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STUDY OF METHODS FOR DETERMINING VELOCITY AND
DEPTH PARAMETERS IN LAYERED REALISTIC MEDIA

V. M. GLOGOVSKY* and G. N. GOGONENKOV*

Different methods for solving the problem on the basis of local homogeneity of the layers are
compared by a special representation of the CDP traveltime curve. Error estimates for the velocity
and the depth computations are given as a function of the errors of the initial data and the
inhomogeneity of the medium. The problem of regarding the layers as locally homogeneous media
is discussed.

Keywords: inverse problem, seismic discontinuities, traveltime curves, common-depth-point method,
inhomogeneous media, seismic inversion

1. Introduction

One of the traditional problems in seismics is that of determining the spatial
orientation of reflectors and the velocity of the layers bounded by them from
the kinematic parameters (t0, VCCP, etc.) of the reflected waves. At one time this
problem, called the inverse problem of reflection seismics, stood in the centre
of data processing; subsequently, interest weakened for almost a decade and
after that — through the emergence of new techniques and possibilities — it
took on a new lease of life on the basis of newer ideas. Nevertheless, it never
fully disappeared from the horizon of geophysicists since the resulting medium
parameters are important not only for themselves (such as, for instance, the
layer velocity as a substantial source of information necessary for predicting the
lithological composition), but they are indispensable for proper data processing
(e.g. the layer model of the medium is essential for the migration taking the
refraction of rays into consideration as well).

The majority of the present-day methods used for solving the inverse
kinematic problem of reflection seismics carries out the computation layer by
layer, that is, going downward the velocity and the depth of each subsequent
individual layer are determined successively from the kinematic parameters of
certain reflecting interfaces marked out previously on the time section. Then in
the course of the solution of this problem, it will be supposed for each layer,
that
1 the parameters of layers in higher up positions are known and were deter-

mined properly;
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2. in each step of the computation the layers are locally homogeneous.

In reality, however, the requirements mentioned above are fulfilled only
approximately, as a result of which the estimates for the medium parameters
sought for are subject to errors. These result mainly from the supposition of the
layers being locally homogeneous. Direct velocity measurements in acoustic
loggings demonstrate that the layers belonging to time differences larger than
0.3-0,5 s are seldom homogeneous, although the reflections bounding the
intervals selected for the layer-by-layer solution of the inverse problem border
just such regions of the medium. This is confirmed indirectly by the often
intensive arrivals more or less traceable for some length observable on the time
section, between reflectors chosen as layer boundaries for the data processing.

In reality, errors will result from neglecting inhomogeneity when determin-
ing the parameters of such layers, and these not only distort the parameters of
the layer itself, but also adversely affect the accuracy of the parameters of the
subsequent layers. In fact, the initial data necessary for solving the inverse
problem for the subsequent layer shift over from the surface to the upper
interface of the subsequent layer, thus, these data will be erroneous as well
because of the parameter errors of the previous (upper) layer.

In this paper, we study the effect of the inhomogeneity of the real medium
on the quality of the solution of the inverse kinematic problem if we assume
locally homogeneous layers. First, a convenient representation of the time field
is developed, actually for the CDP traveltime curves (i.e. the arrival times of the
reflections are given as functions of the shotpoint and the recording locations).
Subsequently, those concepts are reviewed on which the solution of the inverse
problem referring to a homogeneous layer are based and it is shown that the
various algorithms are equivalent to each other for homogeneous media, but
they behave differently to velocity inhomogeneity. This enables one to formulate
the task of;identifying a layer by whether it is homogeneous or not. In the
following the specific aspects of the layer-by-layer computation are discussed,
given that the layer is inhomogeneous and the initial data are subject to error.

Since these problems are rather complicated and multifarious, our main
intention is not so much to give detailed answers to the questions raised as to
develop a more general approach to them on the basis of which answers are
obtained in a more coherent way.

Let us review the tools necessary for solving the problem.

2. Skeleton velocity and the CDP traveltime curve representation

One of the difficulties in solving the inverse kinematic problem for inho-
mogeneous media comes from the lack of an equation for the traveltime curves
of reflected waves, in more or less simple form. The traveltime curve is usually
described by a power series in which the coefficients of the terms are functions
of the layer parameters [Urupov and Levin 1985]. In the case of comparatively
more complex media, these series are slowly convergent and in addition to this
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the coefficients are complicated expressions, and are difficult to evaluate —
especially with regard to solving the inverse kinematic problem. Thus we intend
to formulate a traveltime curve representation with generalized medium charac-
teristics which are not explicitely related to medium parameters. Nevertheless,
this representation provides an opportunity to investigate several methods for
determining the parameters of inhomogeneous layers and to compare them with
each other.

Consider a layer with varying velocity t>x z) and a reflection of depth h(x)
(Fig. 1). Let n be the ray with normal incidence to reflector h(x) starting from
point 9 and reaching (£,/r(E)). Denote by / the distance between points <9 and
(E/*(E)), and by cothe angle between this straight line and the vertical. Then (l,c0)
are the polar co-ordinates of reflection point (*h(i))-

(x',0) 8 (<0)

Fig. 1. Definition of notations
I. abra. Vazlat a jelolések és kozelitések szemléltetésére
Puc. 1 K onpeaeneHnto NOHATUA KapKaCHO CKOPOCTW.

In oder to obtain the formulae in a more simple form, the upper interface
(observation line) is taken to be horizontal; however, this limitation can easily
be cancelled in the following operations if necessary. Upon similar consider-
ations (with the same remark) the planar case will now be considered instead
of the three-dimensional one.

Let the straight line z = kx +b passing through point (£/;(£)) be perpen-
dicular to the straight line (0,£/%(£)), thus fc=tana>. Out of the arbitrary
points (x', 0) and (x", 0) on the survey line let the first one be the shotpoint, the
second one the recording point and consider the following zig-zag line:
(X', 0)— —{x", 0), rekx+ b, which satisfies the laws of optics at point r. We call
such zig-zag lines, belonging to different source and recording points, skeleton
rays, in order to distinguish them from the actual raypaths corresponding to
reflector h(x), which are curved if v(x, r)c const. The skeleton velocity is deter-
mined for an arbitrary pair of points (x', 0), (x", 0) in the form of vi) = =
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where fi is the actual traveltime from the zth source point to the zth recording
point, and Zzfi is the length of the zth skeleton raypath. Then, the identity
h = 4ilvs (2) will apply.

Let us denote the quantity 21/t0 by v (t0 is the actual traveltime if both the
source and the recording are placed at point 0) then v(i) can be expressed in
the form:

vyi) = . . (1)

0= 140 1
where 10O is a function (the negative sign under the square root has been chosen
for the sake of convenience), and

ZAVIY o

The quantity zfi (the length of the zig-zag) can easily be obtained in any given
case, even for arbitrarily shaped surfaces. Actually, if the survey line is horizon-
tal and the common midpoint is at & = {0, 0}, the CDP traveltime curve is
given by:

Ax = 2 ]jbl+ X2 cosco
Consequently Eg. (2) will take the form:

4/FTw
t(x) = fit+Vv2 (3

where vO = v/ cos oo, X is the half offset x e [0, L],

Referring to the CDP traveltime curve, function/(x) can be characterized
in the following way as well. From the definition of v it follows that vO = 2b/t0.
From this and from the identity t(0) = t0it follows that/(0) = 0. Finally, from
the symmetry of the CDP traveltime curve it follows that function 1x) is an even
function. Now, if one or another form off(x) is used, different representations
of the CDP traveltime curve can be obtained. If t(x) is an analytic function, then
f(x) can be represented in the form of an expansion in powers of x2, the
coefficients of which depend on the (even) derivatives of t(x) taken at x =0 or
on the derivatives of t{x) in quadratic co-ordinates. For a detailed description
see [Goldin and Suvorov 1977]. The advantage of the expressions given in such
form lies in the fact that the derivatives of t(x) can be expressed by the par-
ameters of the medium [Goldin 1979], thus, the equation of the traveltime curve
can be obtained as a function of the physical parameters of the section. There
is an additional possibility that the coefficients in the expansion off(x) are
determined in such a way that the expansion should be the best quadratic
approximation of f{x). This reduces considerably the requirement for the
smooth behaviour of/(x), although there is no explicit relationship between the
coefficients of the series and the parameters of the medium. This relationship
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is, however, not very important with regard to the investigation of the solution
to the inverse problem; much rather it is essential that greater freedom in the
characterization of the medium is permitted (e.g. there is no need to prescribe
the differentiability, the continuity, etc. at the layer boundaries) and just upon
such considerations this way of obtaining the traveltime curve has been chosen
(in connection with this we refer to Puzyrev’s work [1979] who treated the
traveltime curve similarly).

Let

fix) = £ 1ij2j+r,,(x)
1=

where rn(x) is an even function, and r,,(0) = 0.
Considering that from Eqg. (1)

fix) = 1-

let us determine the coefficients so that

n -\ 2
1 oi dx = min.
| X X3 b
(it should be recalled that L is half the maximum offset). In order to compute
the coefficients y, the time values t(x) are necessary (the question in this case may

be the approximation of the observed traveltime curve). We follow — however
— an opposite course of treatment in studying the methl_cl)ds for solving the

inverse kinematic problem: we assume [1x) in the form X yjX2Jie- the term
24
rn(x) will be neglected. Then the traveltime curve :
M 1/2

fix) = 201 X (b2+x2)

corresponds to an inhomogeneous medium; substituting t,(x) and its func-
tionals into an explicit formula which gives the solution to the inverse problem
in one or another way, it can be clarified how the solution and the coefficients
y; are related to each other — the latter being characteristic to the extent to
which the medium departs from the model of homogeneous media with plane
interfaces (for which obviously each y= (). Now, there is no need to know the
dependence of on the parameters of the medium : a knowledge of the domain
of variation of the coefficients is sufficient. In addition, statements can be made
on several opinions referring to the solution of the inverse kinematic problem
by studying the most “simple” inhomogeneous medium, in which/(x) = yx2and
the traveltime curve
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t(x) = Vz—o"b2+{\-b2y)x2-yX| (@)

needs only one additional parameter in comparison with those of the homogene-
ous one. Nevertheless, those models for which the traveltime curve can be
approximated well by function (4) may even consist of “quite inhomogeneous”
media in respect to the a priori ideas of possible velocity variations. In Fig 2,
a two-layer model can be seen with differently dipping interfaces and with
considerable velocity contrast. Even so, the traveltime curves of the lower
reflector (which are influenced by the inhomogeneous layer between the lower
interface and the surface) can be obtained from Eq. (4) with an error less than
0.5 ms.

Fig. 2. Example for an inhomogeneous
medium in which the CDP traveltime curve
is well approximated by Expression (4)

2. dbra. Példa olyan inhomogén kdzegre,
amelyben a CDP terjedési id6gorbét jol
kozeliti a (4) kifejezés

Puc. 2. Mpyumep HeOAHOPOAHON cpeabl,
B KoTOpoW rogorpadel O T xopowo
annpoKCUMUPYHOTCA BbipaXXeHUem (4).

During seismic data processing, the kinematic parameters of the reflections
are determined in the course of signal enhancement, consequently we do not
deal with the traveltime curves themselves, but with their functionals, e.g. with
t0and VGdp- It is known that the values obtained in such a way are close to those
obtained when the traveltime curve is approximated by the hyperbola
(n+Rx2 12 with the least squares method, and it is supposed that tl = a and
0.25VglP=R. Such approximation of traveltime curve (3) (for simplicity with
co-ordinates (x, t2)) leads to the minimization of the following integral:

L

(b2- bZ(x) + X2- xZ(x)) - a- Bx2 dx = r&g

(e} yl
After differentiating it with respect to a and B, and making it equal to 0, we get
the following linear equation system:
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L3 4
*L+r3-3 =~2 b2A-b2 f(x)dx+ y - 1x2(x)dx
L
C L5
aL32>+/?— = -t b2LRB - b2 x2(x) dx+ y  x4(x) dx

From this equation system we get

L L
4b2  9b2 3 (5b2 x@(Xpdx+ -I"L Tx4(x) dx
vIL0T3x+"1[l/|~b0 «ob J
L ©)
4 15 15 /362
- * * 2 d - \f d
W s ()0 RT3 1 X200 dx 0

If/(x) is of the form: /(x) = yx2+”(x), in which y is determined from the
condition
L

(f(x)- yx2 dx = min
that is

X2p)Rdx = 0

formulae (5) will have the form:

4pb2 12L4

« = 3 + 35U27 oL J 362- — x4 )(P(X) dx

(6)
B=4[1-(M+6/TLy] + 4 ~ b2+ — x4 () dx

When the residual <(X) can be neglected, the CDP traveltime curve takes the
form of Eq. (4), and for tOand VP the following simple forms are obtained:

t0 = 2b/V0 )

8
a» |/1- (6 2+ 6/7L2y ®
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Expressions (7) and (8) permit one to draw comparisons between the methods
for solving the inverse kinematic problem in the case of such inhomogeneous
media which can be described by formula (4). Already this makes it possible to
clarify several features of such solutions. In the case of more complex media
analogous relationships can be found if the terms of x4, x6, etc. are “taken out”
consistently from function <), and then they are taken into consideration in
formula (6). In order to be able to apply relations (7) and (8), a knowledge of
the domain of the variations of the coefficient y is necessary. For this purpose,
first of all, on differentiating traveltime curve (4) we get:

tevio
1—by

As is well-known, [roi"(0)] ml/2 is the limiting value of the effective velocity ve
thus

[F(O)]-1=

\o
n—b2y

The relationship between the parameters of the section and ve are known
for models of homogeneous layers with curved interfaces [Goldin 1979]. This
allows us, in principle, to obtain similar relationships for parameter y expressed
by ve from formula (9). Another possibility is to estimate the values of y directly
from the CDP traveltime curve. In fact, if we write down relationship (8) for
two offsets Lj and L2 and express y from them we get:

©)

1—2
7~ (1- c)b2+6/1(Lj- L\)
where

Thus y depends on VP which is a function of the offset. The values of b
necessary for computing y can be estimated as 0.5toKP as we show in the
following.

These results will be utilized, first of all, to compare the several methods
used for solving the inverse kinematic problem. All of these start from the
supposition of local homogeneity of the medium when initial data correspond
to an inhomogeneous layer. But first, we discuss these methods in detail.
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3. Two principles for solving the inverse kinematic problem in homogeneous
media

The basic laws of geometrical seismics are Bendorf’s* law and Snell’ s law,
both of them offering independently the possibility to solve the inverse problem
in homogeneous media. It is true that with Bendorf’s law one still needs the
supposition of plane interfaces but this is not a strong constraint because
geologically it is often justifiable and the form of the CDP traveltime curve does
not depend strongly on the curvature of the reflector. Therefore, if the velocity
is constant and the reflector is plane, then using Bendorfs law the traveltime
of the wave from the source point to the registration point can be expressed as
a function of their co-ordinates and of the three parameters of the medium, viz.
the velocity of the layer, the depth, and the dip of the reflector. Three equations
are enough to determine the unknown parameters. In the simple case of a
horizontal surface these equations transform into the equation of a traveltime
curve whose parameters can be converted into the parameters of the medium.
The initially set-up problem, which presumes the solution of the non-linear
equations based on the parameters of the medium, proves to be useful if
computation is carried out according to the algorithm of layer-by-layer com-
putation. In fact, the curvature of intermediate interfaces and the collapse of
the structure of the CDP traveltime curve fail to allow the application of the
explicit equation of the traveltime curve in reducing the initial data to the
surface of the subsequent layer. Formula (2), in which it is assumed that/(/) = 0
for a homogeneous layer, permits one, however, to set up a relationship between
the arrival time of the wave reflected from the interface z = kx +b and the
parameters k, b, and the velocity v for every position of the source and the
receiver. A series of such equations for various source-receiver pairs in which
parameters k, b and v are a priori assumed to be the same, constitute such a
system from the solution of which estimates for the required parameters can be
obtained. The system of equations is usually overdetermined and its solution
is achived by the least-squares method. In principle, this is equivalent with that
procedure in which the parameters of the traveltime curve are converted into
the parameters of the medium, smoothing beforehand the observed arrival times
by the least-squares method. The solution of the inverse problem derived from
Bendorf’s law by the method of proceeding from layer to layer is called the
N-method in the following.

Let us return to the observation carried out on the surface, since all
formulae take a simpler form in this case and they are easily interpreted. Then,
the solution to the inverse problem can be obtained by the following formulae:
the tangent of the dip of the reflector is k = 0.5 tOVP, the (vertical) depth to
the reflector is H= 0.5 tOVAP. Accordingly, the (x, z) co-ordinates of the reflect-
ing point of the normal ray are

+Bendorf’s law: dt/dl=p, where /= offset. p =ray parameter:--y-
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Hk H \

(% 2)
T+ k1+k2) °

where x0 is the co-ordinate of the centre point of the CDP traveltime curve.
The solution of the inverse problem based on Snell’s law in a homogeneous

layer has its foundation in the following conception. Consider the point of the

CDP traveltime curve at a distance of 2x. Denote by mx +n the tangent to the

reflecting interface at the reflecting point, by a the angle of the incident ray with

the surface, and by B that of the emerging ray.

The following relationships hold:

. \ X—mn
sina = ]
[l +m2 jx2+n2
. 1 X +mn
sinf3 =

C+m2 e+ n2

The following three equations can be set up for the unknown parameters m, n
and Vof the medium :

sinR  sina 2 X 1 A
\Y \ /1+m2 [x" \Y
sinR  sina 2 mn 1
T4 B (10)
\Y; \% JN+m2 KIT V
! —2: fx2+n2 =
V [+ m2

The quantities (sin <)/ and (sin B)/v are known for the layer in question since
according to Snell’s law they are equal to the corresponding ratios of the upper
layer, the parameters of which are known similarly to the angles of emergence.
On the surface, their values are equal to the derivatives of the traveltime curves
taken at the reciprocal points. Therefore this method of solving the inverse
problem is called the method of reciprocal points [U rupov and Levin 1985]. The
quantities A, B and t (the traveltime of the wave for a given raypath) are to be
measured. Let us introduce the following notation:

n = --; i--
VI +m2
Then w = Ledp- The solution to the system of equations (10) is given by the
relations :
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W_
n=
B |/x
m=_
1A Jt—Ax

The method of reciprocal points and the J1-method apply Snell’s and
Bendorfs laws in their “pure form”. In addition to these, there are other
well-proven methods in practice, which take both laws into consideration at the
same time, e.g. the iterative method [Goldin 1979]. Since each of the two laws
is individually capable of solving the inverse problem, their joint use may lead
to contradiction's (the corresponding equations are inconsistent) if the homo-
geneous model is not an appropriate choice for the real medium, or the initial
data are subject to errors. As usual, the elimination of this difficulty is achieved
by solving the equations by the least-squares method. Thus, we possess the
explicit formulae for the solution of the inverse problem by the J1-method and
by the method of reciprocal points, both of which express the required par-
ameters of the medium by the functionals to, KICP, to of the observed time field.
Obviously the solution obtained will be suitable if the initial data correspond
to that medium for which the formulae have been derived. Otherwise (i.e. if the
layer is inhomogeneous), errors appear, which can be estimated by taking into
account the explicit expressions derived for inhomogeneous media from the
initial data. In order to avoid further technical difficulties, “the most simple”
inhomogeneous model (f{x) = yx2) will now be considered again remembering
once more the fact that those traveltime curves which are considered to be
“realistic” are described in such a way in many models.

4. Comparison of the solutions obtained by the method of reciprocal points and
the J1-method for inhomogeneous layers

Assume that the primary data correspond to an inhomogeneous layer. It
is clear even qualitatively, that the local solutions of the two methods (at the
centre of the CDP traveltime curve) will differ from each other. In fact, in the
N-method the solution is obtained from the values of to, to and KIP belonging
to the point studied, while the variation of M@Pin the vicinity of this point is
ignored by the formula. With the method of reciprocal points, however, the
derivatives of the traveltime curves for common shotpoints are necessary to
compute the angles of emergence of reciprocal rays, i.e. adjacent CDP traveltime
curves have to be processed. This fact becomes evident especially if the deriva-
tives are replaced by finite differences (which is practically compulsory due to
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the discrete sampling in the seismic observation). Then, it is obvious that in the
computation of the required derivatives so many neighbouring CDP traveltime
curves are involved as many points are taken in the approximation by finite
differences. Consequently, in the solution of the inverse problem by the method
of reciprocal points the quantity VP is additionally taken into consideration
as well. In other words, the two methods manipulate the same “common block”

of data in a different manner.
Next, let us derive the necessary quantitative connections for that case

when the CDP traveltime curve t(x) is described by formula (4).
According to the well known relation

sink sina _ dt(x)
\ \Y dx
from which it is obtained that
_sinB  sina_ 4 x(\-b2y-2yx2)
Y Vg t
Substituting the expression for A into the first formula of Eq. (11) we get:

A

(12)

The quantity VdPis not a final parameter in the method of reciprocal points,
it is rather an intermediate computation result. Once VAP is known the ratio
of the estimates of the layer velocity V and the cosine of the dip of the layer
(cos @), is known as well. First of all, it can be seen from formula (12), that this
ratio is a function of the spread length x, from which the parameters of the layer
can be derived. Then a comparison of (12) with (8) shows that the spread length
is multiplied by 2 in the first formula and by 6/7 in the second one. For this
reason the”ratio V/cos ¢ (V and cos ¢ are estimated by the /A-method) is not
equal to F/cos @ hence the equalities V=V and = are not valid simul-
taneously. Thus, if y¢0, the method of reciprocal points and the A-method
supply different layer parameters, which are the more different, the more inho-
mogeneous the medium. As mentioned already, the layers selected for solving
the inverse problem are a priori to be regarded as inhomogeneous ones. Even
so, not every kind of inhomogeneity necessarily leads to the erroneous deter-
mination of the layer parameters. For instance, if the first layer in Fig. 2 is
regarded to be homogeneous and the inverse problem is solved under this
assumption, then the dip and depth of the interface are retrieved with fairly
good accuracy. In other cases, the situation may be different — much depends
on the velocity gradient, on the curvature of intra-layer bedding and its conform-
ity or unconformity, and on the combination of these and other factors.
Therefore, for every solution of the inverse problem it is important to know
whether or not the model may be regarded to consist of homogeneous layers.
This is the task of indentifying the medium. This fact found by us implies that
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one can recognize if a layer is not homogeneous merely by the initial data
without using any a priori information. From formulae (8) and (12) a conclusion
opposite to this can be drawn too : from the fact, namely, that in the method
of reciprocal points F/cos cpis identical to FOPthe latter being obtained directly
from the CDP traveltime curve; it follows that y= 0. The simultaneous applica-
tion of different algorithms to determine the velocity and depth data characteriz-
ing the layered model of the medium enhances the confidence in the good quality
of the data obtained in those cases in which the layer was considered to be
locally homogeneous. If the match is not sufficient, necessity of taking steps to
increase the accuracy of the solution emerges (one way to resolve the medium
into more layers is to utilize a method which takes into consideration the
velocity variation within the layer, etc.).

With this approach not only can the methods for solving the inverse
problem in inhomogeneous media be compared with each other but a series of
other questions can be answered as well—in particular, the extent of the result-
ing error when the layer is considered to be homogeneous, the effect of the errors
in the initial data, and the extent of errors resulting from the algorithm of the
layer-by-layer computation when determining the layer parameters. Without
going into detail we touch upon some relevant factors which have considerable
influence on the final results.

8. Accuracy in determining the layer parameters
in the layer-by-layer algorithm

First we discuss how the inhomogeneity of the layer influences the deter-
mination accuracy of the parameters in the R-method, if observation is per-
formed on the surface. As can be seen from Fig. 1, the true co-ordinates of the
reflecting point (£, h(£)) belonging to the normal ray are to be computed as:

= - bcostosinw
h(£) = bcos2a)

(remember that point 9 coincides with the origin of the co-ordinate system). As
a solution to the inverse problem, we get estimates for b and a>(denote these
by H and tp respectively), i.e., instead of point (£, //(E)) we obtain the point
(1, fi(0) - (— cos tpsin g A cos2tp. The square of the distance between
them is given by:

@ = b2cos2eu+ H(H - 2n) cos2tp—mH sin 2Zp,
where
m = bsinwcosto, n =bcos2w

Considering y as a variable, we seek for a minimum of g2 according to tp This
occurs when
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b sin 2co

tg2(p =
920 H—2b cos2
and it equals

Qiin ~ b2cos,2a&+0.5H[H-2b cos2co-"(H-2b cos2co)2+ b2sin2 2ui

It is evident that Bmingives a lower estimate of the distance between the actual
reflecting point of the normal ray and the corresponding point resulting from
the solution of the inverse problem. p2inis a monotonie function of cos co and
reaches its maximum at au=0. In this case (if 2b>H), gniB= H-b. In the
A-method the estimates for H and @can be obtained in the form of

H = 0.5toVcdp tan V = 0.5/0LdP

Substituting the values of t0 and VADP—formulae (7) and (8), respectively—
into the expression of H we get:

jl-(b2+6/IL2y
The values of H—b as a function of y and b (at L —1.2 km) are given below:

\H km )

1 2 3
r
0.01 0.011 0054 0317
0.03 0035 0178 0604  H-b (km)

Thus, starting from possible values of y, the determination error in the position
of the reflecting point increases inadmissibly, and rapidly with the increase of
the value of b.

To demonstrate how realistic the values of y in the table above are, consider
the possibility of estimating y on the basis of the VP values at two points of
the CDP traveltime curve and L2 far from each other. Let L, =0and L2=
= 12 km, and compute the ratio of ve and VP for the whole spread. If
reLP=0.98 (i.e. they differ from each other by 2%) then at b= 1km:
y=0.031, and at b=3 km: y=0.025. A detailed study of the formulae reported
in this paper (and of other similar ones) proves that with increasing inhomo-
geneity and thickness of the layer the determination error in the position of the
reflector may exceed several hundred metres. This actually explains why depth
conversions led, as a rule, to correct results down to depths of 2-2.5 km and then
the errors (proportional to the square of the layer thickness as shown by the
formulae) increased. It was essentially this realization that led to the method of
the layer-by-layer computation, but the foregoing conclusions remain valid even
there: in creating the model from the time section, one has to be careful not to
let the layers be too thick. In practice, reasonable values of b are between land
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15 km (it should be noted that the thickness is measured commonly along the
normal of the reflector and is estimated by b cos 9 where <is the dip angle of
the interface).

The method of the layer-by-layer computation of the medium parameters
has the useful feature that in reducing the initial data to the upper boundary
of the subsequent layer, the length of the traveltime curve decreases propor-
tionally to its thickness and depth. In addition to this, the computed time field
will be erroneous due to those errors which occur when determining the kine-
matic parameters of the waves, and due to those inaccuracies associated with
the velocity and depth values of the upper layer. These errors are mainly of
systematic character since both the initial values and the intermediate data are
considerably smoothed. In order to clarify the way in which all of these factors
affect the solution of the inverse problem in the subsequent layer, we turn again
to the technique developed in the foregoing. The time field on the upper
boundary is described by Eq. (2). If the time values t, are subject to errors e,
theq, in order to maintain the validity of Eq. (2) the values of v and /(/) have
to be modified at the interface. In other words, an error in the initial data is
equivalent to a modified set of “the inhomogeneity parameters” of the layer
and accurate arrival times. If the values of e; are small (~2-5 ms), v remains
practically unchanged. Function /(/"), however, is modified considerably, especial-
ly if the offset is small. If, for simplicity, one considers a traveltime curve of the
form (3), in which f{x) =yx2, and the time values t(v) are subject to the
distortions e(x), then the traveltime curve ?(x)+ ¢r) is characterized by the
parameter y = y - Ay, in which the estimate for the major term of Ay (with an
accuracy of the order of e(x)) is given by the inequality:

L k
5 f 5 1"
VA AY N e -
L5cos w J stx dv y L cosmob s(0)x2dx
o] o]

As an example, if L=0.5 km, e(x) = 0.016x2 (an error of 4 ms in arrival times
at maximum offset), then at b= 1km y= 0.05 and if &= 45°, the value of Ay is
of the order of 0.01. The consequence of such a modification of the value of y
has already been discussed when dealing with the /~-method. For a choice of
L=0.4km Ay will be doubled—consideration for the nonlinear relationship

between Ay and L is especially important in the layer-by-layer computation.

6. Conclusions

A more thorough analysis of expression (2) shows, for concrete situations,
when depth transformations are not to be carried out'due to accumulation of
errors, and when acceptable results can be obtained. It may happen that the
errors committed in the computation of the time field performed from the
surface compensate for the effects of inhomogeneity of the layer and this leads
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to a more accurate determination of the layer parameters—as if the same
method had been applied for a homogeneous medium and proper data.

Of course, the accumulation of errors necessarily has negative conse-
guences and one of the resulting practical conclusions is that in some cases a
compromise has to be made between the method of determining each layer from
the surface and the method of the layer-by-layer computation. Just in the upper
part, where the section exhibits the highest variability, it is necessary to carry
out finer resolution. In the lower part, where the velocities relatively stabilize,
the observation base shortens substantially, and it is thus feasible to increase
the layer thicknesses or to complete the solution of the inverse problem for each
layer from a certain “inner” interface. Then, the increase of the parameter b acts
in a less destructive manner than do the reduction errors of the time field
accumulated due to the large number of steps.

The suggested analysis is helpful in choosing the strategy for solving the
inverse problem in concrete cases in the possession of suitable a priori informa-
tion; a posteriori it helps in comparing the results obtained by the methods of
reciprocal points and the A-method. Here one has to keep in mind that the result
of the solution of the identification problem in the presence of errors in each
step depends on the nature of both the medium and the errors. Deviations of
the layer parameters determined by both methods imply that either the model
or the initial data (or both) have to be corrected for. If the results are the same,
then it is only true that parameter y, which characterizes the time field at the
upper interface of the layer, is equal to zero. However, this may also be a
consequence of the fact that the true time values are distorted by errors. Then,
the depth transformations are incorrect and there are no “inner” data for
recognition of the situation. In such cases possibly the only argument for the
reliability of the solution is that the probability of occurrence of such particular-
ly unique errors is rather low.
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SEBESSEG- ES MELYSEGPARAMETEREK MEGHATAROZASA RETEGZETT
KOZEGBEN VALOS FELTETELEK MELLETT

V M. GLOGOVSZKIJ és G. N. GOGONENKOV

A szerz6k a reflexids szeizmika inverz kinematikai feladatanak megoldasi problémait vizsgal-
jak inhomogén kdzegben. CDP Gtid6-gorbe specialis eléallitasanak segitségével dsszevetik a feladat
megoldasara alkalmazott, a rétegek lokalis homogenitasan alapul6 kiilonb6z6 eljarasokat, a sebes-
ség- és mélységszamitasokra hibabecslést adnak, a kiindulasi adatok hibainak és a kdzeg inhomoge-
nitasanak fliggvényében. Megtargyaljak a lokalisan homogén kdzeg felismerésének kritériumait.

MNCCJ/IELOOBAHUE CIMOCOBOB ONMPEAE/IEHNA CKOPOCTHbLIX N TNMYBUNHHbBLIX
MAPAMETPOB C/IONCTOW CPEfbl B PEAJIbHbIX YC/TOBUAX

B. M. TNTIOFOBCKWA n I. H. TOTOHEHKOB

PaccmaTpuBaroTCca Mpo6iembl, BO3HWKAIOWME MPU PELIeHUM 06PATHON KUMHEeMAaTUUecKoii
3anaun MOB B HeofiHOpoAHOIA cpege. C MOMOLLbLIO CMELMansHOro NpeacTaBAeHns rogorpaga
Ol T conocTaBnsAtoTCA MeXAy co60oii pasnnuHble Cnoco6hl, pellatoline 3afady B NpeanonoXkeHum
0 N0KanbHO 0HOPOAHOCTM CNOos. OLEHNBAOTCS MOrPELIHOCTM ONPefeNeHUs CKOPOCTHBIX W FNy-
GUHHBIX NapamMeTPOB B 3aBUCMMOCTM OT OLLIMBOK B UCXOAHbIX JaHHbIX 1 CTEMNEHN HEOAHOPOAHOCTY
cpeabl. O6CYXaaeTcs HOBas 3aaua 06 WASHTU(MKALMM CNOS KaK 10KabHO OJHOPOAHOrO.
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LOVE WAVE SCATTERING DUE TO A SURFACE IMPEDANCE

P. S DESHWAL*

The paper presents a theoretical formulation for studying the problem of Love wave scattering
due to the presence of a surface impedance. The displacements are obtained in terms of Fourier
transforms by using the Wiener-Hopf technique. Evaluation of the Fourier integrals along suitable
contours in the complex plane gives the scattered Love waves appropriate to the surface impedance.
The scattered waves have a logarithmic singularity at the tip of the scatterer and behave as decaying
cylindrical waves at distant points. Numerical results for the scattering coefficient close to the
scatterer and the amplitude of the reflected wave versus the wavenumber have been obtained.

Keywords: Love waves, Fourier analysis, scattering, amplitude, Wiener-Hopf analysis, wavenumber

1, Introduction

It is supposed that there is a discontinuity in the free surface such that there

is a thin smooth uniform distribution of matter on half of the surface x<0,

= - # and the other half of the surface x> 0, z= - H is free. The effect of

distribution of matter is such that it exerts surface traction proportional to the

acceleration in a direction perpendicular to the vertical plane through the
direction of propagation.

The model can be idealized to scattering of seismic waves due to irregu-
larities or discontinuities in the upper surface of the crust. For example, rigid
boundaries on the surface of the earth may resist the motion of the waves and
force the particles of the material beneath it to have horizontal polarization.
G regory [1966] studied the attenuation of Rayleigh waves due to the presence
of a surface impedance; Deshwal and Gogna [1987] have considered the
problem of diffraction of compressional waves due to surface impedance; the
problem of scattering of a Rayleigh wave due to the presence of the edge of a
thin surface has also been considered by Simons [1976]. The mathematical
formulation of the present paper is based on a paper by Sato [1961] who studied
the problem of propagation of Love waves for a surface layer of variable
thickness.

Here, we propose to discuss the problem of scattering of Love waves due
to the presence of an impeding surface. The method of solution is the applica-
tion of Fourier transformation and the Wiener-Hopf technique. A time-
harmonic Love wave is incident on the impeding surface (x<0, z= —H) from
the region x>0. The discontinuity at the surface gives rise to the Love waves
appropriate to the surface impedance and the waves scattered due to the
impedance.

* Department of Mathematics, Maharshi Dayanand University, Rohtak—124001, India
Manuscript received: 15 August, 1987
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Let us consider a layered structure with a surface layer of thickness H with
its co-ordinate system at a point in the interface between the layer and a solid
halfspace (Fig. 1). The velocities of shear waves and rigidities are taken to be
v], prin the solid halfspace and v2, 1 2in the surface layer. Let the incident wave

be [Sato 1961]
VOA = Acos (z2tn H)yexp (-sitn z-ik UNX), z"O

V0,2 = Acos (B2N(z+ H)) exp (—ikINX), -H”AzA0 (i)
where
svn ~ J(kiN-kj), s2n=Ak2~kl N, )
and ky Nis a root of the equation
anden H=y" N, y= P ©)
BI.N PI
The wave equation in two dimensions is
(V2+kDM =0, j —1,2, \ky\<\k2\ @
and
1 ((@+ IE(u\
(( ( o ©)
v} ) ~ k'+ik

£>0 is a damping constant and the displacement has a time factor exp (—icat),
kj is complex whose imaginary part is positive and small. We define the Fourier

transforms

\ = &yje'pxdx, p = £+if] 6)
= Meixdx+ f \exdx
—00 0
= Vj-+Vj+
If for given z,
W\ ~ exp(-k'i'|x]) as |X| » @)

then vj+ is analytic for rj> —k" and £¢_ for rj< + K'[.
\j is therefore-analytic in the strip —k'(<r]<k’[ of the complex p plane.

( O,-H)

Fig. I. The geometry of the model
1 &bra. A felvett modell

Puc. I. F'eomeTpns mogenu



Love wave scattering ... 11

2. Boundary Conditions

If the total displacements are denoted by

v = ®o0,i+ »i, z=0
V = V0'2 + V2, —HA”Z"0 —00<X<00

then the conditions on the boundaries are

o Vi@ =0 ©)
) v _dv ; onl— dv2 0o O
(il) thp. =p2p, O Yo =4 27 )
. av 8> _ _ A
(hi) R =0 o g = 0, z=—H, x"0 (ID
(iv) Y- on z=—H xS0, e,
dz
dv2 - .
p2-0-z----a[v2 + Aexp ( —Aj] NX)], = —H, xiSO (12)

where a is a constant depending upon the nature of the material of the impeding
surface. The boundary condition (12) may be interpreted as representing the
physical situations that (i) there is a thin smooth uniform surface distribution
of matter exerting surface traction proportional to the acceleration along a
direction in the horizontal plane perpendicular to the vertical plane through the
direction of propagation or (ii) at each point of the surface, there is a resisting
or a restoring force proportional to the velocity along the normal to the vertical
plane through the direction of propagation. G regory [1966] has given various
explanations for this condition in the case of Rayleigh waves.

3. Solution of the problem
We begin by taking a Fourier transform of (4) to find
~ -BjVj = 0, Bj = £ \ipr~kf) (13)

The sign before the radical in (13) is such that the real part of Rj*O for all p.
The solution to (13) is

i\{p,z) = B(p)e\p(-Bx2), z"O (14)

v2p,z) = C(p) exp (~B22) + D(p) exp (B), (15)
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Using the boundary conditions (9) and (10), we find

v2ip, 2) = I\E (02 cosh RBiZ-yRi sinh 322) (16)
Vi(p>2) = »i(p, 0)exp(-/?jz) ()]
vi(p,0)=B (18)

We use the notation (;,(/?) for r,(p, - ), etc. thus the conditions (11) and (12)
result in

t2+(/?) = 0 (19)
aA
= - , j < Im(kI N. 20
MV'i-(P) = ar2- + osin) 1 (kI'N (20)
Adding (19) and (20), we find
_ av? aA o1
VAP = T wap-kit) @
From (16), it is obtained that
_ B2cosh B2z —yRxsinh B2 -
V2AP.2) = r555sh 2H+y R sinh £ VAP (22
and from here, we get
7\ o RBisinh BiH+ yBlcosh RiH . , . 23)
V(P R2R2cosh B2H+yR 1 sinh B2H vaer
From (21) and (23), we obtain
7 2 sinh R2H+yRi cosh R2H]v2
avr aA _ [R2sinh 3 yRi cosh B2H]v2(p) 24)

M wAp-kN - B B2cosh B2H+yRi sinh R2H

We can solve the functional equation (24) for v2+ and fi2- by invoking the
Wiener-Hopf technique.
Let us write

R2cosh B2H +yRi sinh R2H
Up) f2ip) RisinhRzHfyRi cosh R2H

Lip) tends to las || tends to infinity. By an infinite product theorem [Noble
1958], L(p) can be factorized. Let £plnand tpx(n = 1 2, ...) be the zeros of
flip) and f 2(p) respectively. Then

(25)

ip2-pin) Plip) (26)

Up) = n=1 ip -Pin)_ p2p)
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where
®
Pi(p) = Fiip)l L | iP2~P\n)
' @)
Piip) = Flip)! [T ¢~ pin)
n=1
are non-zero functions of p. Further if
Pip) = P,iP)tP2iP) - P+iP)P-iP) (28)
then
1 log Ao
log P+p)
1 log Fi{0 1 flog £2(0
2n\ 2ni (29)
() Kl k2
1 g_)_’__'_(P__ZUJ____ 1 du
0 0 K

and P_(p) =P+~p)
where

tan ®1 = 3 cos BHjy [(rr + kI) sin RH
tan ®2 = y Mu2+«k\) cos BH/B sin BH
tan V, = B' cos B'Hjy \I(K\ - n2) sinR'H (30)
tan V2 =y I{kl - u2)cos RB'H/R" sin R'H
B = (u2+k212 R = (k2-u?212
T is the contour shown in Fig. 2. Thus
iP2-p\n)

Lip) = N PAp)PApP) = L +{p)L"ip) (31)
ip2-pin)

Im(p)

Re(p)

Fig. 2. Contour of integration in the complex plane
2. &ra. Az integrélasi kontar a komplex sikban
Puc. 2. KOHTYp UHTErpMpoBaHnsi B KOMM/EKCHO MI0CKOCTU



180 P. S. Deshwal

where
r,, A PtPm)n,h 4
Lstp) " [ pxfp
We decompose (24) as
1
. ) _ Ao
L +ip) [i(p+k2v2_- V2A~P\n) 1/("2~PIn)\ +
S @
I(p-k2 _ ‘™ Mv)_ P2
ilp+ K2n2 4+ p2~PInV2~(-Pln)
£+(/>) LAp)

R2=0 is not a singularity in the decomposition. The left hand member of (32)
has no singularity at the zeros p= ~pXof L Hp) as it reduces to 0 form. There

is a pole at p=kxNand branch points at p= £ k2 Therefore the member is
analytic in the region - Im(AY -K[, where kx,<\kljNi< k2 . Similarly the
right hand member is analytic in the region p> —k". By analytic continuation,
they represent an entire function analytic in the strip - k™ <r/< kI and having
the value - "k2~plInv2~(-pln) = —ka&p\  o0o. By Liouville’stheorem, each
member in (32) has the constant value - k.

Hence
2 = - R Li 33
v2{p) Pig2 i(p-kmy P (33
where
Pi JP k2 aAL
Vo= PR L Hp)- (P) (34)
Pi3i + al{p) iPi P~k2ip-kUN-
The displacement inside the layer is given by
0 +inj
v2(x, 2) = 2—1 vZip,z)e-ipxdp
T ..
_@m
Bif] :
1 2cosh B2z —yRxsinh 32 5 o
sinhpoH VAPE PP (39

In _d'm]BZcosh R2H + yR.

where —" <rj<KXand v2(p) is given by (33).
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4. Evaluation of the integral

Ifa=0 then v2(x, z) = 0, i.e. if there is no impedance on the surface, there
is no wave other than the incident wave. Let us evaluate the integral (35) along
a closed contour in the upper part rj> —k" of the complex plane. In order that
the integral along the contour at infinity vanishes .t<0. There is a contribution
due to the pole at p=kt N

V2A = - AcosR2Nz+H) exp (- ikj N) (36)
which cancels the incident wave. We have the poles of the equation a L(p) +
+pB2=20
R2c°sh BiH + yR: sinh = _ MiBi
R2sinh R2H+yR 1 cosh R2H a

Let k2ZN(N = 1,2, 3, ...) be a root of this equation. k2N represents the Mh-
mode of Love waves due to the impeding surface. If we take

Ri,N= T(k\—k\ u), RBxN= j(k2N—k\) (38)
then (37) has the form
tan B2N(H—h) = yBUNR2J (39)
where
\Voh 32 Nh [tR2 (40)
The impeding surface behaves as a surface layer. The pole atp =k 2 Ncontributes
a2.N k(bLHk2zy) _ A
v22 - cosR2NH—h)  V(K2+k2N) i(*2.1 K\N)_
n + - ~ -
cosB2Nz+H-h) exp (~ik2Nk) (1)
G (k2,n)
where

d
G(p) = a|ro[a(f32005h B2H+ yR1sinh B2H) +
+A R2AB2sinh B2H + yR\ cosh B2H)\ (42)

These are damped Love waves appropriate to the impeding surface.

Let us now take the contour in the lower part r/<k™ of the complex plane.
It has a branch point atp = ~k2and the contour includes a branch cut as shown
in Fig. 3. The integral along the infinite circular arc vanishes if x>0. The branch
cut is obtained by taking Real (32) =0 [Ewing et al. 1957], and \m(82) changes
sign along the branch cut. The contribution at the branch point p= —k2comes
from its neighbourhood and we put p = —k2- iuin (35), where u is small. Since
R2is imaginary along the branch cut, R\ is negative. Therefore
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Fiy. 3. The contour of integration in the complex plane with branch cuts
3. dbra. Az integralasi kontdr a komplex sikban, kett6s bevagassal
Puc. 3. KOHTYp MHTErpupoBaHus B KOMMMEKCHOI M0CKOCTW C ABOWHbIM BPe30M

Bl = {-k2-\n)2-k\ = 2iuK2+ik2)—n2 = —(2kM+u2, «K2=0
or

Bi~z+'dbv R = j{lk2u+u2)
Integrating (35) along the two sides of the branch cut, we have

©23 = oo [»2(A - 2P, 2)\p,--ift> 2Ze wxdu =

cd K\ GRu) cos *(2k2u+un2) (z+ ff)

n j(2k2+u2)
G 2(u) Sin )/2k2u+ u2(z+ H)' d 13
2k2u +U2 . )
where
GRu) (Bi cos B2H +yR\ sin B2H)R2
P-iR2+ CiL (1)
20 Ril'i sin B-ZI—.|-yB\ COSR2H) 32
PiR'i + aL'{u)
L RB2cos B2H+yR\ sin 2H
Y R'2sin R2H+yR\ cos R2H
and

2= B\ = f(k2+iu)2-k 2
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Since n is small, we shall retain only (7,(0) and (72(0). The integrals in (43) are
Laplace integrals. We use a result obtained by Oberhhttinger and Badii [1973],
viz.

. cos (2k’n+it2 (z+H)
Koik'i r) = e~k du (44)
12k2u + u2

where KO0 is the modified Hankel function of zero order and r = ]jx2+ (z+ H)2.
Thus

ve. 3 oA (7,(0)BA7)+(720) J KOk)dt (45)
where "
jIkl (1+yR1H)yRlexp (- in/4)
(7.0) = :
| +yRIH) +fi2yRl
a(l +yRIH) + '2f/ @)
_ 2{yB\) exP ( 17r/4)
G20) = - afl +yRIH) +/i2yRl
and
R\ = Hk2-kl), s= I(x2+(t+H)2 47)

Conclusions

The scattered wave in (45) and the reflected wave in (41) corresponding to
the impedance surface are absent if a=0. that is, if there is no impedance
condition. For small values of r, K*k'jr) ~ (log z—log r—c) and for large
r, A0(/c2r) ~ exp (—/c2r)/|/r. The scattered wave has a logarithmic singularity
at the tip of the scatterer and behaves as a decaying cylindrical wave at distant
points. Numerical computations are made by taking r=0.1 km, z= —#,
k=001 km, y =/r/lr2=2 A=6kT1, V2vl = 3/4, v2v = 6/7 and £1T= K2
The amplitude of the reflected wave (Fig. 4.) has been plotted versus the
wavenumber k for the case 2= 0. It reaches the greatest value around k= 32.5
and then falls to attain a minimum value around k= 60. The scattering coef-
ficient /Fig. 5.) grows gradually as k increases slowly. It can be seen in (40) that
it depends upon both the material and thickness of the impeding surface.
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Fig. 4. Amplitude of reflected wave versus
wavenumber

4. dbra. A reflektalt hullamok amplitadéja
a hullamszam fliggvényében

Puc. 4. AMNANTYAbl OTPaXXEHUN V BONH Kak
(hYHKLMSA BOMHOBbLIX Ymcen

Fig. 5. Scattering coefficient versus wavenumber

5. abra. Szérasi egviitthaté a hullamszam
fliggvényében

Puc. ¥ KoathduumeHT aucnepcnm Kak
(hYHKUMSA BONHOBBIX uucen
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LOVE-HULLAM SZORODAS KIEKELODO, NAGY AKUSZTIKUS IMPEDANCIAJU
VEKONY FELSZiNI RETEGEN

P. S. DESHWAL

A felszini impedancian keletkez6 Love-hullam szor6das problémajanak tanulmanyozasara
elméleti megoldast javasol. Az elmozdulasokat Fourier-transzformaltakkal fejezi ki a Wiener-Hopf
technika alkalmazasaval. A Fourier-integraloknak a komplex sikban alkalmas vonalak mentén
térténd kiszamitasaval megadja a felszini impedancianak megfeleld szort Love-hullamokat. A szort
hullamoknak a szérasi felllet csicsan logaritmikus szingularitasuk van és Ugy viselkednek, mint
csillapodé hengeres hullamok tavoli pontokban. A szorasi fellilet kozelében a szorasi egyitthatora
és a reflektalt hullam amplitddéjara numerikus eredményeket ad a hullamszam fliggvényében.

ONCIMEPCUA BOJIH NTABA OT BbIKITIMHUBAKOLWEIoCA NMPMMOBEPXHOCTHOIO
C/10A C BbICOKM AKYCTUYECKMM MMIMNEJAHCOM

n. C. AEWYOnN

MpeanaraeTcs TEOPETUUECKOE peLlieHre NPo6aeMbl Aucnepcui BoMH J1aBa, BO3HUKAOLWMX Ha
NPUNOBEPXHOCTHOM MMMeaaHce. CMeLLEHNs BbipaXarTcs TpaHcopMaHTamu dypbe ¢ UCMOMb30-
BaHMEM TeXHWUKM BuHepa-Tonda. MyTem BbluMCNeHUs MHTerpanoB ®ypbe BAOAb MOAXOAALMX
NIMHWIA B KOMMMIEKCHOM MNOCKOCTU ONPeAenstoTcs PacCesiHHble BOMHbLI J1aBa, COOTBETCTBYHOLIME
VIMMefaHcy Ha NoBEpPXHOCTU. Ha BepLUVHe NOBEPXHOCTW AMCMEPCUN PacCesiHHbIe BOMHLI 06M1aaatoT
NOrapuiMUYECKOA CUHIYNAPHOCTBIO M BeAyT cebbl Tak. KaK 3aTyXarowme LMIMHAPUYECKNE BO/HbI
B yaNleHHbIX TouKax. [arTcs LudpoBble pe3ynbTaTbl Kak (YHKLUMS BOHOBLIX YMCEN A1 KOaghdu-
LMeHTa AMUCnepcun N aMnauTy/ibl OTPAKEHHbLIX BOMH B6/M3M OT MOBEPXHOCTM AMUCNEpPCHNt.
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SEISMIC MIGRATION WITH ELIMINATION OF SPHERICAL
DIVERGENCE

Andrzej KOSTECKI*

The present paper verifies the relations between conventional migration and Born’s inversion

represented by the derivative of the function describing velocity changes in the direction normal to
the boundary separating media of different velocities. A new migration algorithm for zero offset
seismic sections is proposed in order to eliminate the spherical divergence from the whole frequency
band. The high frequency approximation of the proposed algorithm converges to the Cohen -Blei-
stein algorithm except for a constant irrespective of the latter being used for KirchhofTs or f-K
migration. Properties of high frequency approximations are visualized by performing the computa-
tions for 2-D and 3-D models of synthetic wave fields.

Keywords: seismic methods, migration, two-dimensional models, three-dimensional models, spherical
divergence, seismic inversion

1. Introduction

During the last few years one can observe the intense development of
seismic migration methods. The fundamental principle of seismic migration
formulated by Craerbout and Doherty [1972] has become an inspiration for
novel ways of extrapolating the wave field measured on the surface below the
earth’s surface. In 1976 Loewenthal et al. proposed the idea of exploding
reflectors. This idea assumed that wave sources are located along reflection
boundaries and that they became actuated at the same moment t=0. For such
a case it was also assumed that the zero offset time section corresponds to the
propagation of waves whose velocity is equal to half the genuine velocity. This
principle significantly contributed to the development of numerous novel
methods of two- and three-dimensional migration [Schneider 1978, Stolt
1978, Gazdag 1980].

Starting with a wave equation with the velocity being a function of the
spatial coordinates, Cohen and Bleistein [1979] proposed the new method of
mapping the subsurface. Their method consisted in defining velocity changes
with respect to a constant reference velocity. These velocity changes are blamed
for creating a secondary seismic field. The solution obtained is valid only for
proportionately small velocity variation and when the Born approximation has
been applied, i.e. when the total wave field has been substituted by the one with
constant wave velocity and homogeneous medium. The result is a solution of

* Qil and Gas Institute, 31-503 Cracow, Lubicz 25a, Poland
Manuscript received (revised version): 2 November, 1987
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Fredholm's integral equation of the first kind and it defines velocity changes
based on seismic data recorded by means of the CMP method. In 1982 B1eistein
and Cohen reduced the problem of velocity changes to one that defines the
source density in a wave equation where the source or initial value has been
modelled by geometrical reflection coefficients multiplied by the Dirac function
indicating the reflection boundary. Similar considerations are also quoted in
[Bieistein et al. 1985] where several details on how to compute the integral
relations in asymptotic expressions are discussed. This paper also demonstrated
that the high frequency approximation provides information both on structure
and on reflecting properties.

A generalized solution of Cohen and Bleistein [1979] for unstacked data
has been obtained by Raz [1981] who succeeded in mapping both velocity and
density. In his later paper Raz [1982] applied the Bremmer-like inversion
procedure for a three-dimensional stacked CMP section. The physical assump-
tions behind the inverse solutions (with respect to reference velocity) are thor-
oughly discussed in the literature. Crayton and Stoit [1981] generalized the
Raz procedure making it applicable to a slowly changing layered medium with
plane interfaces instead of a homogeneous halfspace. In his detailed work
Berkhout [1984] thoroughly discussed the relation between seismic migration
and multidimensional linearized inversion and provided a condition for the
identity of these processes. Cohen and Hagin [1985] presented the velocity
inversion algorithms which take into account results obtained when the depth-
dependent velocity function was assumed to be the reference velocity. The
mutual relation between Born inversion and migration for CMP time sections
has been thoroughly considered by Cheng and Coen [1984] who proved that
the Cohen-Bleistein inverse problem may be regarded as migration for modified
surface data. The problem of how to define the small velocity variations based
upon the non-homogeneous wave equation has also been solved by A 1ekseev
et al. [1981] and Tsibul’chik [1981].

The author of the present paper presenting the procedure for defining
velocity changes, has compared the computational data for f-k migration and
source density function [Kostecki 1983]. Further a comparison has been made
for an inclined boundary, and the sources are modelled by Dirac function
[Kostecki 1986]. Here, | provide an analysis of the relationship between Born
velocity inversion and migration as well as proposing a modified migration
algorithm which eliminates the spherical divergence. The high frequency ap-
proximation of the proposed algorithm converges to the Cohen-Bleistein solu-
tion (except for a constant). Some results of investigations are presented using
two- and three-dimensional models of wave fields.2

2. Theoretical considerations

Considering the scalar seismic wave field being recorded for coincident
source-receiver point (zero offset data) within heterogeneous halfspace z>0
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(Fig. 1.) we can get the following relation between backscattered signal
F(x, y, 0, w) at the surface (z=0) and the change of velocity defined by the
function ot(x0,y 0, z0):

0 fF(x,y, 0, © A
dw 4 ot(x0,y0, z0) R, dx0d"0dz0 (9
u z0>0
where :
X,y,z = Cartesian coordinates; /= frequency; i= |/—l;, « = 2n/;

Rs = [(Xx—x0)2+ (y—y0)2+ Zq 12

a(x0, >0, 20) Ve (2)
Y2(x0, Yo, z0)
where :
V(x0,y0,z0)  Velocity of P-waves within region U expressed as a function
of coordinates x0, y0, z0;
V  constant reference velocity.

Fig. 1 Sketch showing the seismic field measurement at point (X, y, z) with zero offset from
a three-dimensional point source. U denotes the heterogeneous medium with velocity being the
function of position V(x0,y0, z0)

/. abra. Vazlat a szeizmikus mérés geometriai elrendezésére. Mérés a 3-dimenzids pontforrashoz
képest 0 eltolassal, az (x,y, z) pontban. U jeldli a helytdl fiiggd, V(x0,y0, z0) sebesség(i
heterogén kozeget
Puc. I. Cxema reoMeTpumu CeMCMUYECKMX M3MePEHUIA. 13MepeHns ¢ HyneBbIM CABUIOM MO

OTHOLLEHWIO K TPEXPasMepHOMY WCTOUHUKY, B Touke (XY, z). U  HeofHOpoAHas cpeja co
CKOpOCTAMM Y (X0, >0, ;0), 3aBUCALLMMMN OT MONOXKEHUS B MPOCTPAHCTBE.

Relation (1) is obtained from the original formulae of Bieistein et al. [1985, p.
1255] by changing the sign of the exponent of Green’s function. The solution
of the first order Fredholm integral equation (1) with respect to the unknown
a(*o>To>zo) function has been obtained within the domain of wavenumber and
frequency provided that wave field F(x,y,0,u1 is defined within
-00 <X, y,a>< +a> (see Appendix A). This solution has the form:
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i a \F(kx ky,0, o)
= 7 du (3
«C0>T0,20) = -7 &0 [ ap CNE)
where :
kx, Ky, kz = components of wave vector |Al = (&+k*+/r212= — and

F(kx, ky, 0, co) is the Fourier transform of function F(x, j, O, t) i.e.
F(kx, ky, 0, 00) F{x,y, 0, ) e MoHqoy+tt) ayat @

In the space-time domain the Fourier transform has the form of the Kirchhoff
integral

+0213F{X,y, 0, vydr- JtF(x,y,0, 1)dr
a(x0,J0, z0) . dxdj (9

— Co

where : r is an integration variable.
The direct relations between Born’s inversion represented by function
%(x0, 10, z0) and the migrated wave field F(x0,j 0,20, t = 0) = F(x0,j 0, z0) can
be obtained from 'Egs. (3) and (4). Appropriate calculations are given in detail
by Cheng and Coen [1984] who also provided the test data from wave field
models. However, no cc(X0, j 0, z0) function was calculated but its derivative with
respect to the z0 and x0 coordinates for a two dimensional model.

As suggested by Bleistein et al. [1985] it is more advisable to use the

— . oa . . .
derivative normal to the reflection boundary @whlch can be done by multiply-

ing the integral function by wave vector kK (ft— vector normal to the reflector).
Based upon Eq. (3) we can create the 3(x0, j 0, z0) function by multiplying the

20

integral function by the factor i — [Bleistein et al. 1985]:
+ @

F(kx, ky, 0, w)}

g~zogi”o +MoldArd/Adi) (6)
a2 J

R(x0,J0, z0)
)

After some rearrangement of terms (see Appendix A) the function can be
expressed in the form of KirchhofFs integral:
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t® 2JF(x,y, 0,r)dr+/F(x,y, 0, 1)

0
B(x0,y0,z0) =16 — . dxdy (7)
(x0.y0.20) 90 A« A ?

— 00

The B(x0,y0, z0) function (Eg. 7) has two components. The first component

containing J F(x, y, 0, r) dr denotes the integration of the wave field of each

2R.

seismic trace (zero offset data) within the time interval 0 y and,

afterwards, summing up the results over the hyperbolic surface defined by the
length of radius Rs. The first component corresponds to the low frequency filter
(see Appendix A, relation A 16) applied to the F(x, y, 0, a5 Fourier transform
of the wave field recorded over the surface (z=0).

The second component in Eqg. (7), when compared with the standard
Kirchhoff migration [Schneider 1978]:

F(x0,y0,z0,t =0) = - — — dx dy (8)

represents a migration carried out over a seismic field modified b}/RmuItipIying
the observed field by double the time of wave propagation t = —-. Because

Rsis the radius of curvature of a spherical wavefront in a homogeneous medium
and double its value is the geometrical spreading factor, the operation of
multiplying the wave field by double the arrival time of reflections means that
the influence of that factor has been compensated. When comparing the second
component with the first one, the latter may be regarded as the high frequency
response (see Appendix A, relation A 9) and in the wavenumber frequency
domain the corresponding relation has the form:

%o

Bh(x0,y0,z) = - o,  — {F(kx ky, 0, eu} e=De'kxtHe9 dkxdkydoo (9)

Eg. (9) is a high frequency approximation of function B(x0, y0, z0) (relation 6).

As can easily be observed, relation (9) is analogous to conventional f-k
migration — the only difference being that the Fourier transform of the seismic
field recorded on the surface (z=0) F(kx, ky, 0, c0) has been substituted by its
derivative with respect to co. In an attempt to find a relation between the velocity
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inversion [Cohen and Bieistein 1979] described by EQ. (6) [Bleistein et al. 1985]
and conventional f-K migration let us notice that the migrated seismic field
F{x,y,z, t = 0) = F(X, y, z) may be regarded to be the effective source distribu-
tion either in a non-homogeneous scalar wave equation [see for instance Cheng
and Coen 1984]

(v2~y FX’Y2>0= -y FX'T,2)S(t) (10

where
V2 = Laplacian operator, 6'(t) = Jé(r);

o(t) = Dirac function
or in the non-homogeneous Helmholtz equation obtained from (10) by Fourier
transformation

(V2+K2) F(x, Y, z, 0) = By FX,y, 2) (m

where K = — .

Equations (10-11) describe the propagation of waves emitted by secondary
sources of F(x, y, z) density, for t=0. The propagation velocity is V/2.
In this case the F(X,y, 0, c0) solution at the surface (z=0) is as follows [see
Morse and Feshbach 1953]:

20R

Foy. 0 50 1T %0, w00, R dOGyO0 2

where U, as previously, denotes the region of integration.

Assuming the integral function in (6) to be unknown and applying the
reverse sequence of transformations in the same way as when solving Eq. (1)
(see Appendix A, relations A1-A5) we obtain

---a)F(x, y, 0, c0) + = F(x,y, 0, 0 =

. 2R s (13)
16_51;0K2"|B(X0'y0'20) - dID ¢>0 dz0

Equation (13) relates the wave field recorded on the surface (left Hand side of
equation 13) to the change in velocity described by function R(x0, y0, z0) which
also simulates the effective source distribution. Because the wave field recorded
over the surface (z=0) is a result of the same operation, for high frequencies
we can equate relations (12) and (13) to get the following approximate relation:
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aF{xo,>0,z0) = - B(x0,y0,z200 Q - + (14

6471
where a = —- and Rs=Rni.e. the radius normal to the reflector for zero offset

seismic sections.

Formula (14) says that the contribution of the second component within
brackets, on the right-hand-side of Eq. (14), decreases when the kRs product
increases. If we take, for instance,/= 10 Hz and F=2000 m/s for Rs=2000 m
then the following formula yields an error of less than 1 per cent:

B(x0, Y0, *0) = " aRsF(x,, y0, z0) (15)

Because function B(x0,y0, za) is a directional derivative of relative velocity
changes (or more precisely — velocity raised to the second power) it does not
depend on the distance between the arbitrary subsurface points where the
sources are located and the surface point z=0. This means that function
R(x0, ¥o, z0) does not depend on the distance Rs. Considering relation (15), we
can easily observe that the right-hand-side of Eq. (15), i.e. the product
RsF(x0,y0, z0), is also independent of Rs and so we can conclude that the
migrated value of F(.x0,y0, z0) is inversely proportional to Rs. The approxima-
tive formula (15) says that in the case of a single seismic reflector the high-
frequency version of the Born inversion, as defined by Cohen and Bleistein, is
a seismic migration in which spherical divergence has been eliminated. We now
propose a new algorithm for extrapolating the surface (z=0) recorded wave
field downwards below the earth’s surface, in the wavenumber-frequency do-
main:

P(xo, \0,z0, t = 0)

_8_ fF(kX, ky, 01 W)] g\ikz: 0ci(kxx 0+ kyyo) n (16)
5773 . ® oo | @

The proposed algorithm is believed to replace the Cohen-Bleistein inversion
defined by Egs. (6) and (7).

If we express relation (16) in the form of KirchhofFs integral (in the same
way as in Eq. A 7) then, taking into account equations (A 8 A 9) and (A 16),
we shall get the relation:

JF(x,y, 0, ©dr+ tF(x, y, 0, t)

P(x0,y0,z0, / = 0) = T7r — dvdy (17)
0J R,
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It is easy to note that relation (17) contains the same components as Eq. (7),
the only difference being that the function under the integral has no multiplying

factor of 2 before low frequency component J F(x, y, O, t) dr. When analysing
0

equation (16), which describes the proposed migration algorithm, we can derive
(see Appendix B) the following formula which relates conventional migration
with the proposed one:

P(x0,y0,z0,t = 0) = P(x0,y0,z0) = RsF(x0,y0, z0) (18)

Formula (18) bears evidence that the spherical divergence has effectively been
eliminated. That is why the seismic field extrapolation method described by Egs.
(16) and (17) is named “migration with elimination of spherical divergence”.

High frequency approximation of “migration with spherical divergence
elimination” can be expressed as follows:

+@
iV
Phixo, Too*) 0" — {F(kxKkr 0, (0)}e'ie2e' (X #9¥,) dkx dkydoo (19)

10713

It can be seen that relation (19) is equivalent, to the velocity inversion as defined
by Cohen and Bieistein [1979] and B1eistein et al. [1985], except for a constant.
This conclusion results directly from comparing formulae (9) and (19).

3. Testing models

In order to verify the operational applicability of approximations (9) and
(19), the relations between the low- and high-frequency components in Eq. (7)
have been tested for function 3(x0,y0, z0) expressed in the form of Kirchhoffs
integral. Experiments have been performed with zero-offset sections generated
for a longitudinal syncline. A model section of three-dimensional wave field
along a profile with three hodographs is shown in Fig. 2. Modelling was
performed by the ray tracing method; the discrete space steps used were:
Ax =Ay =40 m, Az=0.008 s*;the time step was: At =0.004 s; the velocity in the
first layer was Vx= 2000 m/s, the velocity in the second layer V2= 2500 m/s. A
symmetrical impulse in frequency band of 1-83 Hz was used to generate the
wave field. Fig. 3 shows the result computed according to Eq. (7) whereas Fig. 4
presents the migrated three dimensional seismic section computed by neglect-

ing the JF(x,y, 0, r)dr term. Comparison of images for both versions of
0

migration proves that the shape of the lower part of the syncline was mapped
correctly in both cases and that amplitude differences were negligible (amounts

* The depth scale is given in time
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Fig. 2. Model (a) and Mro-off«t time 7 '=2000 m/s. K2= 2500 m/s
Space and time steps. Ax Ay - 0-eltolasu id6szelvénye (b). Tér- és id6
2. abra. m/s, K-2500 m/s
Puc. 2. BoeHHOW npogunb TpexpasmepHoim o g n " N

OTcuyeTbl NPOCTPaHCTBA M BpeMeHU. Axm YA A
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to 0.2% of maximum amplitude). Amplitude fluctuations are of the same order
as noises created by the application of Kirchhoffs integral. Because the spec-
trum of the pulse used for modelling contains the low frequency band (the zero
component of a spectrum is anyway equal to zero) no great error will be made

by neglecting the J F(x, y, 0, r) dr component. Such an approach is equivalent

(0]
to the situation described by relations (9) or (19) in the wavenumber-frequency
domain.

Fig. 3. Time section after migration computed according to Eq. (7). Space and time steps:
Ax=Ay=40 m, dz=0.008 s, dr = 0.004 s

3. abra. A (7) Osszefliggéssel szamitott migralt id6szelvény. Tér és id6 mintavétel:
Ax=Ay=40 m, dz=0,008 s, dr=0,004 s

Puc. 3. MurpaunoHHbIii BpeMEHHOW MPotnb, paccumTaHHbI NO BblpaXXeHUto (7). OTCYeThI
npocTtpaHcTBa 1 BpemeHu: dx = dy =40 m. dz=0,008 ¢ n dr=0,004 c.

Fig. 4. Time ziection after migration computed according to Eq. (7) neglecting the

JF(x,y, 0, t)dr term. Time and space steps as in Fig. 3
0]

4. abra. A (7) Osszefliggéssel szamitott migralt id6észelvény, az J Fix.y, 0, r) dr tényez6
0]

elhanyagolasaval. 1d6- és tér mintavétel a 3. abra szerint

Puc. 4. MurpaynoHHbIi Bp(-BMliHHOVI npodunb, paccynTaHHbI NO BbipaxeHUto (7), npu
npeHebpexxeHun aktopom J Fix.y. 0, r) dr. OTcUeTbl NPOCTPaHCTBA 1 BPEMEHU
0]

B COOTBETCTBMM C puc. 3.
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For testing the high-frequency approximation (19) a zero offset time section
was created by the ray tracing method for a 2-D reflector of 45° dip (Fig. 5).
The spectrum of the applied pulse was in the 1-80 Hz frequency band. The
amplitude of the wave field on the surface decreases as R ~1when moving along
the X axis, where Rn is the distance between the reflector and the surface
measured along the normal to the reflector. We migrate this section using the
conventional f —k method (Fig. 6) and with migration described by formula
(19) (Fig. 7). Comparison of the two types of migration says that the amplitudes
of the conventional f - k migration field quickly decrease with depth whereas
for migration described by Eq. (19) the amplitudes maintain a constant value
over a large portion of the reflector. The solid line in Fig. 8 presents the
distribution of relative amplitudes A{x)fAc (where Acdenotes the amplitude in
the centre of the reflector) as a function of horizontal coordinate x. One can
observe from Fig. 8 that for 2.2-2.9 km the relative amplitudes oscillate around
1 and the maximum amplitude change does not exceed 4%. Inaccuracy in
locating the amplitudes along dipping reflector z=z(x) for discrete values of
Az —0.004 s leads to the oscillating character of the relative amplitude curve.

Fig. 5. Zero-offset time section of a two-dimensional reflector with 45° dip. Space and time
steps: zfv=25 m. di =0.002 s; velocities: K, =2000 m/s, K2= 2500 m/s

5. &bra. 45°-0s d6lésl szeizmikus hatarfeliilet 0-eltolast idészelvénye. Tér- és id6 mintavétel:
Jx =25 m. zfi= 0,002 s; sebességek: V, =2000 m/s, 2= 2500 m/s

Puc. 5. BpemeHHol npoduab € HyneBbIM CABUIOM CEACMUYECKOW MOBEPXHOCTU pasfena,
HaKMOHEHHbIA nog 45°. OTcueTbl NpoCcTpaHCcTBa U BpeMeHun: zlv= 25 m, zf[= 0,002 ¢ ckopocTn
V, =2000 m/c n ¥2= 2500 m/c.
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Fiy. 6. Time section after conventional f-k migration for the wavefield of Fig.5. Time and space
steps: d/=0.002 s, Ax=25m, dz=0.004 s. Arrows indicate end points of dipping horizon

6. abra. f-k migracio utani idészelvény az 5. abraval azonos hullam térre. 1d6- és tér mintavétel:
d/=0,002 s, dx=25 m, dz=0,004 s. A nyilak a d6lt hatarfelilet végpontjait jeldlik

Puc. 6. BpeMeHHol npoduab BofHOBOro nons puc. 5 nocnef-k murpayun. OTcueTbl
npocTpaHcTBa 1 BpemeHn: Ax =25 m, dz =0.004 c, dt = 0,002 c. CTpenkamm 0603Ha4€eHbI
KOHEYHblE MYHKTbl HAKNOHHOW MOBEPXHOCTW pasfjena.

Fig. 7. Time section after f -k migration according to Eq. (19) for the wavefield of Fig.5. Time
and space steps applied as in Fig.6. Arrows indicate end points of dipping horizon

7. abra. A (19) egyenlettel szamitottf-k migracié utani idészelvény az 5. dbraval azonos
hullamtérre. 1d6- és tér mintavétel azonos a 6. abraéval. A nyilak a délt hatarfeliilet végpontjait
jelolik

Puc. 7. BpemeHHoOl npotuab BOAHOBOro nons puc. 5 nocnef-k murpaymm no ypasHeHmto (19).
OTCcYeTbl MPOCTPaHCTBA M BPEMEHN  KaK Ha puc. 6. CTpeskaMu 0603HaUYeHbl KOHEUHbIE
NYHKTbl HaK/OHHOW MOBEPXHOCTW pa3fena.
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Fig. 8. Comparison of distributions of relative amplitudes A(x)/Ac for both realizations off-k
migration as a function of horizontal distance x. Solid line denotes the amplitudes normed by
the amplitude in the centre of the dipping horizon migrated by Eq (19); dotted line denotes
relative amplitudes of conventional f-k migration multiplied by the distance (/?,) between the
surface (2=0) and the dipping horizon measured along its normal

8. abra. Az A(x)/Acrelativ amplitidok eloszlasanak 6sszehasonlitasa azf-k migracio két
valtozatara a vizszintes x tavolsag fliggvényében. Folytonos vonal jeldli a (19) képlettel
szamitott migraciéval nyert hullamtér amplitadoit a d616 hatarfelilet kzépponti amplitddojara
normaiva, mig a szaggatott vonal a hagyomanyos f-k migracié relativ amplitadoit szemlélteti,
megszorozva a felszin (z=0) és a d616 hatarfelulet kozotti Rntavolsaggal, amelyet ez utdbbi
normalisa mentén mériink

Puc. 8. ConocTaBneHne pacnpefieneHnsl 0THOCUTeNbHbIX aMnauTyg A(x)/Ac ans BapuaHTa cf-k
MUrpaLmeii B 3aBUCUMOCTM OT FOPU30OHTaNbHbLIX PACcCTOSHWIA X. CNAOLWHON NMHWEA 0603HaUEeHbI
aMNAMTYfibl BONHOBOIO MOAS, MONYYEHHOr0 MUrpaLmeid no ypasHeHuto (19), oTHeceHHbIe
K LEHTPa/bHOM aMNAnTyAe HAaKNOHHON NMOBEPXHOCTW pa3fena, B TO BPEMS KakK MpepbiBUCTON -
OTHOCUTE/bHbIE aMMUTYAbl TPAAMLMOHHOM f-K MuUrpaLumn, YMHOXEHHbIE Ha paccTosHue R,
MeX[y AHEBHOW MOBEPXHOCTbO (z=0) U HAKNOHHOW MOBEPXHOCTLIO pa3fena, U3MepeHHoe
BAO/Ib HOPMaNu K nocneaHe

Outside the discussed interval of x one can observe two local maxima whose
locations are just before the limits of the reflector. Amplitude changes in the
regions mentioned are about 10 per cent higher than over the central portion
of the reflector and the maxima are accompanied by distinct drops of field
intensity there. These anomalies are believed to be created by boundary effects.
The dotted line in Fig. 8 represents analogous distribution of migrated relative
field amplitudes (conventional f —k migration) where the amplitudes had been
corrected in advance by multiplying them by R,, (Rnis the distance between the
reflector and the observation surface measured along the normal to the reflec-
tor). As is evident from Fig. 8, the central portions of both curves are nearly
coincident which proves that the spherical divergence has been effectively com-
pensated. As far as the physics of both experiments is concerned it is easy to
note that differentiating the recorded field over the surface with respect to
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frequency o is equivalent to multiplying the amplitudes by the wave propaga-
tion time 2 RJV which makes the amplitudes equal everywhere;

Migration of the wave field with all amplitudes being equal denotes, in a
given case, that the plane wave (or more precisely its segment) continues
downward to the dipping reflector, i.e. to the initial position which the plane
wave has at moment (=0. Because, in the case of plane wave propagation, there
are no energy losses due to spherical divergence the equal amplitude field should
be recorded over the dipping reflector at t =0 provided that the boundary effects
associated with limited dimensions of the reflector and sampling rate were
neglected.

With conventional / — migration the reflection wave field [ x, 0, co) which
decreases along the x axis as R~1, is downward extrapolated as a flat front to
the dipping reflector, all over which the migrated values of 1x, z,t =0) decrease
also as R~1. The aim of the following experiment was to check the performance
of the migration algorithm with eliminated spherical divergence when used for
extrapolating the wave field generated for a curved seismic horizon. The experi-
ment was carried out with zero offset wave field data for a two dimensional
syncline (Fig. 9). The wave field within a two layered medium characterized by
velocities F1=2000 m/s and F2= 3000 m/s was computed with the aid of the
ray tracing method taking into account the geometric spreading factor. The
algorithm (19) expressed in the wavenumber-frequency domain was used for
downward extrapolation. Fig. 10 presents the migrated time section. The
presented image suggests that the maximum amplitude of the wave field has
been equalized. This is confirmed by a relative amplitude vs. x coordinate plot
(Fig. 11). As in the previous experiment with a dipping reflector, the amplitude
distribution has an oscillating character around 1 and maximum amplitude
variations do not exceed 8 per cent over the 2.5-7.0 km interval. As previously,
the variations of maximum amplitudes are caused by inaccurate location of the
seismic boundary when extrapolating the wave field with steps of Az=0.004 s.
The experiment with conventional f —k migration (Fig. 12) of the same time
section has also been performed for comparison. As expected, conventional
/ —« migration yields the correct shape of the two-dimensional syncline whereas
the amplitudes of the migrated field exhibit considerable changes (about 80%)
when compared to the hodograph amplitude changes (Fig. 9).

4. Discussion and conclusions

Interpretation of migrated data with eliminated spherical divergence
should not create problems with a syncline-like boundary. Suffice to note that
migration is considered as the process of moving the waves back (from the
recording surface z= 0 to the reflector for t=0) along the same path which the
wave travelled from the source to the surface. The process of backward move-
ment of waves is equivalent to compensation of wave front curvature changes
shaped by a curved boundary and thus the process of conventional migration
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Fig. 9. Zero-offset time section for syncline-like boundary. Velocities: ¥,=2000 m/s,
K2= 3000 m/s: space and time steps: dx=25 m, d/=0.004 s

9. abra. Szinklinalis-szerli hatarfeliilet 0-eltolast id6szelvénye. Tér- és id6 mintavétel: Ax =25 m.
At=0.004 s: sebességek : V, =2000 m/s, F2= 3000 m/s

Puc. 9. BpemeHHoIi npoduab CUHKANHANE06pa3HO NOBEPXHOCTU pasfena C HyneBbiM
cMéueHrem. OTcUeTbl NpocTpaHcTBa ¥ BpemeHn: Ax =25 m, d/ = 0,004 ¢, ckopocTu
K, =2000 m/c n V2= 3000 wm/c.

Fig. K). Time section after migration with relation (19) for wavefield of Fig. 9. Time and space
steps: At—0.004 s, dr =0.004 s

10. abra. A (19) egyenlettel szamitott migracié utani idészelvény a 9. dbra hullamterére. 1d6- és
tér mintavétel: At=0.004 s, Az=0,004 s

Puc. 10. BpemeHHol npodnab BOMHOBOrO Moas puc. 9 nocne murpauum no ypasHeHuto (19).
OTcyeTbl NpocTpaHcTBa M BpemeHu: dr = 0,004 ¢, dt=0,004 c.

itself partially compensates that portion of the geometric spreading factor which
accompanies wave propagation upward from the reflector in a direction normal
to it. The differentiation of the wave field with respect to frequency compensates
the remaining portion of the geometric spreading factor which accompanies the
wave propagation from source to reflector along the line normal to it. This
means the elimination of spherical divergence. Experiments carried out in media
containing a single seismic horizon separating layers of different but constant
velocity, proved that migration computed with the aid of Eqg. (19) eliminates
spherical divergence and provides information about the properties of the
medium. If algorithm (19) is utilized for migration it enables one to trace the

velocity changes in the underlying layer.
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Fig. 11. Distribution of relative amplitudes A(x)/Ac along the syncline-like boundary after
migration with relation (19). Ac— denotes the amplitude in the centre of the syncline

11. abra. Az A(x)/Acrelativ amplitidok eloszlasa szinklinalis-szer( hatarfellilet mentén, a (19)
egyenlettel szamitott migracio esetén. Ac— a szinklinalis kdzepén mért amplitudd

Puc. 11. PacnpegeneHne oTHoCUTENbHbIX aMnantya A(x)/Ac BAONb CUHKAMHANe06pasHoi
MOBEPXHOCTU pasfena npy Murpauun no ypasHeHuio (19): Ac— amnnutyga, U3mMepeHHas
B LIEHTPE CUHKNUHAMN.

Fig. 12. Time section after conventional f-k migration for wavefield of Fig.9. Time and space
steps: At=0.004 s, Az=0.004 s

12. 4bra. Hagyomanyosf-k migracié utani id6szelvény a 9. dbra hullamterére. 1d6- és tér
mintavétel: At=0,004 s, Az=0,004 s

Puc. 12. BpemeHHoi npothnab BOAHOBOrO nonas puc. 9 mocne TpaguumnoHHoli f-k murpayum.
OTcyeTbl nNpocTpaHcTBa U BpemeHun: Az =0,004 ¢, J1/=0,004 c.

For the general case of heterogeneous media, approximations of the field
extrapolation operator by means of the ray theory seem to be the most promis-
ing way for finding solutions to the problem [Go1din 1985], as well as being the
most suitable tool for high frequency approximation of the seismic field. Such
an approach has been also proposed by Conen and Hagin [1985] who tried to
approximate Green’s function in a heterogeneous medium. In the case of a
two-dimensional medium with depth-dependent velocity the WKBJ solution
can effectively be applied [Clayton and Stoit 1981, Kostecki 1984], that is
done by modifying the integrand of f — migration algorithm and reducing it
to a form which happens to be the analogue of the approximation of Green’s
function used in the ray tracing method.



Seismic migration ... 203

Recently, Stort and Weglein [1985] undertook to estimate the possibility
of accounting for density changes in a layered medium. All the mentioned ways
of seismic field downward extrapolation attempt to compensate for the geomet-
ric spreading factor and thus gain information about the reflection coefficient
or values proportional to the reflection coefficient along the reflector. In the case
of a heterogeneous layered medium with flat reflectors the Vms velocity and
CMP travel time can be accepted as the first approximation—in other words,
it is equivalent to applying the divergence proposed by Newman [1973]. When
presenting the so called “tuned reflector model” which accounts only for waves
normal to the reflector, Hubran [1983] proposed a means of computing the
geometric spreading factor for a heterogeneous medium based only on CMP
traveltime. Because the geometric spreading factor does not change for waves
normal to the reflector the practical apolication of that method (tuning the wave
front to reflector morphology) seems to be a promising way to get information
about the reflection coefficient in heterogeneous media.

Nonetheless the main purpose to be achieved (i.e. the invention ofa reliable
method for estimating the reflection coefficients) requires much more to be
done. Concluding our considerations, we state the following:

1. The migration procedure (algorithm 16) in the wavenumber-frequency do-
main or migration expressed by Kirchhoffs integral (Eq. 17) (for homogene-
ous media only, i.e. for a single seismic boundary) enables one to trace the
values proportional to the reflection coefficient because the spherical diver-
gence has been eliminated from the whole bandwith (relation 18) except for
zero frequency.

2. The application of high-frequency approximation (algorithm (19) or (17))

with no J F(x,y, 0, t) dr term isjustified due to the negligible influence of the
0

low frequency component.

3. The high-frequency approximation of migration which eliminates spherical
divergence (relation 19) is equivalent to the high-frequency approximation of
velocity inversion (relation 9), given by Cohen and Bleistein [1979)].

4. High-frequency approximation can be computed with the aid of conventional
/- Kk migration substituting the observed seismic field F(x,y, 0, t) by prod-
uct tF(x,y, 0,t) or by applying Kirchhoffs integral neglecting the

j F(x,y, O, r) dr term (relation 17). By comparison with conventional migra-
0

tion the computational procedure is equally time consuming.

APPENDIX A

In order to find function a(n0,y0, z0) we shall apply the Fourier trans-
formation assuming that the wave field over the surface of recording is charac-
terized by the full bandwidth. This approach has been accepted by several
authors [Cohen, Bleistein 1979, Alekseev et al. 1981, Kostecki 1983, Cheng
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and Coen 1984]. Taking it into account that the integrand in Eq. (1) is a
two-dimensional convolution (with respect to vand y) i.e.

a(*>', z)*e |7 RO
where

RO= (v2+ / +'0)12

we shall get the following:

S iF(x,y, 0, ©

sof o gravy [BOV.Z9 e addo (A D

assuming the U region to be infinite in the v and y directions. Applying the
two-dimensional Fourier transformation (x-* kx, y ->ky) to both sides of
equation (A 1) and taking advantage of Weyl's distribution [Brekhovskich
1957].

0 QD pliAz0
g T e-ifcv+*,i)dv d\{ = T2na -—  for z0>0 (A2
k z
kz = (k2-k 2-k 2112
we shall get the equation:
g-ikjiZo

3 JF(kx ky, 0, 00) 1
O/(kx, k —— A
@l o snva ) 620 =0 420 A3
where
® x3ky, z0) a(v,y, :0)e~" (koY) dx dv
—@
Applying the inverse Fourier transformation (kz “mz0) we shall get from
(A3)
F(kx, ky, 0, o0
tx(kx,ky,z0) = -2V 1 ( Cg ) dk. (A4

Taking it into consideration that k,dk, = k dk = y~-dm the integration with

respect to kz can be replaced by integration with respect to co. The application
of two-dimensional Fourier transformation to Eq. (A 4) (kx ->x0, ky-* \0)

yields:
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*(*0. Y0, z0) =

+O (A9
2V err 8 fF(kX, ky, 0, (I)) eit.zoei("*"0+l\/lo) AN T
n doo [ ®
where
4w2
sgno V2 -k2-k2112 if 4—C02>kiz+k2
K= 4302‘ 112 (A 6)

+'1 kg+R22- — if ke+kg> T I

In practice we can limit our considerations to real values of kz due to the rapid
decrease of the evanescent field when depth zOincreases [Sto1t 1978, Berkhout
1980]. Let us express relation (A 5) in the form of KirchhofTs integral. It is easy
to note that the expression under the integral in (A 5) is a product of two-dimen-
sional transforms and thus we can take advantage of Weyl’s integral (A 2) and
write :

a(x0,y0, z0) =

i2F 8l rfr 8 Wk, K,, 0,c0L)eiI<*z° N
to— e'(0 kO dkxdkvdco =
n2 &0 I 8a { ®2 ] ke Xy

+@
4L 0t 8 (F(x0,y0,0, co)] e!*

n 80 1 Cdo © RO

da> = (A7)

4V 8 8 (F(x)y, 0,co)} ek
[e0]

N o . R dx dy dco

where
Ro = {xl+yl +zIlYDR
Rs = [{x-x0)2+(y-y0)2+z2Y 12

Computation of Fourier transforms (co -> t) with respect to time t for both
components of the integrand yields:

on % dco{F(X’ y, 0, <u)}eildo» = N(x,y, 0, t) (A8

21 N(x,y, 0, t) :271- — {F(x,y, O,w)}e“"dco = tF(x,y, 0, 1) (A9
M
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and, based upon (A 8) and (A 9), we have:

I
N(x,y,0,0 = JeF(x.y, 0, ©)dr (A 10
0

where: x=variable of integration.
Let the second component of the integrand be S(x,y, 0, t) i.e.

1 ¢ FXV, 0
n ] oy

— 00

el dry = S(x, Y, 0, 1) (A1)

and thus we have

a% S(x,y,0,t) = F(x,y,0, 1) (A 12

When we express function S(x, y, 0, t) as a double convolution with the Heavi-
side function involved, then we have:

t 1
S(x,y,0,0 = (J)drtoj- F(x,y,0, 1) dr2=
® ®
= | H(x1-T 2F(x,y,0,T2dT2]dzIl =
0 0
= F(x,y, 0, = F(x,y, 0, t)*tH(t) =
®

g(t-r)H(t~r)F(x,y, 0, r)dr =

= :(])-{t-T)F(X,y,O, rydr (A 13

where r, Tt, r 2are the variables of integration. Relations(A 10)and(A 13)when
inserted into Eq. (A7) yield the expression for a(x0,y0,z0) in the form of
Kirchhoffs integral:

21J'F(x, y, 0, r) dr—J zF(x, y, 0, r) dr
a( O, YO, 20) = 8Vd20 R, dxziy (A 14)

\Y

Following the procedure similar to that applied for function a(x0,y0, z0) one
can obtain the following expression for the 3(x0,y0, z0) function

+@ .
Fx, y, 0, w) 9

i8
B(x0, Y0, z0) 070 e ) — dvdy dey (A 15
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Applying the Fourier transformation {to -> t)
+00

o 1 F{x vy, 0, to)emdto =i F(x,y, 0, ©dr (A 16)

and taking advantage of Egs. (A 8) and (A 10) we obtain the desired relation
for the R{x0,y0, z0) function:

2j F{x,y, 0, t)dr +tF(x,y, 0, t)

B(x0,y0,20) = 16 dxdy (A1
(x0,y0,20) 026 e 2Q/y( 7)

APPENDIX B

In order to express the Fourier transform {kx  x, ky ) of the integrand

i 0 fR{kx,k 0, ) )
function tOZCD> © by function 3(x0,y0, z0) we perform the math-

ematical operations in reverse order to the sequence of operations followed
during the derivation of function a(x0,y0, z0) i.e. from Eq. (A 5) to Eq. (A 1)
operation. Eq. (6) is a starting point for this procedure.

Those operations done, we have:

lF{x y, 0, cu); 2 0
---------------- F O tuyy+ —F 0, to) =
oto{ to to .y, 0, ) oto .y, 0, 10)
o (B1)
0 ’{x0,y0, Zo djc0dy0dz0
lerovy  XOY020 o o doOdy
and thus for high frequency the following holds true:
0 F(x, Y, 0, to) = p R(x0, ¥t Iﬂsded 0dz0 =
PV 019 = \gry3 800 Y020 - 0x00y0dz0=
(B 2)

L _ - 2(0Rs
JJ R(x0,y0,z0)— e ' K)dx0dy0dz0
(x0,y )RS OK( ) y

u

The relation between the F(x, y, O, to) field recorded over the z= 0 surface and
function B(x0,y0, z0) which simulates the effective source distribution can be
obtained directly from (B 2).

32n2V
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. 20jRs

1 8 it' v
i, 0 = R(x0,y0, z0 dx0dj0dz0=
i 00 =g, n  BOOYOZO) o ypg g 9X0di0dz
B3
. 1 fic\ e~ ikRs .
R{x0,j0,z0) (~2 + — I dx0dj0dz0

64n2

Comparing relation (B 3) and Eq. (12) we can provide the approximative
relation between the migrated values of field F(x0,y0, z0) and source distribu-
tion 3{x0,y 0, z0):

aF(xo,Jo, z0) = - (B(x0,jo, 200 Q + (B 4)

where
64n
a=
~V
Following the procedure similar to that used for the derivation of (B 1) we can
obtain the following relation between Fourier transform (kx -» x, ky -*y) of

f
F(kx, ky, 0, oo))> (Eg. 16) and migrated field P(x0, j 0, z0):

A

P(Xo, Jo, 20 dx0djodz0O (B 5

integrand o

6co

O 6 IF(x j, 0, co) 4c0
doo 00] nF3

and thus the recorded field F(x, y, 0, co) can be expressed by

2w R

i2co
F(x,j,0,0) = " P(x0, Jo, 20) Rt dx0djo dz0 (B 6)

V2

By comparing relation (B 6) with the expression for the conventionally migrated
field (i.e. relation 12) we can obtain the formulae relating the migrations

P(xo, Jo, z0) and F(x0,j 0, z0):
P(x0,Jo, z0) = RsF(xo, Jo, z0) B7)

Relation (B 7) bears evidence of the complete elimination of spherical diver-
gence.
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SZEIZMIKUS MIGRACIO A SZFERIKUS DIVERGENCIA KIKUSZOBOLESEVEL
Andrzej KOSTECKI

A tanulmany bemutatja a hagyomanyos migracié és a Born inverzié kapcsolatat. Ez utébbi
a kiilénbbz6 sebességli kozegeket elvélasztd hatarfelilletre mer6leges iranyl sebességinverzio. Uj
migraciés algoritmust javasol nulla eltolast szeizmikus szelvényekre, a szférikus divergencia kiki-
szobolésével a teljes frekvenciasavon. A javasolt algoritmus nagyfrekvencids kozelitése egy kons-
tanstdl eltekintve a Cohen Bleistein algoritmushoz konvergal, fiiggetlendl attol, hogy ez utébbit
Kirchhoff migraciohoz vagyf-k migraciohoz alkalmazzuk. A nagyfrekvencias kozelitések tulajdon-
sagait a szintetikus hullamtér 2D és 3D modelljeire végzett szamitasokkal mutatja be.

CEMCMUYECKASA MUIPALIMA C YCTPAHEHVEM COEPUYECKOWM
OVIBEPTEHLNM

AHpxelt KOCTELLKU

LleMoHCTpMpyeTCcs CBA3b TPaAMLMOHHOK MUrpauun ¢ uHeepcueli BopHa, npeacTaBnstoLLeit
co60i4 MHBEPCHIO CKOpOCTel NepneHAUKYNAPHO K MOBEPXHOCTY pasfena Mexay cpefamu C pasnuy-
HbIMU cKOpoCTsIMW. [MpeanaraeTcs HOBbIA anropuTM MUrpauuu Ans celicMMYeckux npodumneit
C HyNneBbIM CABUIOM, C YCTpaHeHUeM cepuyeckoil AMBEPreHUMU B MOMHOM AMana3oHe 4acToT.
BbICOKOYACTOTHOE MpUBMMKEHVE Npefnaraemoro anroputma cxogutcs ¢ anroputmom Kore-
Ha -BneliTeliHa 3a UCKNKOYEHNEM OfHOIW U3 KOHCTAHT, HE3aBMCUMMO OT TOFO, MPUMEHSETCS N OH
K KMpXrogoBCckov mMurpauny nnm xe kf-k murpaumm. CBoiCTBa BbICOKOYACTOTHbLIX NPUOAVKEHWIA
[EMOHCTPUPYIOTCA pacyeTamMu, BbIMOAHEHHbIMU A1 Mogeneit 2D 1 3D CUHTETMYECKOro BOSTHOBO-
ro nons.
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NEW VARIANT OF INTERVAL VELOCITY ESTIMATION FROM
REFLECTION AMPLITUDES

Volker KRUG*

Instead of using single traces as is done with the common pseudo-acoustic log, amplitude
variations across adjoining traces along reflective horizons are used in the presented method.
Proceeding from a reference trace, the reflectivity-dependent relative velocity changes, which are
proportional to the amplitude variations, are determined. Since all amplitude values of a signal are
suitable for calculation, signal compression (spike deconvolution) is not necessary. The examples
of two profiles demonstrate the achievable results when using the horizontal changes of layer
velocities.

Keywords: reflection methods, velocity, amplitude, seislog, signal-to-noise ratio, pseudo-acoustic log

1. Introduction

In recent years, the pseudo-acoustic velocity log has become important for
the interpretation of local velocity variations. In particular, it has been utilized
for detecting lithological changes within the limits of oil or gas deposits. The
pseudo-velocity log in the classical meaning implements the velocity determina-
tion sample-wise along the time axis for one trace [Lindseth 1979, Gogonen-
kov et al. 1980]. By that procedure the value of the true amplitude is assigned
to the seismic impedance at the respective location thus enabling us to determine
the velocity distribution along the seismic trace. Strictly speaking, such a treat-
ment assumes a pulse trace (not to speak about other problems; see below).
Similar to a procedure used by Boisse [1978], an alternative program has been
developed which does not consider the amplitude variation along a single trace
but across adjoining traces along the direction of correlation of horizons. In
contrast to Boisse’s procedure not only the main phase (or amplitudes) of the
signals of selected horizons is processed for calculation of underlying interval
velocities but all samples (sample-wise) between two consecutive horizons. Such
an approach provides a more favourable statistical interpretation, especially of
horizontal velocity variations.

* VEB Kombinat Geophysik Leipzig, Bautzner Strasse 67, GDR-7024
Paper presented at the 31st International Geophysical Symposium, Gdansk, 30 September
3 October, 1986
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2. Principle of procedure

Fig. 1 shows the principle of the algorithm which is used in this paper. A
presupposition of the treatment is a reference trace (a) recorded near the well.
This trace can be obtained by the averaging of several adjoining traces. To this
reference trace belongs a corresponding velocity model (Val,Va2) or reflectivity
sequence which is derived from sonic logs of nearby boreholes. The reflection
coefficient is

Val-vgl
Ki + V&2
if the density contrast is neglected (g, &q2). K is a scale factor, Aathe sample
amplitude at time T for the reference trace. For a neighbour trace (b) the
correspondig reflectivity at the same time (better: at the same horizon or phase
position) may be expressed by the velocities Wbl and \b2- The corresponding
reflection coefficient on trace b is

Ra = kAa (D

bl rb2

Rb kAb 2
Vol + W2
From the amplitude ratio between reference trace and adjoining trace
R. = Aa. (Val-Va2)(Vbl+Vb2) 3

Rb  J1 * (val+ Va2)(Vbl-V b2)
the velocity Ki, etc. may be determined, provided the velocity Vi is known:

Aa\bi(\Vgi + Vgi)-Ab\bl(Val-V a2)
rb2 AaVal + \&2) + Ab(Val-V a2)

For Vbl one can use either the mean velocity derived from the aforetreated
layer or from the given velocity model. This will be done for all traces of a
stacked time section with true amplitudes.

The position of the reflecting horizons along the x-axis (7j in Fig. 1, and
see correlation in Figs. 3 and 5) in the time section is visually picked and the
intermediate layer velocities are linearly interpolated.

The trace processing sample by sample between two consecutive horizons
is done parallel to the upper horizon. Since some problems may arise with
thickness variations, the selection of the reference trace is of particular import-
ance. It should preferably be taken from that point where the thickness is
greatest.

For calculation, such amplitude values are abandoned which are less than
a preselected percentage of the mean value of the trace. Obtained velocity values
which surpass or underflow a given level are not further used for treatment. The
frequently very scattered individual values on the traces are subjected to a
selectable (in x and r), two-dimensional and position-weighted smoothing. As

4)
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Ag (Yp4d-Yar) (Ybl+Ybr)

Rb= Ab~(Val*\VQ) (V- Vi)

w

ApYbl (ValtVa2)~~b”b] (Un-Yar)

2 Aa(d-H&)+A(\d- VD

Fig. 1. Scheme of velocity estimation

I. abra. A sebességbecslés vazlata

Puc. 1. Cxema onpefeneHns CKopocTeil.

result we obtain interval contour plots which represent either the interval
velocities or the deviation of the interval velocity from the reference trace (A V)
or its percentual variation. This approach has some advantages over the com-

monly used pseudo-velocity log:

Advantages

no spike deconvolution necessary
(input is not considered as pulse
seismogram but as wavelet)

— no complete frequency band re-
quired

— better use of a priori knowledge

— variable smoothing of data

— statistical procedure, robust cal-
culation regime

— no accumulation of errors with
time

— better elimination of interference
application possible also at worse
S/N-ratio

Disadvantages
assumption of horizons with ac-
curate correlation
problems arising with the sampling
if layer thickness changes
no elimination of distortion (e.g.
dispersion)
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3. Examples

The next figures demonstrate the calculation results from two profiles A
and B extending parallelly to a distance of 400 m. Fig. 2 shows for profile A the
normal stack, the stack with true amplitudes and the isoarea section of A F-re-
sults (related to reference trace at coordinate 3712 m) for the time interval
essential for oil prospecting. The lowest (negative) AV values are white, the
highest values are black. In Fig. 3 the time scale was a little extended, the stacked
traces (true amplitudes) are shown as wiggle traces and the velocity changes are
plotted as AV contour lines. In Fig. 4 an enlarged section is represented where
stacked traces in wiggle trace form have been superimposed on the AV contour
line section and an isoarea section is also presented. Similar plots for section
B are presented in Figs. 5 and 6.

Both seismic profiles cross a carbonate sand barrier of the Zechstein
(approximately between the coordinates 3000 m and 5500 m). The velocity
estimation has been accomplished within the total Zechstein sequence. The main
horizons are correlated in Fig. 3 and Fig. 5. The quality of the time section is
poor but, nevertheless, usable results have been obtained. It is obvious that the
velocity variations along the reflectors behave like the intensity of the true
amplitudes, as expected. The differentiation is clearly greater for profile B,
especially in the interesting x-interval (4000 m-5000 m). This indicates that the
velocity contrasts at profile A are presumably lower than at profile B. On profile
A it can be seen that the zone of reduced velocity around coordinate 5400 m
extends with a-decreasing trend to about 3100 m.

From x = 5400 m to higher x values one can see growing variations of the
layer velocities which are connected with the steeper descent towards the trough
caused by the barrier.4

4. Conclusions

The quality or reliability of velocity estimations depends strongly on the
quality of field data (i.e. on the signal-to-noise ratio). The statistical treatment
of numerous velocity data permits a good estimation of relative velocity changes
even for poor quality seismic sections. An accuracy of £100 m/s to % 500 m/s
should be expected for distances of about 1000 m from the borehole.

The procedure described here has the advantage of being able to use all
amplitude values and spike deconvolution is not needed; on the other hand the
exact correlation of horizons is something of a disadvantage.

If we are concerned with reliability, comprehensive model knowledge, and
precise treatment of the original data, then this technique seems to be suitable
for the exploration of large structures as well as for detailed investigations.
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Fig. 2. Time section A for velocity estimation, a) Stacking; b) Stacking with true amplitudes;
c¢) Calculated AV iso-area section. Velocity range: +400 m/s — -400 m/s in 200 m/s steps
from dark to light

2. &bra. A sebességbecslésre felhasznalt A idészelvény, a) Osszegszelvény; b) Osszegszelvény
valédi amplitadokkal; c) Szamitott AV szelvény. Sebességtartomany: +400 m/s — -400 m/s,
200 m/s lépésekkel, a sotéttdl a vilagos arnyalatok felé haladva

Puc. 2. BpemeHHoIi pa3pe3 A ans onpefeneHus ckopoctei, a) CTeKnHr. b) CTeKUHr
C UCTMHHBLIMM aMnAnTygam, ¢) PaccumTaHHbIi npoduab n3oapeanos AV. [lnanasoH cKopocTei
oT +400 m/c go -400 m/c yepe3 200 m/c, OT TEMHbIX OTTEHKOB K CBET/bIM.
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A REFLEXIOS AMPLITUDOK ALAPJAN VEGZETT
INTERVALLUMSEBESSEG-BECSLES UJ MODSZERE

Volker KRUG

A tanulmany bemutat egy modszert, amelyben nem egyedi csatornakat dolgoz fel, mint ahogy
a pszeudo-akusztikus karotazs szelvénynél szokasos, hanem reflektald hatarfelliletek mentén vizs-
galja a szomszédos csatornak amplitido valtozasait. Egy referencia csatornabol kiindulva a reflekti-
vitastol figgs, amplitddo valtozasokkal aranyos, relativ sebesség valtozasokat hataroz meg. Mivel
a jel barmely amplitudd értéke alkalmas a szamitasokra, nincs szilkség spike dekonvoldciora.
A bemutatott két szelvény vizszintes rétegsebesség-valtozasok esetén mutatja az elérhetd eredmé-
nyeket.

HOBbI METOf OLIEEHKW MOVHTEPBAJIbHbIX CKQPOCTEVI HA OCHOBAHWNN
AMNANTY 4 OTPAXXEHN

donbkep KPYT

OxapakTepn3oBaH HOBbIA MeTof, B KOTOPOM 06pabaThiBalOTCA He OAMHOUHbIE KaHasbl, KaK
3TO MPUHATO B C/ly4Yae KPMBbIX NCEBA0AKYCTMUYECKOTO KapoTaxa, a U3yyatoTcs M3MEHeHUs amnu-
Ty, MO COCeAHMUM KaHanam BfO/Mb OTPAXKAOLMX NOBEpPXHOCTe. ONpeaenstoTcs OTHOCUTE/bHbIE
M3MEHEHUs CKOPOCTe, MPOMnopLyOHaNbHbIe U3MEHEHWAM aMNANTY/ U 3aBUCSALLME OT OTpaXaTe b-
HOV# CNOCOBHOCTYM, OTHECEHHbIE K OJHOMY W3 KaHanoB, BbIGPAHHOr0 B KayecTse onopHoro. o-
CKO/bKY B pacyeTax MoryT GbiTb UCMO/Mb30BaHbI N0Gble 3HAYeHUs aMMAUTY[ CUTHANO0B, OTNajaeT
Heo6X0MMOCTb B Craiik-AeKoHBOMOLMN. MpeacTaBNAOTCA [iBa pa3pe3a B KaUecTBe UAMHCTPaLUn
pe3ynbTaToB, MOMYYEHHbLIX MPU FOPU3OHTANbHBIX U3MEHEHUSX MOTOPU3OHTHBIX CKOPOCTEIA.
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POSSIBILITIES AND LIMITATIONS OF RECOMPRESSIVE
FILTERING IN THE PROCESSING OF SEAM-WAVE SEISMIC
SURVEYS

Gyorgy BAKI*, Tamas BODOKY?*, Eszter CZILLER*, Péter SCHOLTZ*

The method for contracting dispersive signals, i.e. eliminating dispersion, is studied. Con-
sideration is also given to the sensitivity of the method to the errors of input parameters, to noise,
and to the distortions of the spectrum caused by absorption; further to what extent it is able to
resolve the superposed dispersive signals. The processing of an in-seam seismic survey is presented
to illustrate a practical application.

Keywords: reflection methods, mines, coal seams, dispersive filters, channel waves, in-mine seismics,
recompressive filtering

1. Introduction

The in-seam seismic reflection technique — similarly to any other geophysi-
cal exploration technique - may be divided into three phases: data acquisition
(i.e. the field measurement itself), data processing, and interpretation. A special
step of the processing of in-seam seismic data, viz. recompressive filtering —
which eliminates the dispersive character of the seam-waves — is treated here.

In order to understand the significance of this operation it must be known
that there is a very important difference between seam waves and seismic waves
employed in normal seismic surveys: this difference being the dispersive charac-
ter of seam waves. Thus, data processing systems designed to treat impulse-like
seismic signals are not able to process directly the data of in-mine seismic
surveys before applying some operation to eliminate the dispersive character of
seam waves. Two possible solutions of the problem are known [Bodoky et al.
1986]. The first one is the “German” way which uses a narrow band-pass filter
to enhance the high frequencies of the Airy-phase and then applies enveloping
[K1inge et al. 1979]. The second one, the "English” way, employs recompressive
filtering [Buchanan 1979]

* EOtvds Lorand Geophysical Institute of Hungary, POB 35, Budapest, H-1440
Manuscript received: 17 November, 1987
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2. Recompressive filtering

The principle of recompressive filtering was published by Booer et al. in
1977. Their method may be summarized as follows:
— the image of an impulse-like signal in the frequency-wavenumber domain
is a straight line crossing the origin, that is

f(k) = ck

where / denotes frequency, k the wavenumber, and ¢ — which is the slope
of the line — the phase velocity. Here ¢ has a constant value, which expresses
that all frequency components propagate with the same phase velocity,
— the image of dispersive signals in the same domain is a curve — not a straight
line — crossing the origin and increasing monotonously. Its equation is

m = c(k)k

In this case the phase velocity is not a constant, it is a known function of
wavenumber,

— the wavenumber spectrum of a seismic signal can be derived from its fre-
quency spectrum with the help of the previous formulae. If the complex
Fourier transform of an s(t) seismic signal is F{s(t)} = S(f) then this can
be transformed by substituting the above functions:

S(f) = S{f(k)} = S(ck) = S'(k)

S(f) = S{f(k)} = S{c(kk} = S'(k).
In the first case the shapes of the two spectra are the same only the scaling of
the abscissa axes differs by a constant ¢ factor. In the second case the shape of
the spectrum also changes during transformation from S(f) to S'(k).

Thus, knowing the c(k) dispersion curve of a seismic signal it is possible
to change over from its frequency spectrum to its wavenumber one. Applying
the above transform in the reverse way it is possible to return to the frequency
spectrum by any arbitrary constant c (let us call it return velocity) and this
spectrum will be the one of an impulse-like seismic signal propagating by return
velocity c. (This signal will obviously arrive at the time corresponding to
propagation velocity c.)

Of course, when applying this operation in practice one starts with a signal
in the time domain and one wants to have the same form at the end. Thus, the
operation begins with a direct Fourier transform and ends with an inverse one.
A practical difficulty is that after transformation the sampling of the wavenum-
ber spectrum is not equidistant, therefore a resampling is needed at that stage.
The method should be applied after the separation of the modes because it is
able to contract only one mode at a time.

A solution in the time domain is also known [see Marschall and Schott
1981]. The solution for the frequency domain was considered by G ruszczyk
and Szabelski [1981].

or
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3. Efficiency of recompressive filtering

In order to demonstrate and study the method a synthetic seismogram was
computed for a symmetrical three-layer model where the density of rock enclos-
ing the coal seam (qt) was 2500 kg/m3, the velocity of shear waves in the rock
(3r) was 2000 m/s; while the same parameters of a 2 m thick coal seam were
gc= 1500 kg/m3and Rc = 1000 m/s. Geophone spacing was 5m in the direction
of wave propagation (Fig. 1).

In order to eliminate the dispersion of the seismogram it was filtered by the
above-described recompressive filter at two different return velocities. Figure 2
presents the result of filtering performed at a return velocity corresponding to
the velocity of coal. The filter worked perfectly in the case of the synthetic
seismogram, as can be seen in the figure. The long dispersed signals have been
contracted into spike-like impulses in every case. However, it must not be
forgotten that this form of recompressive filtering is based on deterministic
principles since the dispersion curve of the waveguide, i.e. the coal seam, is
previously given as a parameter of the filter. The dispersion curve depends on
the following five parameters even in the most simple, symmetrical, three-layer
case:

— propagation velocities of shear waves in the surrounding rocks and in the
coal seam

— density of rocks and of coal

— thickness of the seam.

Therefore, it seemed necessary to examine the sensitivity of recompressive

filtering to the errors of the input parameters.

A signal corresponding to 125 m source-receiver distance was computed
with the parameters of Fig. 1 for the purpose of the examination. This signal
was filtered, or in other words it was recompressed by erroneous parameters.
Fig. 3 presents the results of repeated filtering in which the shear-wave velocity
for rock had a relative error that was changed between -25% and +25% in
twenty steps. Similar results can be seen in Fig. 4, but in this case the shear-wave
velocity for coal had the same error. It appears that the error of the velocity of
rock (which determines the low-frequency end of the dispersion curve) —
adversely influences the low-frequency part of the signal, whereas the error of
the velocity of coal (which determines the high-frequency end of the dispersion
curve) — adversely influences the high-frequency part of the signal. It was found
in both cases that recompression was very sensitive to the accuracy of the
examined parameters and even when they showed an error of only a few per
cent the resulting length of signal could be several times longer than that of a
signal obtained by exact parameters. The increased length of a signal leads to
a blurring of its energy and a proportional reduction of its amplitude.
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Fig. 1. Synthetic seismogram computed for a symmetrical three-layer model of a coal seam.
Parameters: shear wave velocities for rock (4,) and coal (z¢) 2000 and 1000 m/s, densities 2500
and 1500 kg/m3, respectively; thickness of seam 2 m; geophone separation 5 m

I. abra. Szimmetrikus telep modellre szamitott szintetikus szeizmogram. Paraméterek:
az S-hulldam sebessége a kézetben (Br) illetve a szénben (4.) 2000, illetve 1000 m/s, a megfeleld
s(irliség értékek 2500, illetve 1500 kg/m3, a telep vastagsaga 2 m; geofonkdz 5 m

Puc. 1. CuHTeTMYeCKasa ceicMorpaMmMa, paccuMTaHHas Ans CUMMETPUYHON 3a/eXKn Co
cnegylowumMy napameTpaMun: CKOpPoCcTM BO BMewarowmx nopogax (4.) v yrnax ([,) coctaBnsioT
2000 1 1000 m/c, ux nnoTHocTM — 2500 1 1500 Kr/cm3 COOTBETCTBEHHO, MOLLHOCTb 3a/1eXU

2 M, paccTosiHWe Mexay KaHanamm — 5 m.

Fig. 2. Synthetic seismogram of Fig. 1after recompressive filtering

2. dbra. Az 1 abran bemutatott szeizmogram a rekompresszios sz(irés végrehajtasa utan

Puc. 2. Ceiicmorpamma puc. 1 nocne «peKoOMMNpPeccuBHON» (unbTpaumm.
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%

Fig. 3. Effect of erroneous /?, on the result of filtering performed on a signal computed with
125 m offset (model parameters as in Fig. 1)

3. &bra. B, hibajanak hatasa a szlrés eredményére egy 125 m forraspont-érzékel6 tavolsaggal
szamitott csatornan (a modell paramétereket lasd az 1 abran)

Puc. 3. BnusHue oWIMBOK B CKOPOCTHBLIX MapameTpax Mopoj Ha pesynbTaTbl (uAbTpauuu no
KaHasy, pacCuMTaHHOMY ANs PacCTOSHWMA 125 M 1 OT UCTOYHMKA; napameTpbl CM. Ha puc. 1

%

Fig. 4. Effect of erroneous Rcon the result of filtering performed on a signal computed with
125 m offset distance (model parameters as in Fig. 1)

4. abra. Bchibdjanak hatdsa a szlrés eredményére egy 125 m forraspont-érzékeld tavolsaggal
szamitott csatornan (a modell paramétereket lasd az 1 abran)

Puc. 4. BnnsHue OLUMGOK B CKOPOCTHLIX NapaMeTpax Yrnei Ha pesynbTaTbl UALTPALMK NO
KaHasy, pacCuMTaHHOMY AN PaccTOsHUS 125 M OT UCTOYHMKA; napameTpbl CM. Ha puc. 1



226 Baki-Bodoky-Cziller-Scholtz

The method is similarly sensitive to the other parameters, i.e. to the errors
in seam thickness and densities. The diagram of Fig. 5 summarizes the results
which demonstrate the relative lengthening of the signal — compared with the
length of the accurately filtered signal — as a function of the error of the
parameters. It is clear that recompressive filtering is sensitive primarily to
velocities, especially to that of coal and to the thickness of the seam, though the
lengthening of the signal was measured somewhat arbitrarily.

Fig. 5. Relative stretching of signal as a function of parameter errors
H — thickness of coal seam; B, and [, shear wave velocity in rock and coal, respectively; or and
qgc— density of rock and coal, respectively

5. abra. A jel relativ megnyulasa paraméter hibak fiiggvényében
H — a széntelep vastagsaga; R, és [ — a nyir6hulldam sebessége a kézetben illetve a szénben;
Q és gc— a kozet ill. a szén s(irlisége

Puc. 5. OTHocuTeNbHOE pacTaXXeHne curHana B CBA3N C oLimMbKamu napamMmeTpoB:
H — mowHocTb 3anexu; [, u [, — cKopocTu BO BMeLLAKLWMX nopojax u yrnax; 4Tu ac— ux
NNOTHOCTN COOTBETCTBEHHO.

The efficiency of filtering was also studied in the case of the superposition
of several signals and in the presence of random noise, too. Furthermore, the
effect of the distortions of the amplitude spectrum — caused by frequency
dependent attenuation — on the filtering was tested. The seismogram of Fig. 6.
shows the superposition of three dispersed wavelets with strong random noise
added to it, while Fig. 7 presents the filtered version of this seismogram. The
figures and studies suggest that recompressive filtering is able to resolve the
overlapping dispersed wavelets very well and it is not sensitive to random noise
or to frequency dependent attenuation.
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Fig. 6. Synthetic seismogram of three superposed dispersive signals, random noise added (model
parameters as in Fig. 1)

6. abra. Szintetikus szeizmogram harom szuperponalt diszperz beérkezéssel és rendezetlen zajjal
(modell paramétereket lasd az 1 abran)

Puc. 6. CMHTeTWYeCKas celicMOorpaMma C TPeMs PaccesHHbIMW BCTYMNEHUSMM, HAMOXEHHbIMU
APYT Ha fipyra, 1 ¢ 6ecnopsfouHbIM WYMOM; napameTpbl CM. Ha puc. 1

Fig. 7. Seismogram of Fig. 6 after recompressiVe filtering
7. dbra. A 6. dbra szeizmogramja a rekompresszios sz(irés utan

Puc. 7. Ceiicmorpamma puc. 6 nocne «peKoMnpecCUBHOW» (uUnbTpaLmm.



228 Baki Bodoky Cziller-Scholtz

4. Practical application of recompressive filtering

After the synthetic examples let us examine a few practical applications.
Fig. 8 presents the location map of an in-mine survey. A long panel was
prepared for longwall mining in the area. The planned haulage road (B) whose
driving was about 180 m ahead of the parallel airway (A) ran into an andesite
dyke a few metres in thickness. The dyke was cut through but the roadway soon
hit another one. Then the mining company requested a geophysical survey to
determine the positions of the andesite dykes.

Taking into account the direction of the dykes the in-seam seismic reflec-
tion technique was chosen and the seismic line was placed into roadway B (Fig.
8). The line was shot in a one-directional six-fold offset CRP spread arrange-
ment with 5m spacing of two-component geophone sondes and 15 m offset. The
reflection survey was completed by several transmission shots from roadway A
for the sake of a more accurate velocity estimation.

1— andesite dyke; 2 — seismic reflection line; 3 — location of shots for transmission records

8. abra. Egy banyabeli telephullam mérés helyszinrajza
1 andezit attorés; 2 — reflexiés mérévonal; 3 — robbantépontok atvilagité méréshez

Puc. 8. MnaH cuTyaLuy Npu NOA3EMHORM WU3MEPEHUN MACTOBbLIX BOJH:
1— WHTPY3US aHAe3nTOB; 2 — Npodub ceiicmMopasseakn MOB; 3 — B3pbIBNYHKTbI Ans
NpPOCBEYMBAHMS.
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Fig. 9 shows a typical seismogram of the same survey after so-called
normalization, i.e. time-dependent amplification was performed. It can be seen
that after the first arrivals —dying out entirely at 100-120 ms — a reflection-like
arrival appears between 150 and 220 ms, though it is rather uncertain and is
blurred by dispersion. Fig. 10 presents the same seismogram after recompressive
filtering which made the reflection arrival more definite and suitable for inter-
pretation. The signal-to-noise ratio of the filtered record can be further im-
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Npa. 9. Typical in-mine seismic reflection record
9. abra. Tipikus telephullam reflexiés szeizmogram

Puc. 9. TunuuHas ceiicMorpamma OTPAKEHWIi MNACTOBbLIX BOJH.

10. dbra. A 9. dbran bemutatott szeizmogram recompresszios sz(irés utan

Puc. 10. Ceiicmorpamma puc. 9 nocne «peKoMnpecCMBHOM» QUAbTPaLUN.
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proved by substituting the traces by their envelopes (Fig. 11). Fig. 12 shows the
processed time section. Though a reflected wave train can be observed in it, it
is not suitable for interpretation in this form. If stacking is performed after the
recompressive filtering then the reflection of Fig. 12 becomes much clearer and
another one of very high frequency appears in the first half of the section (Fig.
13). Finally, on changing over to the envelopes by a Hilbert transform the
unambiguous time-section of Fig. 14 is obtained with a fair signal-to-noise ratio.
Fig. 15 illustrates the interpreted migrated x-y section. So far as migration is
concerned, it must also be mentioned that the constant seismic velocity, chosen
by us, is known due to recompressive filtering and so migration — presently a
simple Kirchhoff migration — is expected to be very accurate. Fig. 15 shows
that the first of the two andesite dykes hit by roadway B can clearly be traced
and its limits accurately outlined. The second dyke hardly appears in the
sections, the only exception is perhaps that of Fig. 13. This was probably caused
by the fact that just over the roadway the dyke ends and so its reflection is
masked by the strong first arrivals. The most important result of the survey is
the third reflector — a previously unknown fault or dyke, stretching across the
whole panel.

Fig. 16 shows the checking of the seismic results by roadway driving. In
the case of the first dyke the real and predicted situations agreed very well.
Unfortunately, the other dykes — or faults — had not been prospected by
roadway driving because the mine closed the panel at the first dyke in conse-
quence of the disturbed geology of the seam.

Fig. 11. Enveloped version of the record of Fig. 10
11. dbra. A 10. dbra szeizmogramja burkol6 képzés utan
Puc. 11. Ceiicmorpamma puc. 10 nocne co3gaHus 06beMAIOLLEN.
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Fig. 12. Processed time section of in-mine seismic reflection survey

12. dbra. A reflexiés mérés feldolgozott id6szelvénye
Puc. 12. BpemeHHOW npotnab, NONYYeHHLIA B pe3ynbTaTe 06paboTKu.
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Fig. 13. Time section composed from recompressed single records
13. dbra. A nyers szeizmogramok rekompresszios sz(irése utdn kapott idészelvény

Puc. 13. BpemeHHO npodnab, NONYYEHHbIA B pe3ynbTaTe 06paboTKM ceiicMorpamm
C «PEKOMMPECCUBHOI» (PUNbTPaLMeN.
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Fig. 14. Enveloped version of the time section of Fig. 13
14. dbra. A 13. &bra id6szelvénye burkold képzés utan
Puc. 14. BpeMeHHON npogunb puc. 13 nocne co3gaHusi 06bemtoLLei
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Fig. 15. Interpretation of the migrated lime section (this location map is distorted by the
different scales in wand y direction)

15. dbra. A mérés eredményeinek értelmezése a migrait szelvény segitségével (a szelvény v és
y irdny0 léptékének kilonbsége miatt torzul a helyszinrajz)

Puc. 15. MHTepnpeTaums pesynbTaToB W3MEpPeHUii C NOMOLLbI0 MUTPUPOBAHHOTO Npoguns
(NNaH WCKaXeH B CBSA3W C PA3IMUMAMKU B V MY MacluTabax MUrPUPOBAHHOIO Npoguns).
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Fig. 16. Checking of results of reflection survey by roadway driving. For legend sec Fig. 8
16. dbra. A mérési eredmények banyaszati ellendrzése. Jelmagyarazatot lasd a 8. abran

Puc. 16. KoHTponb 3a pe3y/nbTaTaMu W3MepeHWin ropHbIMU BbipaboTKaMu. O603HaYeHNs CM. Ha
puc. 8.

5. Conclusions

On the basis of this recompressive filtering study it can be stated that

— in the case of erroneous parameters the efficiency of filtering decreases
rapidly due to its deterministic character. The method is particularly sen-
sitive to the errors of velocity and seam-thickness data, however, these data
can be determined accurately enough.

— Efficiency of filtering is not sensitive at all to noise or to the distortions of
the spectrum caused by absorption. The method resolves the overlapping
dispersed signals well and effectively eliminates noise.

— A spectacular improvement in the quality of recorded data can be achieved
by the application of recompressive filtering.
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A REKOMPRESSZI10S SZURES LEHETOSEGEI ES KORLATAI A TELEPHULLAM
SZEIZMIKUS MERESEK FELDOLGOZASABAN

BAKI Gyorgy, BODOKY Tamaés, CZILLER Eszter, SCHOLTZ Péter

A dolgozatban a szerz6k megvizsgaljak Booernek és tarsainak a diszperz jelek 6sszehlzasara,
azaz a diszperzitads megsziintetésére javasolt eljarasat. A vizsgalat kiterjed arra, hogy milyen mérték-
ben érzékeny az eljaras hatékonysaga a bemend paraméterek hibaira, a zajokra és az abszorpcio
okozta spektrum torzulasokra, illetve ai ra, hogy milyen mértékben képes az eljaras a szuperponalé-
dé diszperz jeleket szétbontani. A dolgozat egy banyabeli telephullam reflexios mérés feldolgozasan
keresztlil bemutatja a vizsgalt eljaras gyakorlati alkalmazasat.

BO3MOXXHOCTMW W MPELENbI MPUMEHUMOCTUN PEKOMMPECCUBHOMN
PUNBbTPALNN B OBPABOTKE JAHHBIX CEMCMOPAS3BEAKW MO MJAACTOBbIM
BO/THAM

Oépab BAKW, Tamaw BOAOKW, Sctep LNNNEP u Metep LWWOJbL,

BcTaTbe paccMaTprBaeTCs cnocob COKpalleHUs PacCesiHHbIX CUrHANO0B, TO-eCTb YCTPaHEHUS
paccesHus, NPeAnoXeHHbI# 50poM C coaBTopaMu. PaccMOTPEHbl YyBCTBUTENbHOCTL IPQEKTHB-
HOCTM crnocoba K OWwMbKaM BBOAMMBIX NapamMeTpoB M K WUCKAKEHUAM CrekTpa M3-3a LIyMOB
1 abCcopnumn. a Takxe ero crnocoGHOCTb K BbIENEHNIO PACcCesIHHbIX CUTHAMOB, HaK/M0biBaEMbIX
ApYT Ha apyra.

MpakTMyeckoe NpYMeHeHUe paccMaTpUBaeMoro cnoco6a MNNCTPUpPYeTCs NpUMepoM o06pa-
GOTKM AaHHbIX W3MEPEHWii MO OTPaXKEHMAM NNACTOBbLIX BOJIH, BbIMOMHEHHbLIX B FOPHbIX BbipaboT-
Kax.
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IN-MINE VERTICAL SEISMIC PROFILING

Tamas ORMOS*

A 2 X3-component geophone sonde developed for measuring interval velocity in in-mine
vertical seismic profiling and a seismic source that generates enhanced 5-waves are introduced in
the paper. High-frequency (200-800 Hz) P- and 5-waves can be generated and detected with the
help of these tools. The errors in measuring the interval time are analysed from the viewpoint of
the waveguide model — which model plays an important role in seam-wave scismics. The errors
are illustrated by record sections. To eliminate the errors of time- and amplitude measurement
directions for future research are suggested.

Keywords: vertical seismic profiles, p -waves, 5-waves, high resolution methods, phase velocity, coal
seams, seismic sources, errors

1. Introduction

Methods utilized for the data processing of in-mine seismic surveys (recom-
pression, tomography) require a knowledge of the absorption and dispersion
relations of channel waves propagating in undisturbed coal bearing complexes
[Dobroka 1987a,b,c, Bodoky et al. 1986, Baki et al. this issue]. These relations
can be calculated from seam-wave records [Dziewonski €t al. 1969, Mit1ahn
and Arnetzt 1980, McMehan and Yedtin 1981]. However, experience has
shown that in a great number of cases dispersion of the recorded channel waves
fall within a frequency band which is so narrow — because of the physical
parameters of rocks — that it is not suitable for the reliable determination of
the absorption-dispersion relations [Eisen et al. 1985, Mason et al. 1985,
Bodoky €t al. 1986, G reenhalgh €t al. 1986, Breitzke €t al. 1987] These
relations can also be calculated from the model of the waveguide if the physical
parameters of the layers constituting the coal-bearing complex are known
(velocity of P- and 5-waves, density). [Krey 1963, Dobroka and O rmos 1983,

Ormos 1985, Rader €t al. 1985, Dobroka 1987b,d, Buchanan 1987]

This paper describes a VSP method modified for in-mine purposes
(MVSP), which enables the velocity of P- and 5-waves to be determined more
accurately than is done by the traditional VSP surveys as well as providing a
more detailed stratigraphic column. MVSP differs from traditional VSP [Tok-
s0z and Stewart 1984, Hardage 1985, Radier 1985 Goncz et al. 1985&,b
Mod et al. 1985] methods by inducing P- and 5-waves of one order higher

* Department of Geophysics, Technical University for Heavy Industry, Miskolc, Egyetemvaros
H-3515, Hungary
Manuscript received: 1l December, 1987
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frequency (200-1000 Hz) and by their high-fidelity recording simultaneously at
two points in the borehole in order to resolve layers having a thickness of a few
metres like the coal seams.

A suitable measuring technique for realizing the above purposes has been
developed at the Department of Geophysics of the Technical University for
Heavy Industry over the last few years [Ormos 1986, Takacs 1986, Breitzke
et al. 1987]. An S-wave source and a"double three-component geophone sonde
were built. Interval velocities can be calculated from the differences of arrival
times of P- and S-waves, respectively, at two points of the sonde (distance L),
while the wave source is fixed. Thus, rough errors caused by the source (e.g. start
time), are “automatically” eliminated. Problems of the special processing of the
profiles will be treated elsewhere.

2. The sonde

Figure 1 shows the schematic structure of the sonde. It operates in a vertical
position in boreholes of 60 mm nominal diameter drilled either upward or
downward. The 120 mm long sensors are at the ends of the sonde (Uand L in
‘Fig. 1), and each contains three electrodynamic geophones positioned perpen-
dicularly to each other. These PPG, GF-9-B type geophones were selected by
virtue of their similar amplitude vs. frequency characteristics. (Measurements

Fig. 1. Structural drawing of two-times 3-component sonde

V — upper sensor with three geophones; L — lower sensor with three
geophones; G — damping rubber; O — orientating unit; Pr — pneumatic
rubber pipe

1 abra. A 2 X3-komponenses szonda szerkezeti rajza
U — felsé geofonharmas; L — alsé geofonharmas; G gumi csillapité
kdzdarab; O — orientalé egység; Pr — felfjhaté gumitémlé

Puc. 1 Bnok-cxema 30H/a, M3MepAoLLEero TpU NOMHTEpBabHblE CKOPOCTU MO
[BYM KOMMOHEHTaM Kaxjas:

U — BepxHss Tpoiika ceMMONpPUeMHUKOB; L — HKHsS Tpoiika
CceiicMONpUeMHIKOB; G — NPOMEXYTOUHbIN Y3eN U3 pe3nHbl Ans ycuneHus
3aTyxaHus BofH; O — y3en opueHTauuu; Pr — HagyBHas pesnHa.
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were carried out by the Research Centre of the Mecsek Coal Mines.) The
velocity-amplitude vs. frequency dependence of the seismometers is constant
between 20 and 1500 Hz. The cylindrical sensors are pressed against the wall
of the hole pneumatically [0rmos 1982]. The coupling between the cylindrical
sonde and the approximately cylindrical borehole is rather uncertain. With a
small contacting surface, resonances may be created in the frequency domain
of the signals to be recorded [Beydoun 1984]: an effect that was especially
significant in the case of the horizontal components. We followed the “three-
point support” principle as a means of overcoming the resonance phenomena.
Therefore three sledges (Ss) protruding 6 mm were attached to each sensor.
Thus, both ends of the sonde (U and L in Fig. 1) were steadily pressed against
the wall of the hole at three points. Pressing is achieved by inflating a pneumatic
rubber pipe (Pr) — which is able to bulge out of the sonde — to a pressure of
0.2 MPa. The contact between the sonde and the wall of the hole is shown in
Fig. 2. In order to enhance the SH-waves the sonde may be rotated to the
appropriate direction, in this way realizing polarized recording according to the
polarized excitation. This is done with the help of the orientating unit which is
built into the middle of the sonde (O in Fig. 1); this unit contains a miniature
compass and an optoelectric sensor. Any of the horizontal components of the
sonde may be rotated in the direction that suits the excitation, before the
measurement. The estimated azimuth error of rotation is 10 degrees. It can be
achieved by rotation that 5-waves appear in one component only. The advan-
tages of such recording are that errors of the measuring technique are easy to
recognize and correct and, moreover, the operation of component rotation can
be omitted from data processing. Based on experience the rotation of the sonde
does not increase significantly the recording time in boreholes drilled upwards.

Fig. 2. Arrangement of sonde in borehole
R — rock; Gp — geophone probe; Pr  pneumatic rubber pipe; G — electrodynamic
geophones; Ss — stabilizing sledges

2. dbra. A szonda elhelyezkedése a lyukban
R - k&zet; Gp — geofonszonda; Pr — felfujhat6 gumitomld; G — elektrodinamikus
szeizmométerek ; Ss — stabilizalé szankdok

Puc. 2. PacnonoxeHue 30HAa B CKBaXMHE:
R  nopoga; Gp — ceiicMonpuemMHbIit 30HA; Pr — HagyBHas pesuHa; G —
3N1eKTPOAMHAMUYECKIE CEACMOMETPbI; SS — CTaGUNN3NPYIOLLNE «CaHKW».,
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The sensors and the orientation unit are connected by metal tubes with
rubber hose joints (G in Fig. 1) in order to damp the waves propagating in the
sonde. Taking into consideration the desired resolution power, the accuracy of
interval-time measurements, the portability of the tool and the distorting effect
of the permanent magnetic field of the geophones on orientation, the length of
the sonde was chosen to be 1.5 m. The total mass of the sonde is 3 kg.

3. Seismic sources

Seismic sources that are employed in the MVSP method must be able to
generate high-frequency signals, especially high-energy 5-waves, and they must
have good reproducibility. Some rock-bolts which are widely used in Hungarian
mines are suitable for that purpose if hit by a hammer, but the steady contact
surface between the bolt and the hole drilled for it must be large (not point-like)
[Hansagi 1985]. Favourable experiences have been gained with resin bonded
and Split-Set rock-bolts. Fig. 3 shows a resin bonded bolt positioned for wave
generation. The highly inhomogeneous, fractured zone around the roadway and
the shear stress in the bonded section of the bolt together induce the high-energy
5-wave [Adam 1987].

Fig. 3. Location of cemented rock-bolt for generating 5-waves
D — roadway; Fz — fissured zone around the roadway; Rb — rock-bolt

3. dbra. A ragasztott kézethorgony elhelyezése transzverzalis hullamkeltés céljabol
D — vagat; Fz — vagat korili repedezett zona; Rb — k&zethorgony

Puc. 3. Pa3melleHNe CKNEEHHOTO NMOPOAHOr0 SKOPSA C Liefblo BO3BYXXAEHMS NMOMEepeYHbIX BOJH:
D  BblpaboTka; Fz — 30Ha MOBbLILEHHOW TPELLMHOBATOCTU BOKPYT BbIPabOTKM;
Rb — nopogHbIvi siKopb.

In order to obtain a source generating reproducible waveforms, weight
dropping along forced trajectory was tested but such structures are difficult to
transport and to operate in mines. In our experience manual hammer blows
offer adequate reproducibility: P- and 5-waves were successfully induced in the
200-800 Hz range depending on the extent of the fractured zone, on the length
of the bolt, and on the quality of the bond. A typical measurement array of
in-mine vertical seismic profiling is shown in Fig. 4.
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Fig. 4. Operational scheme of MVSP
Bh borehole; Fz — fissured zone; Gp  geophone probe; SI, S2 —seismic sources;
D — roadway

4. &bra. MVSP észlelési vazlata
Bh farolyuk; Fz fellazult z6na; Gp — Geofonszonda; SI, S2 — hullamforrasok;
D - vagat

Puc. 4. Cxema npon3BoacTBa HabnwogeHuid MBCIM:
Bh CKBaXWHa; Fz — ocnabneHHas 30Ha; Gp  ceiicCMOMpPUEMHbIA 30HA; SI, S2 — UCTOYHUKN
BOMH; D — BbIpaboTKa.

4. Errors in determing interval velocities, possibilities of eliminating them

The interval velocities of P- and 5-waves can be calculated from the time
difference along the length of the sonde if the rock is supposed to be homogene-
ous in that domain [Aki and Richards 1980]. The same result can be obtained
by crosscorrelating the two corresponding traces. Accuracy of phase velocities
is determined by the length of the sonde, amplitude- and phase conditions of
wave generation and recording, amplitude- and phase characteristics of the
recording instrument, sampling interval, and by the signal-to-noise ratio.

Velocities in Hungarian coal seams were found to be in the following
ranges: for P-waves 1500-3000 m/s, for 5-waves 700-1700 m/s. For the R-waves
these velocities result in a 1-0.5 ms propagation time along the length of the
sonde and 2-0.9 ms in the case of the 5-waves. The rather short interval times
raise the question: What is the maximum accuracy of measuring these times and
how great an error of the interval velocity is caused by this inaccuracy? Vermes
[1984] gave an approximate relation for estimating the lower limit of the



242 T. Ormos

standard deviation of interval velocities caused by the erroneous measurement
of distance and time. Because—due to the fixed distance between the two
sensors of the sonde—the error of the distance measurement is negligible
compared with the error of time determination, this relation may be modified
as follows:

where av, and a, denote the standard deviation of the interval velocity and time
measurement, respectively, and At the propagation time along the length L of
the sonde. The demands of in-mine seismic methods limit the maximum stan-
dard deviation of velocities [Dobroka 1987d, Baki et al. this issue]. If we allow
a maximum standard deviation for body-wave velocities of 15% then, assuming
the above-mentioped velocities, the relative error of time measurement has to
be reduced to below 0.1-0.05 ms in the case of the P-waves, and below
0.2-0.1 ms for the 5-waves. Bearing in mind the interval times of the P-waves
these conditions are very tight. However, it must be noted that in-mine seismics
uses Love-type seam waves that contain SH-waves. Thus, generally we have to
deal with the waveguide model of 5-waves, for which the high frequencies
generated by the above-described ways seem to provide the prescribed standard
(ieviation.

Accuracy of phase velocity determination is influenced by the signal-to-
noise ratio particularly in the case of 5-waves. Supposing random noise A ki and
Richards [1980] gave a relation for estimating the error of phase velocity, viz.

Ac _J_JueE) A
c 2n 15(tu)| L

where ¢, Ac, A N(co) and S@>) denote phase velocity, its relative error,
wavelength and the amplitude spectra of noise and signal, respectively. Assum-
ing, for example, a dominant frequency of 500 Hz the wavelengths will be 3-6 m
and 1.5-3.5 m for the P- and 5-waves, respectively. Accepting a maximum 15%
error in velocity measurement the necessary smallest signal-to-noise ratio is
about 5-6 dB for a wavelength of 3 m.

It is relatively simple to eliminate the errors of time measurement created
by the electronic units (geophone, seismic instrument) by determining the
transfer functions and selecting a suitable instrument (with the appropriate
sampling rate). Some of the errors caused by the wave generation (e.g. error of
start-time) “automatically” disappear during the computation of phase velocity.
On the receiver side, interval velocities computed from the recorded seismo-
grams show high standard deviation especially in sheared, disturbed complexes
due to local inhomogeneities. These effects may also be eliminated by selecting
the most suitable field geometry allowed by the conditions in the mine and by
stacking of repeated shots.
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Data processing steps and methods of in-mine vertical seismic profiling
(e.g. inversion) are identical with or similar to the steps of either acoustic well
logging or VSP. Taking advantage of the two sensors of the sonde there is a
possibility to produce VSP profiles which are time-corrected on each trace for
the P- and the 5-waves. Information on the rheological features of rocks (e.g.
Qp. Qs) can be obtained from the amplitude conditions of the records if several
shots are used [Dobréka 1986, Burkhardt 1986].

5. Measurement example

A detail of an in-mine, experimental vertical seismic profile is presented in
Figs. 5and 6. The measurement took place in the Kanyas Colliery of the Négrad
Coal Mines. The hole had been drilled vertically upward and had the nominal
diameter of 60 mm. The sonde was moved with the help of the light metal bars
of the MIRAKAR in-mine logging instrument which can be found at every
Hungarian mining plant. After fixing the sonde pneumatically the bars were
drawn back about 2 m. It must be mentioned here that it is much more advan-
tageous to measure in an upward direction than in holes drilled downwards
because in the first case the hole is always dry (there is no tube wave), pneumatic
fixing requires less pressure (a hand-pump can be used), there is no danger of
getting the sonde stuck or lost due to loose pieces of rock, and the sonde can
be rotated easily.

The 1.5 m long sonde was moved in steps of 0.25 m and the corresponding
signals (P- and 5-waves) of both sensors were recorded. Thus, traces which are
15m apart belong to the same shot. No processing was performed on the
records except the Gaussian tapering to suppress the electronic noise of starting.
The time window was shifted linearly between the first and last trace of the
profile. The similar character of the adjacent signals proves that the hammer
blows exhibit satisfactory reproducibility. The resonance-like phenomena
caused by the inadequate fixing of the sensor and the local inhomogeneities of
rocks are also well noticeable. (Survey parameters—instrument: BISON 1580
(modified); channels: 6; amplitude resolution: 8 bit; sampling rate: 0.2 ms;
analog band-pass filter: 125-1000 Hz; fold: 1; recording: SHARP PC 1500;
source : manual (hammer blow) on horizontal, bonded bolt ; time break : galvan-
ic contact.)

Productivity of the survey: a crew of 3-4 people is able to make 25
6-channel records per hour with the equipment of the Geophysical Department.
Presently it takes about 2.2 min. to record one shot on tape which time is usually
longer than the time necessary to change the location of the sonde.

Processing and plotting were performed by an HP 9000/217 computer.
Interval velocities showed large standard deviation; this fact indicates the high
stress in the surrounding rocks. These effects can be eliminated by further,
properly located seismic sources.
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5 10 15 20 25 30 35 40 45 tnj 5 10 15 20 25 30 35 40 45 ml

Fig. 5. MVSP profile, vertical component Fig. 6. MVSP profile, horizontal
Taper: 5.12-48.51 ms at 205 m component
3.9 -48.51 ms at 14.75 m Taper: 5.12-48.51 ms at 20.5 m
5. &bra. MVSP szelvény, vertikalis 3.9 -48.51 msat 1475 m
komponens 6. dbra. MVSP szelvény, horizontélis
Taper: 5,12-48,51 ms 20,5 m-nél komponens
3.9 -48,51 ms 14,75 m-nél Taper: 5,12-48,51 ms 20,5 m-né!

Puc. 5. Mpodmnb MBCI, BepTuKanbHas 3.9 -48,51 ms 14,75 m-nél

KOMMOHEeHTa. OKHO CO CriaXeHHbIMU Puc. 6. Mpodunb MBCIT,
Kpasmu: ropu3oHTanbHas KoMnoHeHTa. OKHO €O
5,12-48,51 mc npu 20,5 ™, CrNKEeHHbIMU KpasiMu:
3,9 -48,51 mc npu 14,75 m. 5,12-48,51 mc npu 20,5 m™,

3,9 -48.51 mc npu 14,75 m.
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BANYABELI VERTIKALIS SZEIZMIKUS SZELVENYEZES
ORMOS Tamas

A dolgozat banyabeli vertikalis szeizmikus szelvényezés céljaira alkalmas 2x3 komponenses
intervallumsebességet mér6 szeizmométerszonda, valamint transzverzalis hullamokat kiemelten
gerjeszt6 hullamforras fejlesztésérdl szamol be, amelyekkel nagyfrekvencias (200—800 Hz) longitu-
dinalis és transzverzalis hullamok gerjesztése és vétele oldhatdé meg. A telephullamszeizmikaban
fontos hullamvezet6 csatomamodell meghatarozasanak szempontjait szem el6tt tartva elemzi az
intervallumidé mérésének hibait, amelyeket mért szeizmogram-szelvénnyel illusztral. Az id6- és
amplitidomérések hibainak kikliszobolésére tovabbi fejlesztési iranyt javasol.

NMOA3EMHOE BEPTUKAJIbBHOE CEVMCMWNYECKOE 3OHANPOBAHWE
Tamaw OPMOLL

M3naratoTcsa pesynbTaTbl pa3paboTKu CEMCMOMETPUYECKOTO 30HA4A, M3MePAOLLEero Tpy mno-
WNHTEPBa/IbHbIe CKOPOCTW MO [BYM KOMMOHEHTaM KaXpjas, W WCTOYHWKA BOSH, Cheuuduyecku
BO36Y>AaloLLero nornepeyHble BO/HbI, NPeAHa3HauYeHHble 415 NOA3eMHOI0 BEPTUKANbHOMO Ceiic-
MWYECKOr0 30HAMPOBaHMA, C MOMOLLbIO KOTOPOro MOXHO pewnTb Npo6nemy BO36YXAeHUs 1 pe-
rmcTpaumm BbICOKOYACTOTHbIX (200-800 ry) NPoAoAbHbLIX U NonepeyHbiX BoMH. C y4eTOM 0COGEH-
HOCTeli OnefileNeHnsi KaHana-BO/IHOBOAA, MMEILero 60/bliOe 3HaYeHWe B CelcMopasBefke No
NNacToBbIM BOSIHAM, JAeTCA aHain3 OWN6OK B M3MEPEHUN NMOUHTEPBANbHLIX BPEMEH C UANKOCTpa-
Lmein B BuZe Npogunns no n3aMepeHHbIM celicmorpammam. MNpegnaratotcs ganbHeiiwve pa6oTsl No
YCTPaHEeHUIO OLIMOOK B U3MEPEHMAX BPEMEH W aMNnuTys,.



GEOPHYSICAL TRANSACTIONS 1988
Vol. 33. No. 3-4. pp. 247-266

ON THE ASSESSMENT OF PERMEABILITY AND THERMAL
CONDUCTIVITY IN DEEP-SEA CLAYS BY ELECTRICAL AND
ACOUSTIC MEASUREMENTS

M. A. LOVELL*

A laboratory examination of a suite of nine surficial samples from the North East Atlantic
has been carried out using a modified oedometer cell which enables the simultaneous measurement
of electrical formation factor, thermal conductivity, compressional wave velocity, and shear wave
velocity, during a conventional uniaxial consolidation test. Permeability and porosity values are
derived from uniaxial consolidation theory. Electrical formation factor and compressional wave
velocity exhibit close interrelationships with permeability and the capability of predicting the
measured permeability both empirically and theoretically to within an order of magnitude is shown.
The empirical prediction may be improved by additional input aimed at defining the structure of
the sample (e.g. initial void ratio or shear wave velocity). Thermal conductivity and electrical
formation factor each exhibit a dependence on porosity for saturated sediments. Using this common
parameter, porosity, it is possible to successfully relate the electrical formation factor of a saturated
sediment to its thermal conductivity. Compressional wave velocity anisotropy exists and may be
expected for other energy transfer processes. This directional dependence, whilst not critical in
thermal observations in surficial sediments, may become important at depth and particularly for
fluid flow predictions throughout the sediment column.

Keywords: thermal conductivity, marine sediments, P-waves, S-waves, velocity, electrical formation
factor, oedometer

1. Introduction

The current search for a suitable repository in which high-level radioactive
waste can be safely confined over long periods of time has led to renewed interest
in the geotechnical properties of the deep ocean floor. Previously the majority
of research into the role of the sea floor in a geotechnical framework has been
as a foundation materical in the exploration for, and exploitation of, hydrocar-
bons on the continental shelf. In this field the notable success in identifying
individual geotechnical parameters by geophysical means is well documented
[Taytor Smith 1971, 1983, Jackson et al. 1981]. In attempting to identify a
suitable location for such a storage requirement, two geotechnical parameters
are of special concern, the permeability and thermal conductivity of the
medium. Both of these quantities have been studied extensively in soils [Loudon

* Marine Science Laboratories, University College of North Wales, Menai Bridge, Anglesey, LL59
5EY, U.K. Now at Department of Geology, University of Nottingham, University Park, Notting-
ham, NG7 2RD, U. K.
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1952, De Vries and Afgan 1975], although their determination for large vol-
umes of material by direct testing is both problematical and expensive [Pane €t
al. 1983, Nickerson 1978, Lover1 and Ogden 1983]. Apart from their direct
bearing on the radioactive waste programme, both parameters are of particular
interest in the study and modelling of hydrocarbon formation, and also with
the proposed laying of sensitive fibre-optic communication cables on the sea
floor.

2. Background

Marine sediments may be considered as assemblages of grains, the pore
spaces between which are filled with a pore fluid. Generally this pore fluid
consists largely of seawater, although, under certain circumstances, quantities
of gas may also be present. The proportion of space taken up by the pores is
referred to as the porosity, being the ratio of the volume of voids to the total
volume. The major drawback with porosity, if any, is its static, scalar nature.
The porosity of two sediments, one isotropic, one anisotropic, may be equal
although many geotechnical and geophysical parameters will exhibit variations
according to the direction or orientation of the measurements within that
framework. A parameter which extends the concept of the pore space in terms
of its distribution and interconnections is the permeability of the medium.

Electrical flow in marine sediments has been considered both theoretically
and experimentally, and relationships between porosity and electrical formation
factor shown to exist [Schopper 1966, Boyce 1968, Jackson, Taylor Smith
and Stanford 1978, Mendelson and Conen 1982]. Generally electrical flow is
considered to take place through the saline pore fluid, the grains themselves
acting relatively as insulators; this holds for clays, where the particle structure
may exhibit certain conducting properties, in the presence of a saline pore fluid
[Brace et al. 1965]. The extension of electrical flow as being analogous to fluid
flow permeability has been noted frequently and various attempts at relating the
two exist [Archie 1942, Schopper 1966, Brace 1977]. However, questions as
to the role of the pore space in defining the two individual flows have been raised
[Duttien 1979], for while a dependency is ubiquitously proposed, the precise
scale and nature is ill-defined.

Compressional wave measurements in porous media, both in-situ and in
the laboratory, have shown the dependence of the speed of propagation on the
nature and distribution of the pore fluid. At a given porosity the speed of
propagation falls considerably if a small quantity of the pore fluid is replaced
by gas, whilst for a saturated sediment an inverse relationship between the speed
of propagation and porosity is well documented [Nafe and D rake 1957, Boyce
1976]. Electrical flow, which is also dependent on the pore fluid phase of a
sediment, has been noted as exhibiting some form of analogy with fluid flow,
while sound speed is known to exhibit anisotropy in foliated clays, though
whether this is due to a difference in the fluid flow arrangement of the sediment
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structure or its elasticity is difficult to determine [Hamdi and Taytor Smith
1982). Shear wave velocity in comparison exhibits little dependence on the pore
fluid, but is very dependent on the nature of the particle framework of the
sediment, and indeed to particle orientations (i.e. it is sensitive to anisotropic
grain fabrics).

In attempting to show the effect of permeability on the propagation of
seismo-acoustic waves, Hamdi and Taytor Smith [1982] effected a theoretical
model along the lines proposed by Biot [1956, 1962a, 1962b], and input data
obtained for a variety of marine sediments {Fig. 1)*. This theoretical connection
between fluid flow and compressional wave velocity is particularly interesting
in the light of earlier discussions. In defining the model, a mass coupling factor,
b, is introduced. For b= 1there is no fluid — solid coupling; a mass coupling
factor of 1 thus forms a limiting boundary condition in the absence of an
accurate value, and indeed the broken lines of Fig. 1are computed on this basis.
Brown [1980] has suggested that through an analogy with electrical and fluid
flow it may be possible to derive a value for b, pertinent to each sample, where

b = FFn,

where FF= electrical formation factor,
n=fractional porosity.

The value so derived would form a lower limit to the value of b and whilst the
magnitude does not vary greatly the model is reasonably sensitive to it. To
evaluate the effect of changing the value of b by this technique, formation factor
values have been computed for the data presented in Fig. 1by substituting the
porosity values into Archie’s law

FF=n~m

where the exponent value m is in general agreement with the work on formation
factor — porosity relationships [Taytor Smith 1971, Jackson etal. 1978]; these
are listed in Table I. The modified results are plotted in Fig. 1as solid lines and
show an improved fit, although neither of the sets of predictions is far from the
measured values.

3. Experimental procedure

Whilst much of the interest focusses on non-cohesive sediments and porous
media generally, this paper is concerned with cohesive sediments from the deep
sea environment which may be adequately sampled, relatively speaking, but
which suffer non-reversable deformation during laboratory testing such as de-
scribed here. The samples must therefore be tested on a basis of one measure-

* The author uses different expressions in the following figures (e.g. coefficient of permeability,
oedometer permeability, etc.) but the dimension (m/s) proves that the variable on the horizontal
axes is the filtration coefficient. Editor
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rig. 1 Permeability values computed from Biot’s model for mass coupling factor /1= 1 and
» = rrn plotted, together with measured permeabilities, against velocity discrepancy
(measured-calculated for zero frequency), after Hamdi and Taylor Smith [1982]
1- measured values: 2 - predicted values with v - r rry, 3- predicted values with b - 1

1. abra. Mért és szamitott permeabilitas értékek. A szamitas a Biot-féle modell alapjan,
a tdmegcsatolési tényezé két kiillonboz6 értékével (o= 16sbo = ¢ rn) tortént. Abrazolas
a sebesség eltérés (mért-0 frekvencidra szamitott) fliiggvényében [Hamdi és Taylor Smith 1982
nyoman]
1- mért érték; 2. v = rrn-nel szdmitva; 3 - Hamdi és Taylor Smith képletével szamitva

Pue. 1. 3HayeHMA NPOHMLAEMOCTU, pacCyUTaHHble Ha OCHOBE MOAenn buo npu ABYX pas/MyHbIX
3HayYeHnAX (akTopa COeAMHEHUA MacC b= 1MW b = FFn, HAHECEHHbIE, COBMECTHO
C N3MEPEHHbIMW 3HAYEHUAMU MPOHMULLAEMOCTH KakK PYHKLMA PacXOXeHWi B CKOPOCTAX,
N3MEPEHHbIX N PaCcCYUTAHHbIX ANS HyneBbiX 4acToT [N0 Hamdi n Taylor Smith 1982]:
1- n3MepeHHble 3HAYEHUSA; 2 - 3HAYEHUA, pacCUMTaHHble No PopMyne » = ren; 3 - TO XKe, MO
thopmyne Hamdi n Taylor Smith.
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Table I. Data used in constructing Figure 1
|. tAblazat. Az 1 abra szerkesztéséhez hasznalt adatok

Ta6bnuua I. JaHHble Mo cocTaBneHuto puc. 1

Permeability
Samp- Porosit . .
|ep Measured Computed  Computed . Y Fofrmatlon Aerh'e
No. oasured (6=1) 6 - Fr % actor slope
10 7m/s 10-7 m/s
1 3.0 45 3.7 0.600 2.50 - 18
e 46 5.4 48 0.549 2.94 - 18
3 14.0 6.7 12.0 0.445 4,00 - 17
4 20.0 8.9 22.0 0.430 3.34 - 14
5 40.0 12.0 425 0.393 3.12 - 13

ment routine per undisturbed specimen. To maximise the data so obtained the
measurements are based on the use of a standard soils engineering oedometer
or consolidometer, whereby one sample is mechanically loaded to provide a
series of consecutive physical states. In this way permeability values are derived
from consideration of uniaxial consolidation theory, while thermal conductivity
is measured using the transient needle probe technique [Von Herzen and
Maxwell 1959, Bloomer and ward 1979]

3.1 The modified oedometer

During the test, a specimen is confined laterally in a ring, some 75 mm in
diameter and 20 mm tall, and is subjected to uniaxial loading, applied in static
increments over time intervals of 24 hours or more; during this period the
sample is compressed and the pore fluid expelled to the adjacent porous stones,
above and below the sample. When the excess pore fluid pressure is reduced to
zero the sample is said to have completed its primary consolidation; it is at this
point that the geophysical measurements are made. The oedometer thus re-
produces, at least to a first approximation, the mechanical loading of a sediment
which may occur on the sea floor. The applied vertical pressure in the test may
be equated to a depth in the sediment column ; the depths so reproduced depend
on the nature of the sample, but for pressures up to 800 kPa are in the region
down to 150 m.

The modified oedometer cell (Fig. 2) is based on the design of a fixed ring
cell. The modifications allow for the inclusion of the geophysical measuring
elements, and in particular the cell is constructed out of electrically non-
conducting polyvinyl chloride (PVC) to allow meaningful electrical resistivity
measurements to be made on the sample. The sample is contained in a ring,
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which is seated on a basal porous stone. A top cap, which is free to move inside
the ring, transfers the axial load to the sample via another porous stone. Beyond
each of the two porous stones is located a perspex housing, containing the
piezoelectric transducers and electrical connections.

Compressional wave velocity measurements are made using two 1 MHz
piezoelectric transducers and these provide for a vertical propagation path
through the saturated porous stones and sample. An additional pair located in
the side walls of the base allow for measurements in the horizontal direction.
Shear wave velocity measurements are made using two piezoelectric bimorph
crystals; these each protrude some 3 mm into the sample in order to obtain
adequate shear wave transmission. The techniques for the measurement of the
compressional and shear wave velocities are fully described by Hamdi and
Taylor Smith [1982].

1 AXIAL LOAD

rig. 2. The modified oedometer cell

2. anra. Madositott 6dométer cella
1- tengelyiranyu terhelés; 2 - a korongot borit6 eziist festék az aram elektroda;
3 - rozsdamentes acél huzal: potencial elektrdda; 4 - rozsdamentes acél sapka;
5- ,PERSPEX” korong; 6 - porozus korong; 7 - PVC gydirl; 8 - minta; 9 - PVC foglalat;
10 - 5-hullam gerjesztd és érzékeld kristaly; 11 - /*-hullam gerjeszt6 és érzékel6 kristaly

puc. 2. MoAudpuULMpoBaHHan fAuelika 3g0MeTpa:
1- oceBas Harpyska; 2 - TOKOBbI/i 371€KTPOA - cepebpsHas Kpacka, MNOKPbIBaloLLas AUCK;
3 - 9NMeKTpof MOTEHLMAN0B — MPOBOA W3 HepXaBerowel cTanu; 4 - KONNaK W3 HepXxaseroLLel
ctanm; 5 - gnck «PERSPEX»; 6 - NOpuCTbIA AUCK; 7 - KOMbLO M3 MONUXNOPBUHWNG,
8 - o6paseu; 9 - NaTpoH n3 nonmxnopeuHUna; 10 - KpucTann, BO3OYXKAarOLWii
1 BOCMPUHUMAIOLL WA NonepeyHble BOAHbI; 11 - KpucTann, BO36GYXAaloWwuiA 1 BOCIPUHUMAIOLWNIA
NPOAONbHbIE BOJHbI.
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Electrical resistivity is monitored during the test using a vertically orien-
tated 4-electrode array. The outermost two current electrodes are the inner
surface of each of the perspex housings, which are coated with electrically
conducting silver paint. The two inner potential electrodes are located at the
interfaces between the porous stones and the sample, each in the form ofa single
circular stainless steel wire. An alternating current (0.4 Hz) is passed between
the two outer electrodes and the electrical resistance of the sample monitored
at the inner electrodes. This resistance may in turn be converted to a resistivity,
or an electrical formation factor (electrical resistivity of the sample normalised
with respect to the resistivity of the pore fluid).

Additionally, it is possible to introduce a thermal conductivity needle probe
horizontally into the cell. The needle (70 mm in length, 0.8 mm diameter) allows
the thermal conductivity to be determined within 100 seconds.

A total of nine samples have been tested in this study; each originated from
the N. E. Atlantic, off Madeira, sampled by Kastenlot gravity corer in water
depths of approximately 5000 m.

3.2 Results

Previous attempts at defining the permeability and thermal conductivity of
a sedimentary material have related each of the parameters to the porosity or
void ratio of the sample. In extending this concept to geophysical measurements
a relationship is known to exist between porosity and electrical formation factor
for sedimentary rocks [Archie 1942] and saturated clean marine sands [Jackson
et al. 1978], and also for individual measurements on large nhumbers of marine
samples [Boyce 1968]. The oedometer, however, enables a series of measure-
ments to be made on a single sample for a range of porosities as the sample is
mechanically consolidated under increasing increments of axial load. The po-
rosity-electrical formation factor results are documented in detail elsewhere
[Lovent and Ogden 1983, Lovel1 1985]. Figure 3 is a typical linear plot on a
log-log scale for any one sample; this follows the Winsauer equation [Winsauer
et al. 1952.]

FF = Cn"t
rather than the Archie equation [Archie 1942]
FF = n~m

(note that the well-known Humble formula FF = 0.62 n-215 is but a particular
form ot the Winsauer equation). Plotting all of the data together, however, gives
a broad zone which may be roughly approximated by a 3rd degree polynomial
[see Loveln 1983].
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Fig. 3. Apparent formation factor plotted against porosity for one deep-sea sediment sample

3. abra. Latszélagos formacié faktor a porozitas fiiggvényében, egyetlen mélytengeri
tledékmintara

Puc. 3. Kaxywuiics hopmaumMoHHbIA GakTop Kak (hyHKUUS NOPUCTOCTU ANA OTAENbHO B3ATON
npo6bl rny60KOBOAHbIX 0CaAKOB.

4. Permeability

Permeability may be determined either directly, in which the rate of fluid
flow is measured under a known induced pressure gradient, or indirectly where-
by a value is derived from theoretical consideration of the consolidation behav-
iour of a sample. The latter are normally between one and two orders of
magnitude less than those measured directly [Bryant et al. 1981, Hamai 1981].
Whilst there is no definitive explanation of this phenomenon, various ex-
perimenters have pointed to the difference in the state of the samples being
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tested, particularly the strain imposed in the oedometer. This strain, while
creating a large hydraulic gradient which would tend to produce a high value
of permeability, is countered by the particle rearrangement which may tend to
reduce the flow channels resulting in a decrease in permeability. The permeabil-
ity values produced here are derived from consolidation theory; however, since
both these and direct measurements are fluid flow dépendent, it would seem
likely that some relationship between one permeability data set and a geophysi-
cal parameter should be tenable for the alternative data set using some, as yet,
undefined transfer process.

4.1 Empirical relationships

Lovett [1985] has shown that permeability exhibits a unique relationship
with void ratio for each sample during consolidation. Since the void ratio, in
terms of the porosity, has been shown to exhibit a relationship with electrical
formation factor, this relationship may be exhibited in terms of a permeability
— formation factor plot (Fig. 4). Similar work on sands [Lovert 1985] shows
the slope of each plot to be a function of the pore shape, while the relative
position of each is a function of the particle size distribution. For each of the
clays considered the permeability can be predicted to within an order of mag-
nitude, simply from the formation factor measurement. However, consideration
of the shear wave velocity characteristics of the samples shows the initial shear
wave velocity to decrease in an inverse trend with initial void ratio, or propor-
tionally with initial formation factor. Hence utilisation of this measurement may
help to further define the precise magnitude of the permeability. The shear wave
velocity — depth profiles may be separated into three groups on the basis of
initial void ratio (Fig. 5). Similarly, the formation factor — permeability plots
may be separated on the same basis (Fig. 6). This connection between the
permeability and the shear wave velocity is reasonable within one grade of
sediment since the shear wave velocity may be expected to reflect the sediment
structure, and for samples within one sediment grade may expose relative
features.

4.2 Theoretical relationship

It is possible to predict the permeability of a marine sediment on the basis
of Biot’s equations [Hamdi and Taylor Smith 1982]. Figure 7 shows a clear
relationship between the oedometer-derived permeability and that predicted
using the simple model based on Biot’s equations by Hamdi and Taytor Smith
with the mass coupling factor b defined as Brown [1980] suggested; b = FFn.
The slope of the line is 1 Unfortunately, the experimental arrangement here
does not allow a thorough evaluation of the model for the materials under
study, although its success in identifying the permeability to within an order of
magnitude is obvious. It is interesting, also, to note that the predicted value
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bears a similar relation to the oedometer-derived value as would be expected

for a directly measured value (i.e a discrepancy of some two orders of mag-
nitude).

Fig. 4. Apparent formation factor plotted against permeability for 8 deep-sea clays
4. dbra. Latszdlagos formacio faktor a permeabilitas fliggvényében, 8 mélytengeri agyagra

Puc. 4. ®aKTop Kaxylueiics opMaLnu Kak QyHKUUS NPOHWULAEMOCTU AN BOCbMW MpPo6
rNy60KOBOAHbIX F/INH.
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Shear wave velocity, m/s.

Fig. 5. Shear-wave velocity variation with oedometer-simulated depth; zonations are based on
initial void ratio e0

5. dbra. A nyirohullam sebességének valtozasa az ddométerrel szimulalt mélységgel. A zonak az
e0 kezdeti porozitassal kapcsolatosak

Puc. 5. Kone6aHus cKopoCTW CKa/biBalOWWUX BOMH C rNy6WUHOI, CUMYNNPOBaHHOW 340MeTPOM;
30HbI BblfjeNeHbl Ha OCHOBE HauanbHOW mopucTocTu cO
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Permeability, m/s

Fig. 6. Data of Fig. 4 zoned on initial void ratio (e0) as in Fig. 5
6. abra. A 4. abra adathalmaza, az e0 kezdeti porozitdsnak megfelel6 zonakra osztva, mint az 5.
abran
Puc. 6. [laHHble puc. 4. pacnpegeneHHble N0 30HaM B COOTBETCTBMM C HaydanbHON MOPUCTOCTbLHO,
KaK 1 Ha puc. 5.
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rig. 7. Permeability values calculated from Hamdi and Taylor Smith’s model (intervals) plotted
against oedometer-derived permeability values (dots) for eight samples at similar axial loading
7. abra. Hamdi és Taylor Smith modellje szerint szdmitott permeabilitds értékek intervallumai,

0dométerb6l levezetett permeabilitas értékek (pontok) fliggvényében, nyolc mintara, hasonlé
tengelyiranyl terhelés mellett

puc. /. 3HAYEHNA NPOHULLAEMOCTUN, paccynTaHHble No Mofenn Hamdi n Taylor Smith
(oTpeskun), HaHeCeHHble Kak (YHKLWS 3HaYeHWA MPOHWLAeMOCTH, MOAYYEHHbIX 340MeTPOM
(Toukun), ansa BoCbMWU NPo6 NPU CXOAHbLIX OCEBbIX Harpyskax.5

5. Thermal conductivity

Previous thermal conductivity measurements on deep sea clays have ex-
hibited a clear dependence on the water content of the sample [Buiriarad et al.
1956]; for a saturated sediment this may be expressed in terms of the porosity.
Emphasis has also been given to the use of the geometric equation [Licht-
enecker 1926, Sass et al. 1971] for expressing the thermal conductivity of a
porous system:

3 = L-n

log kb = «(log kw- log ks)+ log ks

where K is the thermal conductivity and subscripts b, s and w refer to the bulk,
solids, and pore fluid. Measurements on nine samples at various stages, prior
to, during, and after, the loading cycle, provide a total of twenty data points
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which when plotted on a log — arithmetic scale give a linear trend, [Lovell
1985]; i.e. general adherence to the geometric equation (Fig. 8). The scatter may
be real, or may be due to the severe time limits imposed on the measurement
by the size of the sample. Interpreting the data by the geometric equation
provides a solid conductivity value of 2.01 W/mK and a fluid conductivity value
of 0.61 W/mK. Since both the electrical formation factor and the thermal
conductivity may be related to the porosity of the sediment, it appears possible
to relate the electrical and thermal measurements through this common par-

ameter.
nr
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rig. 8. Thermal conductivity plotted against porosity for all samples [Lovell 1985] in three
stages (7 points absent due to measurement problems)

8. abra. A h6vezetd képesség a porozitds fliggvényében, az 6sszes mintara [Lovell 1985], harom
fokozatban (7 pont hianyzik mérési probléméak miatt)

puc. 8. TEeNIONPOBOAHOCTb KaK PYHKLUMSA MOPUCTOCTU Ans Bcex npo6 [Lovell 1985] B Tpu
cTaguu (cemb TOYEK MPOMyLLEeHbl B CBA3WN C M3MEpPUTENbHbIMU Npobnemamu).6

6. Discussion and conclusion

The results presented here and elsewhere suggest that routine geophysical
measurements can predict both the permeability (to within an order of mag-
nitude) and the thermal conductivity of a deep-sea clay. For permeability the
approach may be empirical or theoretical although whichever is chosen the
measurement of a number of geophysical parameters in an integrated scheme
will provide better limits on the magnitude predicted. Thermal conductivity,
meanwhile, for a saturated sediment is capable of prediction simply through the
geophysical determination of the porosity; this is most accurately achieved in
high porosity clays by the electrical formation factor.

In considering the success evident in these results, together with the sugges-
tions for improving the predictions, it is interesting to consider the experimental
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arrangement in relation to the state of the samples. All of the results are
presented as though any one sample is homogeneous and isotropic, and remains
so during the test. However, it has been possible with the experimental arrange-
ment shown in Fig. 2 to measure both the horizontal and vertical compressional
wave velocities. These show a consistent, though slight, anisotropy to exist, the
horizontal velocity being slightly greater than the vertical (Fig. 9). For the
thermal conductivity measurements using the needle probe, the measurement
relates to the planes perpendicular to the axis of the needle (Fig. 10). Thus for

Fig. 9. Anisotropy of P-wave velocity for all samples in several stages
9. dbra. A P-hullam sebesség anizotrdpiaja, az 6sszes mintara, tobb fokozatban

Puc. 9. AHM30TPONMWS CKOPOCTEl MPOAObHbIX BOMH A1s BCEX NPO6 B HECKONbKO CTaguil.

the needle vertical the measurement would approximate to the horizontal
conductivities, kx, ky\ for the needle horizontal, as in this test, the measurement
approximates to a mean value between the vertical conductivity, k,, and one of
the horizontal conductivities kx or ky. In vertically anisotropic media kz may
differ from kxand kr which themselves will tend to be the same. Thus measure-
ments with the needle verticle will tend to be greater than those made with the
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Fig. 10. Thermal conductivity needle and measurement orientation (dotted line represents
isothermal locations)
jelol)

Puc. 10. CTpenka 30HAa /1S M3MepeHWs TenonpoBOAHOCTM 1 OPUEHTUPOBKA WU3MEpeHUii
(NYHKTUPHBIMW IMHUAMU 0603HaYEHbl U30TEPMbI).

needle horizontal. Figure 11 shows this anisotropic effect for measurements
made on vertically compacted sands in the laboratory, with the needle horizon-
tal and vertical [Lovell 1985].

Since anisotropy is evident in vertically compacted sands for thermal
measurements, and in deep sea clays for compressional wave velocity measure-
ments, then in the light of the results presented earlier, anisotropy may be
considered plausible for fluid flow in such media. Whilst these effects may be
slight in near surface materials and in mechanically loaded samples, they may
be important at greater depths, particularly where time-related effects such as

particle bonding may occur.
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Horizontal formation factor

Fig. 11. Thermal conductivity anisotropy for a suite of artificial sands [after Lovell 1985]
1- needle horizontal; 2 - needle vertical

11. dbra. Hévezet6 képesség anizotropia egy sor mesterséges homokra [Lovell 1985 nyoman]
| - a mutat6 vizszintes; 2 - a mutat6 fiiggéleges

Puc. 11 AHVISOTpOI'Il/Iﬂ TennonpoBoAHOCTN B pPa3/IMYHbIX UCKYCCTBEHHbLIX MNECKax
[no Lovell 1985]:
|- CTpenkKa B ropu3oHTa/IbHOM MNONOXKEHUU; 2 - CTpenkKa B BEPTUKa/IbHOM MOJTOXEHUN.
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MELYTENGERI AGYAGOK PERMEABILITASANAK ES HOVEZETOKEPESSEGENEK
BECSLESE ELEKTROMOS ES AKUSZTIKUS MERESEK ALAPJAN

M .A. LOVELL

Médositott ddométer cella segitségével végezték el az Atlanti-dcean északkeleti részén a ten-
gerfenékrdl vett, kilenc mintabol all6 sorozat laboratériumi vizsgalatat. Ez a berendezés lehet6vé
teszi az elektromos formécié faktor, a hdvezet6képesség, a nyomashullam és a nyirohullam sebesség
egyidej meghatarozasat, hagyomanyos egytengely( konszolidacié-vizsgalat soran. A permeabilitas
és porozitas értékek az egytengelyl konszolidacio elmélete alapjan vezethet6k le. Az elektromos
forméacid tényez6 és a nyomashulldm sebessége szoros kapcsolatot mutat a permeabilitassal, igy a
mért permeabilitast mind gyakorlatilag, mind elméletileg egy nagysagrenden beliil meg lehet becsiil-
ni. A becslés pontosabba tehet6, ha a minta szerkezetére vonatkoz6 tovabbi ismereteket is felhasz-
nalunk (példaul kezdeti pérustérfogat, vagy nyiréhullam sebesség). Vizzel telitett mintak esetén
mind a hévezet6képesség, mind az elektromos formacio tényezd fiigg a porozitastol, és az elektro-
mos formacié tényez6t a hévezet6képességgel is kapcsolatba lehet hozni. A nyoméashullam sebesség
anizotrop, és ez feltételezhet6 mas energia atadasi folyamatokrol is. Az iranyfliggés, bar nem
kritikus a tengerfenéken végzett termikus megfigyeléseknél, a mélyben fontossa valhat, kiiléndsen
az uledékoszlopon at térténd folyadék aramlas becslésénél.
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OLEHKA NMPOHVNLAEMOCTU U TEMJ1I0OMNMPOBOAVMMOCTN MOPCKKX
rNYBOKOBOAHbIX I/IMH MO 3/JIEKTPNYECKNM N AKYCTNYECKUM
NMAPAMETPAM

M. A. NTOBEJJ1

C nomouibto nepeo6opyaoBaHHON KaMmepbl KOMMpeccMoMeTpa (340MeTpa) NpoBejeHbl Nabo-
paTopHble MUCCNeAoBaHNs MO CEpUM U3 AeBATW 06pa3LioB, 0TOBPAHHbLIX CO AHA CEBEPO-BOCTOUHOM
yacTy ATNAHTUYECKOrO OKeaHa. STO YCTPOICTBO AaéT BO3MOXHOCTb OfIHOBPEMEHHO OMpPeaennTh
(haKTop 3MEKTPUUECKOii hopmaLMn, TeNI0NPOBOAUMOCTL, CKOPOCTb MPOAONLHBLIX W MOMepeyHbIX
BOJIH B XO/le TPaAMULMOHHBIX UCCNE0BaHUM OAHOOCHOM KOHCONMAALMW. BennyHbl NpoHMLaeMoCcTm
1 MOPUCTOCTM MOXHO BbIBECTW MO TEOPUM OAHOOCHOW KOHCONMAAUMW. DaKTOp 3NeKTPUUECKOi
(hopmaLMn 1 CKOPOCTb NPO/O/bLHbLIX BOH NOKA3bIBAOT TECHYHO CBA3b C MPOHMULAEMOCTbIO TakK, UTo
BE/INUNHY U3MEPEHHOI MPOHMULIAEMOCTM MOXHO NpeackKasaTb W NPAKTUYECKMW, N TEOPUYECKM, C TOY-
HOCTbIO 10 OAHOTO MoOpAAKa. IMMNUPUYECKOe NpeackasaHne MOXHO YNyULWUTb, M NPUHATL BO
BHMMaHMe W [0NOMbHUTENbHbIE JaHHbIE MO CTPYKTYpe 06pasLioB (Hanpumep, HadanbHbI 06bEM
nop o6pasua UM CKoOpoCThb MOMepeUHbIX BOMH). B HacbILleHHbIX BOAOI 06pa3liax Kak TensonpoBo-
AMMOCTb, TaK M (haKTOp 37EKTPUUECKO (hopMaLuu 3aBMCAT OT MOPUCTOCTU. Mcnonb3ys nopu-
CTOCTb, MOXHO CBfi3aTb 3MEKTPUYECKYIO (POPMALMI0 C TenJonpoBOANMOCTLI0 B HACbILEHHbINA
BO/0Vi 06pasiiax. CKOPOCTb NPO/AO0/LHbLIX BOMH aHW30TPOMHA, TO e MOXHO MpeAnonarath v B oT-
HOLLIEHWUW APYTMX NPOLLECCOB C Nepejaqeil aHeprum. 3aBUCUMOCTb OT HanpaB/ieHUs, XOTS OHa W He
KPUTUYHA NpU TENoBbIX MCCNEAOBAHMAX HA [HE MOPS Ha 6OMbLWMX [Ny6UHAX MOXET CTaTb
BAXKHOIi, 0COBEHHO MpK MPeACKa3aHUW MPOocachiBaHUs XKWUAKOCTER Yepes ocafouHble TOMLLU.
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COMPUTER SIMULATION OF Z22Cf NEUTRON FIELDS
IN BAUXITE WELL LOGGING

Ivan BALOGH*

The distribution of neutron fields is examined by the computer modelling of neutron transport
in bauxitic rocks of high hydrogen content. The modelling program, based on the Monte Carlo
method is introduced and tested by known measurement data. Results of computations for typical
bauxitic rocks are presented according to which epithermal and thermal neutrons have exponential
distributions. With a knowledge of the epithermal and thermal neutron distributions the £2I, 2,
and  neutron physical parameters may be calculated. These parameters are in direct linear relation
with the chemical composition of a given medium. The distorting effects on the neutron field of the
probe and the borehole (wet or dry) is demonstrated qualitatively.

Keywords: bauxite prospecting, well logging, neutron logging, simulation, computer programs, mac-
roscopic cross section

1. Introduction

Bauxites in Hungary are deposited on a karstic basement. During drilling,
the drilling mud is often completely lost whereupon the hole is saved from
collapse by casing. Thus, drilling for bauxite means more difficult conditions
for well logging than for other materials because three-quarters of the measure-
ments fall on cased or dry intervals. Due to these circumstances well logging in
bauxite prospecting in Hungary has been based on nuclear logging since the
beginning. Recently, nuclear well-logging methods have started to develop
rapidly. In our case even the in situ determination of the chemical composition
of bauxites in the borehole may be set as a long-term objective. The solution
of the so-called direct problem must be the first step towards our objective, in
other words the study of the behaviour of nuclear radiation fields in bauxite.
Here, we deal with neutron fields induced in bauxitic rocks.

2. Possibilities of analytical and numerical computation of neutron fields in
bauxite well logging

The so-called transport-equation, an integro-differential equation of seven
variables, describes the distribution of neutrons according to space, energy and
angle [Szatmary 1971]. This equation may analytically be solved only in special
cases: the most important of these are the solution according to Fermi’s age

* Hungalu Prospecting Company, POB 31, Balatonalméadi. H-8221, Hungary
Manuscript received: 13 July, 1987
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theory and the diffusion one. Low hydrogen content is among the initial
conditions of both solutions; however, Hungarian bauxites have a high hy-
drogen content. The main minerals that constitute bauxites contain much hy-
drogen themselves (see Table / after Bardossy 1977, Betechtin 1964). Further-
more, these bauxites are strongly hygroscopic, their percentage of water is
between 16 and 20% of the weight in the in-mine state [Barnabas 1966]. Thus,
the hydrogen porosity of a high quality gibbsitic bauxite may reach 80% and
that of the good boehmitic bauxites is around 60% (Table Il). This means that
neither the diffusion approach nor Fermi’s age theory can give a satisfactory
solution. More accurate results may be obtained by the so-called multigroup
diffusion method [Szatmary 1971]. If one divides the energy scale into intervals
the diffusion approach may be assumed valid even for a medium rich in hy-
drogen if the intervals are short enough. In this case a system of diffusion
differential equations is to be solved where the number of equations corresponds
to the number of intervals, i.e. to the number of groups. The source side of the
equations of the lower groups will depend on all the groups having higher
energy due to the presence of hydrogen [Fensr 1984]. The system of equations
has an analytical solution in one dimension but with more complicated geo-
metry only numerical methods work. At this stage, however, the necessary
amount of computing time and memory capacity is comparable to those needed
for the exact computer modelling of neutron transport. In view of this and
because the modelling programs are simple and highly flexible, and because the
borehole and the construction of the probe can easily be taken into account a
Monte Carlo simulation program utilizing a Commodore 64 was written for the
task.

Mineral Chemical formula Density Hydrogen porosity
(g/cm3) 9
Boehmite AKOOH 3.035 45.6
Gibbsite Al(OH)-, 2.35 814
Kaolinite Al4(OH)8si40 10 2.59 36.2
Calcite CaCoj 271 -
Siderite FeCO03 3.8
Pyrite FeS2 5.05 -
Goethite FeOOH 4.2 42.6
Haematite Fe20 3 5.1 -
Rutile THO2 4.25 -
Anatase Ti02 3.9 -
Water h,o 1 100

Table I. The rock-forming minerals of Hungarian bauxites, their density and hydrogen prorosity
I. tAblazat. A hazai bauxitok f6 k&zetalkotd asvanyai, slr(iségiik és hidrogén porozitasuk

Ta6nuua /. TnaBHble NOPOA0O6PaA3yHOLLME MUHEPaANbI, NNOTHOCTL U BOJOPOAHAA MOPUCTOCTbL
0TeueCTBEHHbIX 6OKCUTOB.
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Rock code

Mineral 0 1 2 3 4 5 6 7
Boehmite [vol. °q 0 0 0 40 15 15 0 20
Gibbsite [vol. °4 0 50 20 0 0 15 0 0
Kaolinite [vol. %4 0 2 30 5 35 15 40 25
Calcite [vol. %4 0 0.5 1 1 1 0.5 0 50
Pyrite [vol. 94 0 0 0 0 0 13 0 0
Goethite [vol. %4 0 2 3 4 3 5 15 2
Haematite [vol. %4 0 4 7 8 7 0 5 4
Rutile/Anatase [vol. %4 0 0.5 1 1 1 1 0 0.5
Water [vol. 99 100 4 38 4 38 355 40 21
Density [g/cm3] 1 1.96 2.18 2.4 2.29 2.47 2.32 2.55

Hydrogen porosity [%] 100 83.3 66.42 62.8 58.8 62.1 60.9 31.9

Table 1. Mineral composition of rocks involved in the simulation of neutron fields
Code numbers: 0 — water; | — gibbsitic bauxite; 2 — clayey, gibbsitic bauxite; 3 — boehmitic
bauxite; 4 — clayey, boehmitic bauxite; 5— pyritic bauxite; 6 — clay; 7 — bauxite mixed with
detrital limestone
Il. tblazat. A neutronterek szimulacidja soran modellezett k6zetek asvanyi dsszetétele
Kédszamok: 0 — viz; 1— gibbszites bauxit; 2 — agyagos gibbszites bauxit; 3 — béhmites
bauxit; 4 — agyagos bohmites bauxit; 5 — pirites bauxit; 6 — agyag; 7 — mészk6tdrmelékes
bauxit
Tabnmua Il. MuHepanbHbliA cOCTaB NOPOA, MOAENMPOBAHHBIX MPU CUMYAALUM HEATPOHHbIX
nonei.
Kopgosble Homepa: 0 — Boga, | — rmb6CcUTOBLIN BOKCUT, 2 — FAVHUCTLIA TMB6CMTOBbIN
OOKCUT, 3 — BGEMUTOBLIN BOKCUT, 4 — TNIMHUCTbIA GEMUTOBBIN BOKCUT,
5 — MUMPUTM3NPOBAHHBLIA GOKCUT, 6 — FNUHA. 7 — GOKCUT C 06/IOMKaMy U3BECTHSIKOB.

3. Main features of the simulation program

The essence of the modelling of neutron fields is the computer simulation
of the transport of single neutrons based on the simple laws of neutron physics
and on probability considerations, and the statistical testing of the behaviour
of an adequate number of simulated neutrons. Many publications are available
on Monte Carlo methods and their applications in nuclear well logging [Yer-
makov 1975, Szébol 1981, Denishik €t al. 1962, Pshenichnyy 1982, Fehér
1984, Khisamutdinov et al. 1985] so only the main features of the program are
enumerated here.

The initial energy of the neutrons is determined by the energy spectrum of
the modelled source. The energy spectrum of two sources having the same
neutron yield is shown in Fig. 1. One is a Ra-Be source of 1GBq activity (dotted
line), the other isa 252Cf source of 3 MBq activity (continuous line). The 252Cf
source has a smoother spectrum than that of the Ra-Be source. Bearing in mind
the relatively low energies and the medium atomic weights only scattering was
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Jr.l
[n/s ]

Fig. 1. Energy spectra of 252Cf (continuous line)
and Ra- Bc (dotted line) neutron sources [after
Radiation Sources 1974, Szab6— Simonits 1973,
and Kardon et al. 1971]

1. abra. Neutronforrasok energia spektrumai:
2652Cf — folytonos vonal, Ra-Be — szaggatott
vonal

Pue. 1. 3HepreTMYecKunii CnekTp UCTOYHNKOB
HeinTpoHoB 252Cf—pepbiBCUTas NNHUS;
Ra-Be—cnnowHaa nnHuA.

taken into account from the possible interactions in the fast range. Angular
distribution of scattering was assumed to be isotropic in the mass-centrical
ecoordinate system. Values of the microscopic fast cross-sections were taken
from the literature [Nikolayev and Bazazyants 1972, Allen 1960] In the
actual calculations the average values of the fast cross-sections weighted by 1/E
(E: energy) were used except for hydrogen. The boundary of the fast range was
defined as being at the beginning of the thermal Maxwell spectrum, i.e. at 0.1 eV

(Fig. 2).

Fig. 2. Function of the fast and the thermal range of neutron flux. The part of the Maxwell
spectrum which joins the fast range is indicated by dotted line [from Szatmary 1971]

2. abra. Neutronfluxus gyors és termikus tartomanyanak csatlakozasa. A termikus
Maxwell-spektrum gyors tartomanyhoz csatlakoz6 szakaszat szaggatott vonal jelzi

Puc. 2. CTbiKOBKa 6bICTPOr0 ¥ TEPMUYECKOrO AMana3oHOB HEMTPOHHOro MoToka. VHTepBan
CTbIKOBKM TEPMMYECKOTO crnekTpa MakcBenna K 6bICTpOMY fMana3oHy 0603HayeH MpepbIBUCTOM
NIMHNEN.
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In the modelling project resonance neutrons captured by indium and
cadmium foils, and epithermal neutrons measured by a shielded He3 propor-
tional counter had to be modelled as well. Resonance neutrons were recorded
by the program when crossing the 1.44 and 0.1 eV energy levels, thus, in fact
the slowing down densities belonging to the corresponding energies were ob-
tained. The flux of epithermal neutrons that could be measured by the propor-
tional counter were recorded in the 1.0-0.1 eV energy interval during simula-
tion.

In the thermal range scattering and absorbing interactions were taken into
account. Scattering was regarded as being isotropic in the so-called laboratory
system of coordinates, too, because the velocities of thermal neutrons and
colliding nuclei are commensurable. The corresponding values of the micro-
scopic cross-sections were taken from the literature [Nagy 1971]. There are
considerable differences in the literature data regarding the thermal cross-
section for scattering of hydrogen (38 barn in Nagy 1971, 20.3 barn in
Pshenichnyy 1982). On the other hand, the literature values of the thermal
diffusion-length are very similar, viz. Ld«2.7 cm. Calculating with that value
and checking it by modelling the result gave 28 barn for the effective thermal
cross-section for the scattering of hydrogen.

To trace the trajectories of neutrons the method given by Denishik et al.
[1962] was used. The change in direction caused by scattering may be described
by two rotation which have axes perpendicular to each other. Let us denote the
product matrix of the multiplication of the two rotations by  at the z-h
collision. Then vector rn\ determining the direction of the next free path of the
neutron may be obtained from the initial direction-vector f0O as follows:

«i  TOTL...Ti_xTir0
that is
= Pi-JA

p*- = r OlK

Once the direction changes and the covered free paths are known, the position
of the neutrons can be determined. Inhomogeneous material of complicated
geometry may cause difficulties while modelling the free path because the total
macroscopic cross-section (I',), which determines the free path, becomes a
function of place. In this case it is expedient to define a fictive cross-section of
maximum value 20 for the whole space under investigation [Szg”ol 1981].
Thus, the free path is computed by the same algorithm in the whole space. In
the y-th part of the space, however, the collision will be fictive with a prob-
ability of

where

_ -y
Ki= g
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i.e. the energy and direction of movement of the neutron remain unchanged.
The position and behaviour of the neutrons are easily traceable by this method
in any medium having complicated geometry and chemical composition.

The Monte Carlo program was written in the above described way, see
Figs. 3 and 4. Firstly the boundary and initial conditions — i.e. the geometrical
structure, the chemical composition of the medium and the energy spectrum of
the radiation source — are defined. The neutron is “born” in a radioactive
source placed at the origin and it has an initial energy which is generated
according to the spectrum of the source. The initial value of its direction-vector
and Pi-! transformation matrix is unity. The initial direction of its trace gets
a random value because the value of the first T transformation matrix is
generated randomly. The fictive free path is independent of energy and space
domain. The real free path is depending on energy and space domain and on
whether the collision was real or fictive. In the case of a real collision the energy
and direction of the neutron will change depending on the target nucleus. If the
energy of the neutron decreases below 0.1 eV it will move over to the thermal
range. In the thermal range the fictive free path is also independent of the space
domain and the real free path will again be determined by the fictive and real
collisions. The energy of the neutron is not changed by scattering and the
distribution of scattering direction is independent of the target nucleus and
isotropic. Absorption ends the “life” of neutrons. If insufficient neutrons are
modelled the program steps to point A to generate a new neutron.4

4. Testing of the simulation program by published data

Many publications discuss the space distribution of neutrons and experi-
mental data are also found in a number of them. Most experiments deal with
water but data concerning, for example, sandstone, are also available. Thus we
could test our program by published data.

At first the field of a Na-y-Be source placed in water — a homogeneous,
isotropic medium — was simulated. The measured data corresponding to that
model were published by Denishik et al. [1962]. The measurements were per-
formed with the help of indium foil, thus, epithermal neutrons of 1.44 eV energy
were involved. The initial energy was taken to be 0.966 MeV and the first, fast
part of the program was run with 1.44 eV threshold-energy. The results of the
computation involving 3900 neutrons can be seen in Fig. 5. The distance from
the source is on the horizontal axis, the number of neutrons on concentrical,
spherical surfaces at a distance r from the source ia shown on the vertical axis.
The scale is logarithmic. Measured data are marked by continuous line and dots
represent the computed averages for 2 cm thick spherical shells.

Fig. 3. Block diagram of the Monte Carlo simulation program in the fast range
3. abra. A szimulacioés (Monte Carlo) program blokkvazlata a gyors tartomanyban

Puc. 3. BoK-CXeMa CUMYNALMOHHOM nporpaMmsl MoHTe Kapno B GbICTPOM AManasoHe.

0]
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no



Fig. 4. Continuation of Fig. 3: Block diagram of the Monte Carlo simulation program in the
thermal range

4. dbra. A 3. dbra folytatasa: a szimulacids program a termikus tartomanyban

Puc. 4. MpPOAOMKEHNE pUC. 3. — CUMYNALMOHHAA NporpaMma B TEPMUUYECKOM AManasoHe.
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Fig. 5. Epithermal neutron distribution of Na-y-Be neutron source measured in water by
indium foil (continuous line) and computed by the simulation program (dots)

5. abra. Na-y-Be neutronforras korili epitermikus neutroneloszlas vizben, indium foliaval
mérve (folytonos vonal), és a szimulacioés programmal szamitva (pontok)

Puc. 5. PacnpefeneHune annaepMmnyeckux HemTpoHOB OT MCTOYHMKa Na-y-Be B Boge npu
N3MepeHNN NHAMEBOW (hoNbrov (CNAoWHas AMHWS) 1 NpU pacyeTe CUMYNALMOHHOM
nporpaMmoi (MyHKTMp).

At second a Ra-Be source — also placed in water — was simulated. The
corresponding measured data were published by Arien [1960]. The space
distribution of both the thermal and epithermal neutrons was studied. Epither-
mal neutrons were again measured by an indium foil. The relatively broad
range, continuous initial energy-spectrum of the neutrons leaving the Ra-Be
source had to be taken into account here (Fig. 1). Again, the program “re-
corded” the epithermal neutrons when they crossed the 1.44 eV energy level,
while the threshold-energy of the thermal range was 0.1 eV. The results obtained
from studying 9700 neutron-trajectories are presented in Figs. 6 and 7. Similarly
to Fig. 5 the vertical axes represent the average number of neutrons on the 1cm
thick spherical shells at a distance r from the source but the scale is linear, as
in the original publication. (The computed data were normalized in order to be
matched to the curves: one unit was 350 neutrons for the epithermal neutrons
and 37 500 neutrons for the thermal ones). Measured and computed data are
represented by continuous lines and dots, respectively. Finally, similar computa-
tions were carried out for dry sandstone and for wet sandstone of 20% porosity.
The corresponding data are to be found in [Denishik et al. 1962]. The source
was also Ra-Be, the energy of the epithermal neutrons was 0.1 eV suited to the
cadmium foil. 2400 neutrons were modelled in order to study their distribution
in dry sandstone; Fig. 8 shows the result. Measured and computed data — as
averages for 15 cm thick spherical shells — are represented by a continuous line
and dots, respectively. In the case of the 20% porosity wet sandstone the
trajectories of approximately 1100 neutrons were simulated (Fig. 9). Data
concerning the thermal and epithermal distribution were also available so
computations were performed for the thermal range, too. Computed data are
averaged for 4 cm thick shells.
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Fig. 6. Epithermal neutron distribution of Ra-Be neutron source measured in water by indium
foil (continuous line) and computed by the simulation program (dots)
6. abra. Ra-Be neutronforras korili epitermikus neutroneloszlas vizben, indium féliaval mérve
(folytonos vonal), és a szimulaciés programmal szamitva (pontok)

Puc. 6. PacnpegeneHvie anuTepMUYecKUX HeMTPOHOB OT UCTOYHUKA Ra-Be B Boge npw
N3MEPEHNN MHAMEBOW (hONLIoi (CNAOLWHAA NMHWS) U NpY pacyeTe CUMYNALMOHHOM
nporpaMmoin (MyHKTMp).

N ]re,
[neni*]7

Fig. 7. Thermal neutron distribution of Ra-Be neutron source measured in water (continuous
line) and computed by the simulation program (dots)

7. dbra. Ra-Be neutronforras korili termikus neutroneloszlas vizben mérve (folytonos vonal), és
a szimulaciés programmal szamitva (pontok)

Puc. 7. PacnpegeneHune TepMnYeCKMX HEMTPOHOB OT MCTOYHMKA Ra-Be, n3mepeHHoe B BoAe
(cnnowHasa NMHUA) U paccYNTaHHOE MO CUMYALUMOHHON nporpamme (MYHKTUP).
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A3

Fig. 8. Epithermal neutron distribution (energy 0.1eV) around Ra-Be neutron source in dry
sandstone (continuous line) and computed by the simulation program (dots)

8. abra. Epitermikus, 0,1 eV energiaju neutronok eloszlasa szaraz homokkében (folytonos
vonal), és a szimulaciés programmal szamitva (pontok). Neutronforras: Ra-Be

Puc. 8. PacnpegeneHue anuaepMUYecknx HeMTPOHOB C 3Heprueid 0,1 3B B CyXOM MecyaHuke
(cnnowHas NMHKS) U paccUNTaHHOE MO CUMYNALMOHHON nporpamme (MyHKTUP). VCTOUYHMK
HeTPOHOB Ra-Be.

]
[ M/cuwl ]

Fig. 9. Epithermal (energy ~0.1 eV, dotted line) and thermal (continuous line) neutron
distributions around Ra-Be neutron source in 20% porosity wet sandstone, and computed by
the simulation program (dots)

9. abra. Epitermikus, 0,1 eV energiaju (szaggatott vonal), és termikus (folytonos vonal)
neutronok eloszlasa 20% porozitasu vizes homokkd&ben, ill. a szimulaciés programmal szamitva
(pontok). Neutronforras: Ra-Be

Puc. 9. PacnpeaeneHue TepMuyecknx (CNMOLIHAA MHWS) W SNUAEPMUYECKMX (LLITPUXOBAs NUHUS)
C aHepryvieit 0,1 3B, Nony4YeHHOe B 06BOIHEHHbLIX MecYaHMKax ¢ NopucTocTbio 20%
1 paccyMTaHHOE Mo CUMYNSLMOHHOM nporpamMme (MyHKTUp). VICTOYHMK HelTpoHoB — Ra-Be.



278 I. Balogh

5. Modelling the neutron field of BXCf in homogeneous isotropic bauxitic media

In bauxite well logging, instead of Ra-Be, 252Cf neutron sources are used
better suited to the requirements of neutron-activation measurements. The
252CT source produces neutrons by spontaneous fission, so the initial energy
distribution of the emitted neutrons (N(E)) can be expressed analytically by the
Maxwell distribution: N(E) = |A£e~£/r, where 1 is for 252Cf: 1.43 MeV. [Kar-

don et al. 1971]. The 252Cf spectrum of Fig. 1was constructed with the help
of this formula. The modelling program was run for pure water with the initial
energy distribution of 252Cf in order to compare the results with those of the
Ra-Be source. The thermal neutron fields of the two sources in the form of the
ratio of the number of neutrons in unit volume and the number of all neutrons
modelled versus the distance from the source are presented in Fig. 10. This
presentation relating to unit volumes meets better the conditions of well logging.
As can be seen, both thermal neutron fields in pure water of both sources can
be approximated linearly in logarithmic scale which means exponential distribu-
tions. It is also apparent that the softer spectrum of 252Cf produces a steeper
gradient (the average energy of Ra-Be is 3.6 MeV ; that of 252Cf is 2.05 MeV).

In(A)

0 1 20 0 10 [cm)

Fig. 10. Thermal neutron distributions around Ra-Be (calculated for 9,700 neutrons, x-es) and
2652Cf (calculated for 32,000 neutrons, dots) neutron sources in water, computed by the
simulation program. On the vertical axis: logarithm of the ratio of neutrons in unit volume to
all simulated neutrons

10. abra. Termikus neutron eloszlasok vizben, a szimulaciés programmal szamitva, x-ek:
neutronforras Ra-Be, 9700 neutronra szamitva, pontok: neutronforras 252Cf, 32 000 neutronra
szamitva. A fiigg6leges tengelyen az egységnyi térfogatra es6 neutronok és az 6sszes szimulalt

neutron hanyadosanak természetes logaritmusa

Puc. 10. PacnpegeneHus TepMUYECKUX HEWTPOHOB B BOZE, PAacCUUTaHHbIE MO CUMYNALMOHHON
nporpaMme. KpecTMKM — WUCTOYHUK HelATpOHOB Ra-Be, B pacueTe Ha 9700 HeliTPOHOB, NMYHKTUP
—MWCTOYHMK HeliTpoHoB 252CT B pacueTe Ha 32 000 HeiiTpoHOB. Mo BepTMKanbHOM ocn
OT/I0XKEHbI HaTypa/bHble NOrapumbl OTHOLUEHWIA KONMYECTB HEATPOHOB B efuHNLE 06beMa
K KOMMYECTBY BCEX CUMY/IMPOBAHHbIX HEATPOHOB.
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In other words it means that neutrons emitted from the 252Cf source cover, on
average, a somewhat shorter distance than the neutrons of the Ra-Be source.

In the following, calculations were performed on bauxites of differing
composition, on clay, and on a mixture of bauxite and limestone detritus. The
respective mineral and chemical compositions, densities and hydrogen-porosity
data are to be found in Tables Il and I1l. Mineral compositions were selected
so that the main types of Hungarian bauxites should be represented [Bardossy
1977, Barnabas 1966]. The number of modelled neutrons was 10-11 thousand
in each case. Table IV. and Figures 11, 12 present the results for the epithermal
between 0.1-1.0 eV and the thermal neutron flux respectively, normalized to
unit source strength. Vertical axes are scaled for water, for the other media the
coordinate system must be shifted.

" Rock code

Elements 0 1 2 3 4 5 6 7

Al [g/cm3 0 0.417 0325 0573 0394 0408 0.217 0.287
Si [g/cm3 0 001-1 0.169 0.028 0197 0.085 0.225 0.014
Fe [g/cm3 0 0195 0329 0391 0329 0438 0574 0.195
Ti [g/cm3)] 0 0.012 0.024 0.024 0.024 0024 0 0.012
Ca [g/cm3 0 0.005 0011 0011 0011 0005 O 0.543
S [g/cm3] 0 0 0 0 0 0351 0 0

C [g/cm3)] 0 0.002 0.003 0.003 0.003 0.002 O 0.163
0 [g/cm3)] 0.888 1222 1242 1296 1268 109 1237 129
H [g/cm3 0.112 0.093 0.074 0.07 0.066 0.07 0.068  0.036
ai2o3 [Dry weight %4  — 50.9 3415 5449 3895 364 21.3 23.19
Si02  [Dry weight %4 - 156 20.12 303 22.06 854 251 129
Fe20 3 [Dry weight %4 - 1805 26.15 28.13 2459 2955 4274 1197
Ti02  [Dry weight % - 132 2.27 2.05 2.13 192 0 0.87
CaO [Dry weight %4 - 0.49 0.84 0.76 0.79 0.36 0 3251
Ignition loss [Dry w. %4 - 2769 1646 1154 1148 2322 108 30.17

Table I1l. Chemical composition of the modelled bauxitic rocks (elements and oxides referring
to dry rock matrix, corresponding to laboratory chemical analysis)
For code numbers, see Table II.

I11. téblazat. A modellezett bauxitos k6zetek kémiai Osszetétele, és szaraz k6zetmatrixra
vonatkoztatott oxidos Osszetétele (ez utdbbi megfelel a laboratériumi vegyelemzésnek).
A kodszamokat lasd a Il. tdblazatban

Tabnuua 111. Xumuueckuii coctaB MOAENMPOBAHHbBIX BOKCUTOB, UCXOAHBIA U NepecynTaHHbIA Ha
CyXYl0 Nopofy B BWAE OKUC/OB; NOCNEeHWIA COOTBETCTBYET 1a60PaTOPHbIM OnpefeneHnsaM.
KopoBble Homepa cM. B Ta6n. Il

Analysis of the distributions of Figs. 11 and 12 enable one to conclude that
in a homogeneous medium both the epithermal and thermal distributions may
be well approached by exponential functions - or in logarithmic representation
by straight lines. The linear relation seems to fit the best in the r> 4 cm range,
which is the equivalent of the environment of the standard (76 mm) borehole
diameter in bauxite prospecting in Hungary. The linear relation was also numeri-
cally examined in the 4-30 cm range. The ®ep epithermal flux is
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®ep = Flexp (-r/Lj)
that is

In dep = InFt-ir/L,)
For the @, thermal flux

®, = F2e\p(-r/L2
that is

In® = InF2- (r/L2)

Lxand L2 can be related to the slowing down length (Lf) and the migration
length (LM, respectively [Quittner et al. 1971]. Constants given by regression
calculation are in Table IV. Linear regression has proved to be adequately close
in each case: the worst correlation factor was 0.99.

Epithermal distribution Thermal distribution

Rock code F, 6, Fi LY
[10 4 n/sicm?2] [em] [10 2n/sicm2] [em]

0 4.026 3.48 3.031 4.07
1 5.462 3.4 2.608 3.86
2 4.316 3.94 1.505 4.58
3 4.699 3.87 1.488 4.49
4 4.015 4.18 1.229 4.96
5 4.299 4.01 1.261 4.53
6 4.255 4.09 1.232 4.68
7 2.258 6.14 0.472 7.93

Table IV. Parameters of the exponential curves fitted to the epithermal and thermal neutron
distributions of the 252Cf neutron source between 4 and 30 cm (Figs. 11-12). For code numbers,
see Table II.

IV. tablazat. A 252Cf neutronforras szimulalt epitermikus és termikus neutroneloszlasaihoz
(11-12. 4bra)4-30 cm kozott illesztett exponencialis gérbék paraméterei. A kddszamokat lasd
a Il. tdblazatban

Tabnuua 1V. MapaMeTpbl 3KCMOHEHLMANBbHBIX KPUBbIX, MOMYUYEHHbIX MYTEM annpoKcUMaLuu
B WHTepBane 4-30 CM CHMYNMPOBAHHbLIX pacnpefeneHunidi SNUTEPMUUECKUX U TEPMUYECKIX
HeinTpoHoB (puc. 11 n 12) nctounmka 252Cf. KogoBble Homepa cM. B Tabn. Il.

The Lf slowing down length increases with decreasing hydrogen content,
if the rock composition is the same. This fact is taken advantage of by the
dual-spaced neutron-porosity logging. Figure 13 shows the relation between the
L x data that were computed by regression from epithermal distributions and
between the hydrogen content of a unit volime of the modelled media
(H[g/cm3]) and its hydrogen-porosity (/°,[%]). The relation has a hyperbolic
tendency.
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20

Fig. Il. Epithermal neutron flux around
252Cf neutron source in water and in
bauxitic rocks, computed by the simulation
program. For code numbers, see Table II.
The curves coded by 1-7 are in each case
shifted by two units along vertical axis. The
adjusted straight line of water (code
number 0: see Table 1) is also shifted for
reference

1. dabra. Epitermikus neutronfluxus vizben
és bauxitos kézetekben, a szimulacios
programmal szdmitva. Neutronforras: 252Cf,
kodszdmokat lasd a Il. tdblazatban. Az 1-7
kédszamu gorbék a fliggbleges tengely
mentén 2-2 egységgel el vannak tolva. Az
eltolt gorbék mellett referenciaként fel van
tiintetve a 0 kddjell viz kiegyenlitd
egyenesének eltolt valtozata is

Puc. I1. TToTOKN 3anuTepMUYEecKnX
HeTPOHOB B BOfe U B 6OKCUTaXx,
paccuuTaHHble M0 CUMYIALUOHHON
nporpamme. VICTOYHMK HeilnTpoHoB  252Cf,
Koabl npueoaaTcs B Tabn. V. Kpusble NoNe
1-7 cMeLLeHbl BAO/b BEPTUKANbHON OCU Ha
2 eIMHNLbI Kaxxaasa. [4ns cpaBHeEHUA psaoM
C HAMMN HaHeCeHbl CMeLLeHHbIe NPsAMble,
COOTBETCTBYHOLLME BOAe, 0603HAYEHHO

kogom O.

Fig. 12. Thermal neutron flux around 252Cf
neutron source in water and in bauxitic
rocks, computed by the simulation program.
Legend as in Fig. 11

12. abra. Termikus neutronfluxus vizben és
bauxitos kézetekben, a szimulacios
programmal szamitva. Neutronforras: 252Cf,
jelolések azonosak all. abraéval

Puc. 12. T10TOKM TepMUYECKNX HEATPOHOB
B BOJe M B BOKCUTAX, paccyMTaHHble Mo
CUMYNALMOHHON nporpamme. VICTOYHMK
HeiATpoHOB  252Cf. 0603HayYeHNs CM. Ha
puc. 11
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Fig. 13. Relation between the L, parameter
of the exponential adjustment of the
epithermal distributions (the reciprocals of
gradients in Fig. 11) and hydrogen content
(A) and hydrogen porosity (PH) of the
modelled medium. For code numbers, see
Table Il

13. abra. Az epitermikus eloszlasok
exponencialis kiegyenlit6 gdrbéinek L1
paramétere (all. abra
gorbemeredekségeinek reciproka) és

a modellezett kdzeg hidrogéntartalma (H)
ill. hidrogénporozitasa (PH) kozotti
kapcsolat. Kédszamokat lasd a Il.
téblazatban

Puc. 13. B3aMmocBa3b MeXay napameTpom
L, (BennunHoi, 06paTHON KPyTU3HAM
KpUBbLIX puc. 11) BbIpaBHMBAKOLLUX
9KCMOHEHLMaNbHbIX KPUBbIX
3NUTEPMUYECKNX pacnpesenieHunin

n cogepxxaHnem sogopoga (H)

B MOJENVpyemMbIX Mopojax n ux
BOAOpOAHONM nmopucTocTbio (PH). Kogbl cwm.
B 1a6n. Il.

6. Analysis of neutron fields simulated in homogeneous, isotropic bauxitic

media

Let us examine the above discussed distributions more thoroughly. The
following boundary condition is valid for epithermal flux due to the stationary
neutron field (see Appendix) :

\qepdV= j£27tF>epdK = Q

that is

I CZ,Flexp (- r/Lj)dV = Q

and so

Sn&FtLlI

=Q @

where Q = intensity of the neutron field [n/s] (it was unity for the simulated

fields)

qep = epithermal slowing down density [n/s/cm3]
£ = average logarithmic energy-decrease

Et
£27, = slowing down power [cm-1]
dV = volume element [cm3]

macroscopic total (epithermal) cross-section [cm-1]
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A similar boundary condition is valid in the thermal range:
\Z&tdV =Q

that is
\Z & 2exv{-rtL2av= Q

and so
8nZaF2L\ = Q, 2

where Zais the macroscopic absorption (thermal) cross-section [cm-1].

The dimension of flux and thus of F is [n/s/cm-2]. Let us now consider the
L{and L2 quantities. The following relation exists between the slowing down
length, Lf, and the migration length, LM [Quittner et al. 1971]:

T2 = T2+

.2
T L-d >

where Ldis the thermal diffusion length [cm].
The following relation is also known [Szatmary 1971]:

L] = 1/(32,2J,

where Zs is the macroscopic scattering (thermal) cross-section [cm-1].
Bearing in mind the above-mentioned relations:

Lb-Lj = 1/(32,2J.

Since the slowing down and migration lengths, Lf and LM may correspond to
Li and L2, we obtain:

L2-L\ = 1/(3ag4. 3)

Note that on the basis of the numbered equations—or in other words analysing
the epithermal and thermal neutron distributions—the macroscopic cross-
sections £Z,, Zsand Zacan be determined if Q, L,, FIt L2and F2are known.
Thus, these might be considered as quasi-measurement data, obtained by meas-
uring the neutron distribution. Data computed this way will be marked with an
asterisk.

The above macroscopic cross-sections may also be directly calculated from
the microscopic cross-sections [Nagy 1971, Nikolayev and Bazazyants 1972,
and Arren 1960] if the chemical composition of the medium is known (Table
I1). Therefore the macroscopic cross-sections are linear combinations of the
concentrations of elements. Table V contains the macroscopic cross-sections
determined in two different ways — from quasi-measurement and from the
chemical composition. The average of the total cross-section of hydrogen in the
fast range was needed to calculate the slowing down power (see Appendix). This
value was calculated by means of simulation for water. Consequently, the
slowing down power of water computed from the chemical composition is based
on quasi-measurement only, therefore this value was also marked with an
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Epithermal distribution Thermal distribution
Rock code macroscopic cross-section scattering absorption
i2, w Z, r; z. 1*
[em"] [em 1 [ecm 1 [cm g N "1 [em™ ]
0 2.355* 2.355 2.012 3.81 0.0221 0.0194
1 1971 1.855 1.79 3.749 0.0269 0.0265
2 1.577 1.510 1.497 2.209 0.0278 0.0275
3 1.493 1461 1.447 2.168 0.0295 0.0295
4 1.398 1.356 1.361 177 0.0265 0.0266
5 1.475 1.433 1411 2.235 0.0334 0.034
6 1.446 1.366 1.417 2.037 0.0309 0.0314
7 0.772 0.76 0.898 0.786 0.0184 0.0169

Table V. Neutron-physical parameters, calculated from the chemical composition of modelled
bauxitic rocks (Table Ill) and from neutron distributions (marked with asterisk). For code
numbers, see Table II.

V. tablazat. Neutronfizikai paraméterek a modellezett bauxitos kézetek kémiai Osszetételéhdl
(I11. tablazat), illetve a szimulalt neutroneloszlasokbdl (csillaggal jeldlve) szamitva.
A kodszdmokat lasd a Il. tablazatban

Tabnnua V. HelATpOHHO-(hM3MYECKMe NapameTpbl, PacCUMTaHHbIE MO XMMUYECKOMY COCTaBYy
60okcmTOoB (Tabn. Ill) 1 No cMMynMpoBaHHLIM pacnpeaeneHnaM HelATPOHOB, 0603HAYEHHbIM
3Be3foukoii. KogoBble Homepa cMm. B Tabn. Il

asterisk in the Table. Naturally the slowing down powers computed from the
chemical compositions of the other media are independent of the quasi-meas-
ured data concerning the given media.

The data of Table V are graphically illustrated by Figs. 14. 15 and 16. The
code number of the given medium (see Table II) is indicated at each point. It
can be seen that data calculated from the quasi-measurements and from the

lem®” ]

Fig. 14. Relation between slowing down powers £Z*
calculated from Formula (1) and ££, calculated
from the chemical composition. For code numbers,
see Table Il

14. &bra. Az elemi Osszetételbdl szamitott ££,, és
a (1) osszefiiggés alapjan szamitott £2.* fékezési
erély kapcsolata. A kddszamokat lasd a II.
tablazatban

Puc. 14. B3aumocssa3b mexay £1], paccuMTaHHbIM

no 3MEMEHTHOMY COCTaBy, U TOPMO3ALLUM

MOMeHTOM e | f, paccumTaHHbIM MO BbIPOKEHUIO
O 1 2 (2). Kogbl cm. B Tabn. Il
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chemical composition agree well; data of the macroscopic scattering even show
a close correlation. Only the data of water denoted by code-number 0 and, in
case of the scattering cross-section, the bauxite mixed with detrital limestone
denoted by 7 fall slightly off the averaging straight line.

cm']

K lenf' |

Fig. 15. Relation between scattering cross section 2* computed from Formula (2) and 2,
calculated from the chemical composition. For code numbers, see Table Il

15. abra. Az elemi 0Osszetételbdl szamitott 2,, és a (2) 6sszefliggés alapjan szamitott 2j* szorasi
hataskeresztmetszetek kapcsolata. A kddszamokat lasd a Il. tablazatban

Puc. 15. B3aumocBsA3b mMexay 2',, pacCiMTaHHbIM MO 3/IEMEHTHOMY COCTaBy, U AMQY3MOHHbIM
3(h(heKTMBHLIM CeYeHMeM 2*, pacCUMTaHHbIM MO BblpaxeHuto (2). Kogbl cm. B Ta6n. Il

(@]

Fig. 16. Relation between absorption cross-section 2*

T calculated from Formula (3) and 2 a calculated from
the chemical composition. For code numbers, see
Table Il

16. abra. A (3) dsszefiliggés alapjan szamitott Z*
abszorpcids hataskeresztmetszetek és az elemi

002 Osszetételbdl szamitott 2,, kapcsolata. A kodszamokat
lasd a Il. tblazatban
Puc. 16. B3anmocBsizab Mexay abcopOLMOHHbIM
y*  3(hheKTUBHbIM CeYeHMeM 2%, pacCUMTaHHbIM MO
m —2-  BblpaXeHuto (3), 1 2'a, paccymTaHHbLIM MO
001 002

lct 1 anemeHTHOMY cocTaBy. Koabl cMm. B Tabn. Il
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7. Simulation of neutron fields in bauxitic media taking into account the probe
and the borehole

The main advantage of the Monte Carlo method in simulating neutron
fields is that any arbitrary geometry may be assumed in the given medium —
as was mentioned in the introduction. Using this possibility, let us see how the
presence of the probe and the borehole influences the homogeneous, isotropic
fields. An R-Z coordinate system was set up for the new calculations in which
the probe and the borehole are positioned concentrically around the Z-axis; the
diameter of the probe and the borehole are 40 and 80 mm, respectively. The
studied volume of space extends 100 cm in the Z direction and 40 cm in the R
direction. It was sufficient to record the neutron-physical events in 40 x 100 =
= 4000 elementary cells due to cylindrical symmetry. The 252Cf radioactive
source was at the origin of the coordinate system. The body of the probe was
assumed to be iron but only half of its density was used in the calculations thus
modelling the approximately 50% material/volume ratio of the probe structure.
The probe extends 15cm below the origin and extends along the whole studied
volume of space upwards. In the first version of the calculations the hole is filled
with water, in the second one it is dry. The medium is gibbsitic bauxite (code
number 1in Table II). This rock was selected for studying the influence of the
probe and borehole because its neutron-physical parameters differ the most
from the same of the probe and the dry hole and so the distorting effect is
expected to be the strongest in this case. Naturally, the hole filled with water
will not have a very strong distorting effect.

The arrangement and the results for water-filled boreholes are shown by
Figs. 17 and 18. Cells having neutrons are inside the contour. Those cells in
which the logarithm of the neutron density corresponding to unit neutron yield
is greater than -12.5, are shaded horizontally, while vertical shading means
those cells in which this logarithm is greater than - 10. The distribution of
epithermal neutrons of 0.1 eV energy is presented in Fig. 17, and the same for
absorbed thermal neutrons in Fig. 18. The number of neutrons in the study was
approximately 38 thousand. This number was not enough for an accurate,
quantitative analysis ofthe neutron-distribution—as is suggested by the figures—
though the maximum capacity of the Commodore 64 was used. Nevertheless,
the figures are still suitable for qualitative analysis. The distortion caused by the
sonde-body in the Z direction is apparent — especially in the case of the
epithermal neutrons. It is also interesting that the epithermal neutrons hardly
penetrate into the sonde-body. Figure 19 showing the distribution of the thermal
neutron flux along the Z axis, allows a comparison with the homogeneous
isotropic field. The coordinate-system is identical with that of Fig. 12 and so the
corresponding homogeneous isotropic data could be displayed along the data
measured in an inhomogeneous field. The position of the 252Cf source and the
probe is also shown along the Z axis.

Figures 20-22 are similar to the previous ones with the difference that here
the borehole was dry. The distorting effect in the Z direction increased.
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Fig. 17. Distribution of epithermal neutrons (energy ~0.1 eV) around a 252Cf neutron source in
water-filled borehole drilled in gibbsitic bauxite

17. abra. Epitermikus, 0.1 eV energiaju neutronok eloszlasa gibbszites bauxitot harantolo vizes
farélyukban. Neutronforras: 252Cf

Puc. 17. PacnpegeneHve anMTepMUYECKNX HEATPOHOB C 3Hepruein 0,1 3B B 06BOAHEHHOIA
CKBaXXMHe, BCKPbIBLUEA rnM66CUTOBbIE GOKCUTBI. VICTOUYHUK HEATpoHoB — 252Cf.

Fig. 18. Distribution of absorbed thermal neutrons around the 252Cf neutron source in
water-filled borehole drilled in gibbsitic bauxite

18. abra. Abszorbealddott termikus neutronok eloszlasa gibbszites bauxitot harantol6 vizes
farélyukban. Neutronforras: 252Cf

Puc. 18. PacnpegeneHue abcop6UpoBaHHbIX TEPMUYECKUX HEATPOHOB B 0GBOAHEHHON CKBaXXMHE,
BCKPbIBLUEN FM66CUTOBbIE GOKCUTLI. VICTOUHMK HeATpoHOoB— 252Cf.
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Intu

Fig. 19. Thermal neutron flux of a 252Cf neutron source along the axis of the probe, in
water-filled borehole drilled in gibbsitic bauxite (x-es mark the distribution computed for to the
homogeneous isotropic medium)

19. abra. Termikus neutronfluxus gibbszites bauxitot harantolé vizes farélyukban, a szonda
tengelye mentén. Neutronforras: 252Cf (x-ek a homogén izotrop kozegre szamitott eloszlast
jelolik)

Puc. 19. MOTOKM TepPMUYECKNX HEWTPOHOB B OOGBOAHEHHON CKBaXKMHE, BCKPbIBLUEA rM66CUTOBbIE

6OKCUTbI, BAONb OCK 30HAA. VICTOUHMK HeWTpoHOB — 252Cf (KpecTvkamn 0603Ha4eHO
pacnpegeneHue, paccuMTaHHOe A1 OAHOPOLHON U30TPOMHONM cpefpl).

Fig. 20. Distribution of epithermal neutrons of 0.1 eV energy around the 252Cf neutron source
in dry borehole drilled in gibbsitic bauxite

20. abra. Epitermikus, 0,1 eV energidju neutronok eloszlasa gibbszites bauxitot harantol6 szaraz
farélyukban. Neutronforras: 252Cf

Puc. 20. PacnpeseneHne anuTePMUYECKUX HEATPOHOB C 3Hepruein 0,1 3B B CyXOil CKBaXUHe,
BCKPbIBLLUEA rMB6CUTOBLIE BOKCUTBI. VICTOUHUK HenTpoHoB — 252Cf.
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Fig. 21. Distribution of absorbed thermal neutrons around the 252Cf neutron source in dry
borehole drilled in gibbsitic bauxite

21. abra. Abszorbeal6dott termikus neutronok eloszlasa gibbszites bauxitot harantol6 szara:
farélyukban. Neutronforréas: 252Cf

Puc. 21. PacnpegeneHue abcop6uMpoBaHHbIX TEPMUYECKUX HENTPOHOB B CyXOil CKBaXMHE,
BCKPbIBLUEA TMBOCUTOBBLIC 60KCUTbI. ICTOYHMK HENTPOHOB 252Cf.

Int>t

Fig. 22. Thermal neutron flux of a 252Cf neutron source along the axis of the probe in dry
borehole drilled in gibbsitic bauxite (x-es mark the distribution computed for to the
homogeneous isotropic medium)

22. abra. Termikus neutronfluxus gibbszites bauxitot harantolé szaraz farélyukban, a szonda
tengelye mentén. Neutronforras: 252Cf (x-ek a homogén izotrop kdzegre szamitott eloszlast
jelolik)

Puc. 22. TMOTOKN TEPMUYECKNX HEWTPOHOB B CyXOii CKBaXKMHE, BCKPbIBLLEA rMO6OCUTOBbLIE
6OKCUTbI, BAOMb OCK 30HAA. CTOYHUK HeATpoHOB — 252CT (KpecTukammn 0603Ha4YeHO
pacnpefeneHue, paccunTaHHOE AN OAHOPOLHOI M30TPOMHOI cpedpl).
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8. Conclusions

It has been proved that the Monte Carlo modelling program presented here
is suitable for studying neutron fields developing in media of many chemical
components or of complicated geometry. The program is also able to study the
effect of layering. Nevertheless in order to solve such tasks of complicated
geometry quantitatively, a faster computer with bigger memory—than the
Commodore 64—is needed. Even so, it can be concluded from our computa-
tions that the epithermal and thermal neutron fields can be approximated by
exponential functions'in media of high hydrogen content. These media may be
—Dbesides bauxitic rocks—Ilatérites, coals, clays or kaoliné.

This exponential approach may be used to correct neutron-activation
measurements—as was discussed earlier [Batogh and Horvath 1983]—and on
the other hand it may help the interpretation of spectral neutron-gamma measure-
ments [Chruscier €t al. 1985], i.e. it could render a possibility to take into
account the influence of neutron distribution on the measurements. The ex-
ponential distribution also renders the in situ measurement of the £2T,, Es and
Ea neutron-physical parameters possible in rocks of high hydrogen content by
profiling of the epithermal and thermal neutron fields by two times two (two
epithermal and two thermal) detectors. It has been proven [Fraum 1983] that
it is possible to construct a suitable tool; he reports on the realization of such
a tool for hydrogen porosity determination in dry boreholes. To decrease the
distorting effects and to be able to detect the epithermal neutrons the body of
such a tool should be made of some plastic of high hydrogen content and it
should be pressed against the wall of the hole. The parameters measured in this
way will be linearly related to the chemical composition of rocks, which is the
most important feature to be learnt when prospecting for solid minerals.

APPENDIX

It is known that the slowing down density in media which do not absorb
neutrons is as follows [Szatmary 1971]:
Bl

q(r, B)

where x= (A- D/(A+ 1)
A = atomic weight
since E, is the sum of the cross-sections of the i components, the integral can

be divided

qr,E) = 11 2 TENED (1)) +£
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Here it was taken into account that a = 0 for hydrogen. For the other rock-form-
ing elements af» 1, thus the integral can be simplified [Szatmary 1971]:

£ ]

r dE
ArE) ¢ wiee(B)ECE E) = +£ B\(E)"E(r, B)

E=E

It is usually accepted to decompose the flux to two factors, one depending
on the position and the other on the energy [Szatmary 1971]:

&(r, E) = R(r)F(E).

If it is assumed that the function of energy F(E) is nearly constant in bauxitic
rocks, this expression can be written in the following form

q(r, E) = £ ~ eEd(r, E) +"E (E)*EPD(r, E)
where
R(r) J 1 ~+ nE)E(E")OE'/E'

~“hydrogen

R(NF(E)

This quantity will be constant because F(E) was assumed to be constant. If the
overstroke is omitted and instead of E®(r, E) ®ep{n, r) is written, and if it is
considered that 4(hydrogen) = 1 then:

Fep= x E"®epn, r) =

where n = In (EOE).

Note: if F(E) changes then this equation will only approximately be valid
because Z/lyd(Bn was assumed constant. The accuracy of the approximation
depends on F(E). However, our modelling results support the assumption of
F(E)x const, in the studied rocks.
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A 22Cf NEUTRONFORRAS TERENEK SZAMITOGEPES SZIMULACIOJA
A BAUXITKAROTAZSBAN

BALOGH Ivan

ra alapozva, nagy hidrogéntartalmd - els6sorban bauxitos - k6zetekben. Roviden ismerteti a
kidolgozott szimulaciés (Monte Carlo) programot, majd le is teszteli publikaciokbol ismert mérési
adatok segitségével. A dolgozat a tovabbiakban tipikus bauxitos kézetekre végzett szamitasok
eredményeit ismerteti, amelyek szerint az adott k6zetekben az epitermikus és termikus neutronok
exponencialis eloszlastiak. Megmutatja, hogy az epitermikus és termikus neutroneloszlasok ismere-
tében kiszamithatok a ¢X,, Xs, I'aneutronfizikai paraméterek, melyek kdzvetlen lineéris kapcsolat-
ban allnak az adott kozeg elemi dsszetételével. Végil kvalitativ jellegli eredményeket mutat be a
szondatest és a vizes, ill. szaraz fardlyuk neutronteret torzité hatasardl.
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CUMYNAUMA NOoNs HENMTPOHHOIO UCTOYHMKA 2 Cf B BOKCUTOBOM
KAPOTAXE C NMOMOLLbIO 3BM

MBaH BANOI

B cTaTbe MccneayeTcs pacnpeaeneHne HelTPOHHbIX Moseil Ha OCHOBE CUMYAAUMK Ha SBM
HeTPOHHOro TpaHCMmopTa B Nopogax C 60/bLIMM CoAepXKaHueM BOAOPOAA, B MepBYl ouepeab
B 60KCUTOBbIX Nopodax. KpaTko nanaraeTcs BbipaGoTaHHas NporpamMma cumynsumn MoHTe Kap-
N0, KoTopas TecTUPYeTCs C MOMOLLbIO W3BECTHBIX MO NUTepaType AaHHbIX U3MEpeHui, aanee
U3naratoTcs pe3ynbTaTbl PACUETOB MO TUMNMUYHBLIM GOKCMTOBLIM MOPOAAM MO KOTOPLIM PEe30HAHC-
Hble 1 TennoBble HETPOHbLI UMEKOT CTeneHHoe pacnpeaeneHue. MokasbiBaeTcs, UTO 3Has pacnpefe-
NeHue Pe30HAHCHbIX U TEenoBbIX HEMTPOHOB, MOXHO PaccUUTaTb HEMTPOHHO-(IM3MUECKMe Napa-
meTpbl ffiT,, 21S Za, KOTOpble UMEIOT HEMoCpeACTBEHHYIO IMHEWHYHO CBA3b C 91EMEHTHbIM COCTABOM
[JaHHoM cpeabl. HakKoHeL, B CTaTbe NpeAcTaBsloTCs KauecTBEHHbIe Pe3ynbTaTbl MO UCKaKalOLLEMY
B/NSIHWIO Ha HEMTPOHHOE Mose 06BOAEHHBLIX M CYXWUX CKBAXMH W KOpryca 30Ha.
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