P+p)
1 log Fi{0 1 flog £2(0
2n\ 2ni (29)
() Kl k2
1 g_)_’__'_(P__ZUJ____ 1 du
0 0 K

and P_(p) =P+~p)
where

tan ®1 = 3 cos BHjy [(rr + kI) sin RH
tan ®2 = y Mu2+«k\) cos BH/B sin BH
tan V, = B' cos B'Hjy \I(K\ - n2) sinR'H (30)
tan V2 =y I{kl - u2)cos RB'H/R" sin R'H
B = (u2+k212 R = (k2-u?212
T is the contour shown in Fig. 2. Thus
iP2-p\n)

Lip) = N PAp)PApP) = L +{p)L"ip) (31)
ip2-pin)

Im(p)

Re(p)

Fig. 2. Contour of integration in the complex plane
2. &ra. Az integrélasi kontar a komplex sikban
Puc. 2. KOHTYp UHTErpMpoBaHnsi B KOMM/EKCHO MI0CKOCTU



180 P. S. Deshwal

where
r,, A PtPm)n,h 4
Lstp) " [ pxfp
We decompose (24) as
1
. ) _ Ao
L +ip) [i(p+k2v2_- V2A~P\n) 1/("2~PIn)\ +
S @
I(p-k2 _ ‘™ Mv)_ P2
ilp+ K2n2 4+ p2~PInV2~(-Pln)
£+(/>) LAp)

R2=0 is not a singularity in the decomposition. The left hand member of (32)
has no singularity at the zeros p= ~pXof L Hp) as it reduces to 0 form. There

is a pole at p=kxNand branch points at p= £ k2 Therefore the member is
analytic in the region - Im(AY -K[, where kx,<\kljNi< k2 . Similarly the
right hand member is analytic in the region p> —k". By analytic continuation,
they represent an entire function analytic in the strip - k™ <r/< kI and having
the value - "k2~plInv2~(-pln) = —ka&p\  o0o. By Liouville’stheorem, each
member in (32) has the constant value - k.

Hence
2 = - R Li 33
v2{p) Pig2 i(p-kmy P (33
where
Pi JP k2 aAL
Vo= PR L Hp)- (P) (34)
Pi3i + al{p) iPi P~k2ip-kUN-
The displacement inside the layer is given by
0 +inj
v2(x, 2) = 2—1 vZip,z)e-ipxdp
T ..
_@m
Bif] :
1 2cosh B2z —yRxsinh 32 5 o
sinhpoH VAPE PP (39

In _d'm]BZcosh R2H + yR.

where —" <rj<KXand v2(p) is given by (33).
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4. Evaluation of the integral

Ifa=0 then v2(x, z) = 0, i.e. if there is no impedance on the surface, there
is no wave other than the incident wave. Let us evaluate the integral (35) along
a closed contour in the upper part rj> —k" of the complex plane. In order that
the integral along the contour at infinity vanishes .t<0. There is a contribution
due to the pole at p=kt N

V2A = - AcosR2Nz+H) exp (- ikj N) (36)
which cancels the incident wave. We have the poles of the equation a L(p) +
+pB2=20
R2c°sh BiH + yR: sinh = _ MiBi
R2sinh R2H+yR 1 cosh R2H a

Let k2ZN(N = 1,2, 3, ...) be a root of this equation. k2N represents the Mh-
mode of Love waves due to the impeding surface. If we take

Ri,N= T(k\—k\ u), RBxN= j(k2N—k\) (38)
then (37) has the form
tan B2N(H—h) = yBUNR2J (39)
where
\Voh 32 Nh [tR2 (40)
The impeding surface behaves as a surface layer. The pole atp =k 2 Ncontributes
a2.N k(bLHk2zy) _ A
v22 - cosR2NH—h)  V(K2+k2N) i(*2.1 K\N)_
n + - ~ -
cosB2Nz+H-h) exp (~ik2Nk) (1)
G (k2,n)
where

d
G(p) = a|ro[a(f32005h B2H+ yR1sinh B2H) +
+A R2AB2sinh B2H + yR\ cosh B2H)\ (42)

These are damped Love waves appropriate to the impeding surface.

Let us now take the contour in the lower part r/<k™ of the complex plane.
It has a branch point atp = ~k2and the contour includes a branch cut as shown
in Fig. 3. The integral along the infinite circular arc vanishes if x>0. The branch
cut is obtained by taking Real (32) =0 [Ewing et al. 1957], and \m(82) changes
sign along the branch cut. The contribution at the branch point p= —k2comes
from its neighbourhood and we put p = —k2- iuin (35), where u is small. Since
R2is imaginary along the branch cut, R\ is negative. Therefore
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Fiy. 3. The contour of integration in the complex plane with branch cuts
3. dbra. Az integralasi kontdr a komplex sikban, kett6s bevagassal
Puc. 3. KOHTYp MHTErpupoBaHus B KOMMMEKCHOI M0CKOCTW C ABOWHbIM BPe30M

Bl = {-k2-\n)2-k\ = 2iuK2+ik2)—n2 = —(2kM+u2, «K2=0
or

Bi~z+'dbv R = j{lk2u+u2)
Integrating (35) along the two sides of the branch cut, we have

©23 = oo [»2(A - 2P, 2)\p,--ift> 2Ze wxdu =

cd K\ GRu) cos *(2k2u+un2) (z+ ff)

n j(2k2+u2)
G 2(u) Sin )/2k2u+ u2(z+ H)' d 13
2k2u +U2 . )
where
GRu) (Bi cos B2H +yR\ sin B2H)R2
P-iR2+ CiL (1)
20 Ril'i sin B-ZI—.|-yB\ COSR2H) 32
PiR'i + aL'{u)
L RB2cos B2H+yR\ sin 2H
Y R'2sin R2H+yR\ cos R2H
and

2= B\ = f(k2+iu)2-k 2
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Since n is small, we shall retain only (7,(0) and (72(0). The integrals in (43) are
Laplace integrals. We use a result obtained by Oberhhttinger and Badii [1973],
viz.

. cos (2k’n+it2 (z+H)
Koik'i r) = e~k du (44)
12k2u + u2

where KO0 is the modified Hankel function of zero order and r = ]jx2+ (z+ H)2.
Thus

ve. 3 oA (7,(0)BA7)+(720) J KOk)dt (45)
where "
jIkl (1+yR1H)yRlexp (- in/4)
(7.0) = :
| +yRIH) +fi2yRl
a(l +yRIH) + '2f/ @)
_ 2{yB\) exP ( 17r/4)
G20) = - afl +yRIH) +/i2yRl
and
R\ = Hk2-kl), s= I(x2+(t+H)2 47)

Conclusions

The scattered wave in (45) and the reflected wave in (41) corresponding to
the impedance surface are absent if a=0. that is, if there is no impedance
condition. For small values of r, K*k'jr) ~ (log z—log r—c) and for large
r, A0(/c2r) ~ exp (—/c2r)/|/r. The scattered wave has a logarithmic singularity
at the tip of the scatterer and behaves as a decaying cylindrical wave at distant
points. Numerical computations are made by taking r=0.1 km, z= —#,
k=001 km, y =/r/lr2=2 A=6kT1, V2vl = 3/4, v2v = 6/7 and £1T= K2
The amplitude of the reflected wave (Fig. 4.) has been plotted versus the
wavenumber k for the case 2= 0. It reaches the greatest value around k= 32.5
and then falls to attain a minimum value around k= 60. The scattering coef-
ficient /Fig. 5.) grows gradually as k increases slowly. It can be seen in (40) that
it depends upon both the material and thickness of the impeding surface.
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Fig. 4. Amplitude of reflected wave versus
wavenumber

4. dbra. A reflektalt hullamok amplitadéja
a hullamszam fliggvényében

Puc. 4. AMNANTYAbl OTPaXXEHUN V BONH Kak
(hYHKLMSA BOMHOBbLIX Ymcen

Fig. 5. Scattering coefficient versus wavenumber

5. abra. Szérasi egviitthaté a hullamszam
fliggvényében

Puc. ¥ KoathduumeHT aucnepcnm Kak
(hYHKUMSA BONHOBBIX uucen
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LOVE-HULLAM SZORODAS KIEKELODO, NAGY AKUSZTIKUS IMPEDANCIAJU
VEKONY FELSZiNI RETEGEN

P. S. DESHWAL

A felszini impedancian keletkez6 Love-hullam szor6das problémajanak tanulmanyozasara
elméleti megoldast javasol. Az elmozdulasokat Fourier-transzformaltakkal fejezi ki a Wiener-Hopf
technika alkalmazasaval. A Fourier-integraloknak a komplex sikban alkalmas vonalak mentén
térténd kiszamitasaval megadja a felszini impedancianak megfeleld szort Love-hullamokat. A szort
hullamoknak a szérasi felllet csicsan logaritmikus szingularitasuk van és Ugy viselkednek, mint
csillapodé hengeres hullamok tavoli pontokban. A szorasi fellilet kozelében a szorasi egyitthatora
és a reflektalt hullam amplitddéjara numerikus eredményeket ad a hullamszam fliggvényében.

ONCIMEPCUA BOJIH NTABA OT BbIKITIMHUBAKOLWEIoCA NMPMMOBEPXHOCTHOIO
C/10A C BbICOKM AKYCTUYECKMM MMIMNEJAHCOM

n. C. AEWYOnN

MpeanaraeTcs TEOPETUUECKOE peLlieHre NPo6aeMbl Aucnepcui BoMH J1aBa, BO3HUKAOLWMX Ha
NPUNOBEPXHOCTHOM MMMeaaHce. CMeLLEHNs BbipaXarTcs TpaHcopMaHTamu dypbe ¢ UCMOMb30-
BaHMEM TeXHWUKM BuHepa-Tonda. MyTem BbluMCNeHUs MHTerpanoB ®ypbe BAOAb MOAXOAALMX
NIMHWIA B KOMMMIEKCHOM MNOCKOCTU ONPeAenstoTcs PacCesiHHble BOMHbLI J1aBa, COOTBETCTBYHOLIME
VIMMefaHcy Ha NoBEpPXHOCTU. Ha BepLUVHe NOBEPXHOCTW AMCMEPCUN PacCesiHHbIe BOMHLI 06M1aaatoT
NOrapuiMUYECKOA CUHIYNAPHOCTBIO M BeAyT cebbl Tak. KaK 3aTyXarowme LMIMHAPUYECKNE BO/HbI
B yaNleHHbIX TouKax. [arTcs LudpoBble pe3ynbTaTbl Kak (YHKLUMS BOHOBLIX YMCEN A1 KOaghdu-
LMeHTa AMUCnepcun N aMnauTy/ibl OTPAKEHHbLIX BOMH B6/M3M OT MOBEPXHOCTM AMUCNEpPCHNt.






