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AUTOMATIC RELATIVE DEPTH MATCHING OF BOREHOLE
INFORMATION
. THEORETICAL REVIEW

Dénes SZENDRO*

One of the prerequisites for interpreting borehole information is that data of the given well
should be correct according to depth. In order to obtain a common depth point it is assumed that
the J(A") relative depth deviations changing from point to point can be approximated by a polyno-
mial. Developing in a series the T(A") log or logs to be matched according to depth, the .4(30 depth
deviations in the Taylor's series agree with the substitution values of the polynomial. Minimizing
the error function which can be formed from the data to be matched, the coefficients of the
polynomial can be calculated and the corrected data obtained. If the process is repeated several
times the calculated values converge. The method is suitable not only for correcting linear slips but,
depending on the degree of the polynomial, also for eliminating dev iations of varying sign. If the
order of the polynomial describing the depth deviation is zero. i.e. it is a constant slip, the result
obtained by the method is as good as that of the conventional cross correlation method. It is,
however, substantially faster than the conventional one because of calculating the slip. The method
is suitable for correcting depth deviations between well logs, between core data and well logs, and
between the lithological column and well logs.

Keywords: well logging, depth deviation, borehole information, computer programs, algorithm, match-
ing

1 Introduction

Similarly to every measurement, borehole information has its uncertainties
characterizing the method, viz. the conditions, the instrument and the physical
parameters of measurement. Both the method and the measured quantities may
considerably differ from each other, but when determining their characteristics
common features can be found as well. In the case of borehole information this
common feature is their being recorded as a function of depth. Since measure-
ments generally follow each other, measured values of geophysical and geologi-
cal parameters corresponding to the same depth will not appear at the same
place on the records, depth differences may occur. The causes of depth devia-
tions will be discussed later.

In order to decrease the depth differences either the methodology should
be modified or the logs should be corrected afterwards. In the first case the
application of sonde trains would be necessary but even then there would not

* EOtvos Lorand Geophysical Institute of Hungary, POB 35, Budapest. H-1440
Manuscript received: 4 November, 1986



334 D. Szendrd

be any possibility to perform all the measurements simultaneously because of
the great number of geophysical parameters. In the second case, in the conven-
tional manual evaluation, the characteristic points of the curves (maximum,
minimum, inflexion point, etc.) are taken into consideration when fitting the
logs, i.e. matching relative depth. Using this method the experience of the expert
and visual examination of the curves yield good results, but in the field of
computer aided processing there is limited reference in the literature to depth
matching.

In recent years attempts have been made to shift the curves to an extent
determined by the operator, after reproducing the logs on a graphic display
connected to a computer. It seems that this interactive method is suitable only
for correcting very great deviations. The method mostly applied automatically
corrects the constant slip of ihe logs. A reference log is selected, it is recorded
for each run together with the geophysical parameters to be measured. The
repeatedly measured log is considered as the base log. For depth matching cross
correlation is computed between the base logs. Maxima of the correlation
coefficient mark out the corresponding values. If this method is employed for
the complete log, it only eliminates the constant deviation, although not only
the extent but even the direction of the depth differences may vary from point
to point. If cross correlation is performed for short intervals, then the problem
arises in smoothing the differences at the boundaries of the intervals.

In this paper the mathematical phrasing of the possibilities of depth match-
ing is presented, and a computer aided method is described which eliminates the
above mentioned difficulty. A further advantage of the method to be described
is that it is not necessary to measure the base log for each run.2

2. Mathematical phrasing of depth differences

In order to describe mathematically the relative depth differences of well
logs one has to start by examining the measurements. For well logging the sonde
is lowered into the borehole by a cable. The signals emitted by the sonde are
transmitted to galvanometers or to the magnetic tape recorder through cable-
conductors. The camera is controlled by the movement of the cable through a
transmission system whereas when using magnetic tape recording two indepen-
dent depth determinations are used, viz. magnetic depth marks on the cable and
the sampling interval controlled by the logging speed. Deviations from the
correct depth values may originate from the following causes: differences in the
reference points of the sondes; stretching of the cable caused by the interaction
of the cable, the sonde and the borhole; inaccuracy of the transmission system
between the camera and the cable; deviations from the set logging speed when
recording on magnetic tape.

Dealing with the causes of the A(X) depth discrepancies in increasing order
of the powers of the recorded X depth of the sonde, leads to the following

grouping:
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a) The constant term (of zero order) comes from the difference between the
reference points of the sondes:

A(X)o=C 2.1)

b) The linear term is obtained from cable stretching caused by:
— cable stretching due to sonde weight. This can be calculated on the basis
of Hooke's and Archimedes' laws supposing elastic deformation and
including the buoyant force of the mud:

AN = k-Q71- Vij'X 2.2)

where K is the elastic module of the cable.
Q is the weight of the sonde in air,
ys is the specific weight of the sonde,
ym is the specific weight of the mud;
- cable stretching due to the friction of the sonde on the wall of the
borehole and/or to the pressing of it against the wall:

A(X)2 = kpN-X (2.3)

where p is the friction coefficient between the sonde and the sidewall,
N is the pressure force against the sidewall;

the changing of the actual size of the film or paper, when digitizing analog

logs:

A(X)b=KxX (24)

c) The second order term is obtained by means of the following:
the weight of the cable lowered in the borehole is in linear ratio with the
length of the cable thus if cable stretching obtained by Hooke's and
Archimedes’ laws is integrated according to depth, a relation is obtained
which is a depth function of second order:

ALI04 = 2kq ( X2 (2.5)

where q is the weight of the cable for unit length,
yc is the specific weight of the cable;

- the hydrostatic compression on the surface of the cable in the mud is
proportional to its length. Thus the relation obtained by integrating the
frictional force proportional to the hydrostatic compression -is also a
depth function of second order:

A(X)S = "'kyIT(W'FJ)XZ (2.6

where W is the friction of rest between cable and mud,
j=j(v) is a quantity depending on logging speed;
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the force due to the friction of the cable on the wall of deviated boreholes
is proportional to the component, perpendicular to the wall of the
borehole, of the weight proportional to the length of the cable. Integrat-
ing this effect according to depth gives a quadratic relationship:

A(X)b = ~kgfi]! 1- ~j sin (mX2 @.7)

where fi, is the friction coefficient between cable and sidewall.
tp is the angle between the axis of the borehole and the vertical:
- integrating the effect of the temperature increasing quasi-linearly in
depth, again a quadratic relation is obtained:

A(X)7 = 2*3,X2 (2.8)

where a is the linear thermal expansion coefficient of the cable,
g, is the geothermic gradient.

d) Added to the former terms, the following can be approximated with those
of higher order:
the effect of sticking and restarting of the sonde,
the effect of harmonic vibration of the sonde during the run,
the "depth correction” of the operator or, with digital recording, that of
the special electronic unit.

If logs of different runs are matched then the relative depth deviations are
obtained as the difference of the two polynomials — which is also a polynomial
The coefficients of the terms describing the relative depth difference are obtained
from the changing of the parameters in relations (2.1)—(2.8) between two runs.

In the case of sidewall coring the same reasoning can be applied since the
depth difference is caused by cable stretching here too. For conventional coring,
deformation of the drill pipe should be taken into consideration instead of that
of the cable. During well logging, tensile load affects the cable whereas in coring
compressive forces are acting on the drill pipe, thus the depth differences owing
to elastic strain are supposed to sum up.

3. Relative depth matching of well logs

For the mathematical phrasing let us consider Fig. I. As a first approach
let us suppose that curves Y2(X). Y3(X), .... YNXX) are—related to each other
correct in depth and we should like to match function Y{(X) to them. At depth
point Xh (i = 1,2......L), to function values Y2(Xj), T3(Al), ..., YN(Xt) belongs
the value YT, + A(X()] of the function to be matched. For the sake of clarity
the function values belonging to each other are marked in the figure and the
deviation function A(X) is plotted at the bottom.
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Fig. I. Ilustration of depth deviations of well logging curves
Y{(X) curve, to be matched; Y2X). Y3(X). YY)  curves considered to be correct in
depth; A(X)  function of depth deviation

/. dora. Karotazsgorbék mélységeltéréscinek szemléltetése
Y,(X)  egyeztetni kivant gorbe; Y2(X). Y3(¥)....... yay)  mélységileg helyesnek tekintett
gorbék; A(X)  a mélységeltérést leiro fliggvény
Puc. 1 [leMOHCTpaumMs PacXoXAeHUiA Mexay KapoTaXHbIMU KPUBLIMW MO FNy6uHe
YY)  KpuBas, NOANexXalias cornacoBaHuto no rayéuHe; YAY). Y,(A)..... YY)  KpuBble.

cuMTaroLMecs npaBuabHbIMU MO rNy6uHe; A(X) - (yHKUMS, OMMCbIBAOLLAsA PACXOXAEHUS MO
rny6uHe

Our aim is to determine A(X) since in the knowledge of this, depth correc-
tion means substituting the respective Y,[JT',+zf(A))] function value into Y fXt)
at the i = 1,2......L sampling points.

To perform the calculation we assume that the values belonging to each
other are related; this relationship can be defined by an operator F since each
log provides certain geophysical information about the same place:
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(3.1)

If the operator were precisely known, then the system of equations (3.1) would
theoretically be solvable because it contains L unknowns in the values at the
i — 1,2......L sampling points of the d(2Q function of depth deviation and it
consists of altogether L equations. Knowing the F operator, however, would
give the impression of a contradiction since it would mean that the ¥,(30 curve
could be obtained from the other curves and so it would not be necessary to
measure it. Naturally from geophysical aspects it cannot be true since the
individual logging methods «yield additional characteristic information related
to the other measurements. Since our aim is, besides keeping the characteristic
features of the curve Y,(AQ to match its characteristic places with those of the
other curves—and not produce it from the other curves—exact knowledge of
operator F is not required. Between certain logs there is evident correlation, e.g.
the resistivity logs correlate with each other and with the SP log. In practice,
in the course of processing, the SP and the gamma-ray logs are replaced by each
other many times because of their similar characteristics. The porosity indicator
logs, the neutron-gamma, the neutron-neutron and the acoustic logs are necess-
arily correlated with each other.

With regard to quasi symmetrical logs it can be assumed that operator F
can be approximated by their linear combination. The more curves there are in
it, mathematically the more probable it is that with one of them the correlation
is close. If the theoretical function-connection is not linear, it results in a
decrease of the correlation coefficient; this, however, does not considerably
influence the result of the subsequent calculations. (If a gradient curve is
correlated then in the F operator the derivatives of the symmetrical curves
should be used.)

From the above it can be assumed that operator Fean be approximated
by the linear combination of the Y2(X), T3T), YNX) logs:

i=12 L (3.2)

Here parameters bY,  bNare further unknowns characterizing the correlation

of the functions.

To determine the depth deviation varying from point to point, let us
develop in a series the left side of relation (3.1) and to preserve the linearity in
d(Af;), i.e. approximating it up to the first term, the following can be written:

B +XT)] * Y,(Xd+ A{Xd mY m iz k2, L (3.3
Here the following notation was used:

(3.4)
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The derivative (3.4) exists for all analog logs since, due to the continuous
recording of a finite speed, the curve is continuous and always has a definite
tangent not perpendicular to the abscissa. Thereby it satisfies the criterion
concerning the existence of the derivative.

If the YOA) curve is known from sampling points, then using the function
values in the two-two neighbouring digitization points, the derivative (3.4) can
be approximated by the formula [Obadovics 1977]:

1K) YA ANY AL +BYAANL-BA 2] (35)

i—3,4,...,L=2

where h is the sampling interval. There are other approximations using fewer
or more neighbouring function values than Eg. (3.5), but this was chosen
because with fewer points, statistical noise would be increased whereas relations
with more sampling points result in an increase in machine time. Naturally at
both ends of the curves where there are no neighbouring points one has to be
content with an approximation with the left or right derivatives [Obadovics
1977]:

YN *|r[BA+)-BA)] i—1,2
(3.6)

BM) « X[YLAL- O i=(L—1,L

As we have seen in Section 2 relative depth deviations can be approximated by
a polynomial:

A(Xf Kk a0+aXXi+aXf+..+aPXf i=1,2,...,L (3.7

It should be noted that relation (3.7)—disregarding the physical meaning—is
mathematically according to Weierstrass’ theorem [Obadovics 1977] in the case
of a continuous function, since—choosing a suitably great number of power P
any accuracy of the approximation can be achieved.

Substituting approximation (3.3)—using relation (3.7)—into the left side
and, approximation (3.2) into the right side of equation system (3.1) the follow-
ing is obtained:

YOA) + YOA) ma0+ a, Al a2xXf + ... + aPX ] «
*  + b2YOAL+b3YYXi)+... +bNWNXY) i=12 ..., L (3.8)

One can see that instead of the JYAD), i = 1 2, ..., L unknowns of equation
system (3.1), in relation (3.8) considerably fewer, only the ap,p = 0, 1, .... P
coefficients in the polynomial of the depth deviation and the bn,.n = 1,2, N
parameters in the linear combinations of the functions, should be determined.

Since in this way the number of unknowns in (3.1) could be made much
smaller than the number of equations, relation (3.8) becomes overdetermined
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and the unknowns can be determined, e.g. by the method of least squares
[Janossy 1965]. Forming the difference of the left and right side of relation (3.8)
and then the quadratic sum the following can be written:

0= iZ(l{B,u,.)+ rm 1fa0+«l**+-+M T]-

b1-b 2Y2(Xi) - .. .- b NYN(XD)}2 (3.9)

The unknowns are determined so that 0 should be minimal, i.e. the derivatives
according to the wanted parameters should be zero:

Cap - O, p - 1 yrrey

(3.10)
4B _
=0 =12 N

The normal equation system obtained after performing the derivations (3.10)
includes (N+ P+ 1) linear equations and as many unknowns. It should be noted
that coefficients b, n = 1,2, ..., N will not be necessary further on: these are
the so called surplus parameters needed only to establish the system of equa-
tions.

By introducing matrices the solution of (3.8) will be clearer using the
method of least squares. Let:

rlor2(*i) n(xl) - NXY ~yi(x)  ~Y((XDXI -Ba)*T
M= 1 YAXD YIAXD) . W(X) ~yi(x -y;(x29x2 -y;(x 9=
— o y3*L) -mB [1 -B 4o ~Y[{XdXL YIXx{_
and
b{
I b2
|
« |y _bN
l_ao (3.12)
YI(XI)_ al

Clp

In matrix form (3.8) is:
M e « Yj (3.12)
The mat!rix equation obtained from (3.9) and (3.10) using the method of least
squares is:
(MT =M) = = MT «\\ (3.13)
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where MT is the transposed matrix of M. The solution of (3.13) is:
I = (MTeM)-1 «(MTeY)) (3.14)

One can see that the overdetermined linear system of equations (3.8) can be
solved relatively easily in a suitably ordered form by means of transposition,
multiplication and inversion of the matrix.

Knowing the polynomial coefficients a0, ax, .... apdetermined by (3.14) the
depth deviation curve A(XY varying from point to point can numerically be
given forevery i = 1,2, L sampling point by relation (3.7). After calculating
deviations A(Xt) the corrected curve values are determined as follows: knowing
the values of A(X{) and the sampling interval h. sampling point Xk nearest to
the corrected depth value can be determined. The distance d(Xk) from this can
be written as follows:

d{XK) = A{Xp-{XK- X} (3.15)
where:
\d(XK)\<h
Knowing Xkand d(Xk) the interpolated value of the corrected function value is:
YrrXt)= B4 +A(Xf\ * Y(XK)+d(Xk) mV;(XK) (3.16)
i= 12, ...L

where T/(Xk) can be calculated from (3.5).

Since in order to preserve the linearity in A(XX the series development of
(3.3) went up to the first derivative only, (3.16) can be regarded as a first
approximation only. Considering the corrected curve always as an initial value
the iteration can be continued until the value of the quadratic deviation (3.9)
no longer decreases to any great extent, i.e. the form of the corrected curve does
not vary any more. It should be noted that because of assumption (3.2) the value
of Qgiven by (3.9) will not compulsorily approach zero with increasing number
of iterations. This does not matter since, according to what was said at the
beginning of the section, operator Fin (3.1) cannot accurately be given. More-
over parameters b0, bx, .... bNin the linear combination of Eq. (3.2) are not
directly included in the values of the polynomial calculated from Eq. (3.7); thus,
presumably the polynomial is not too sensitive to these parameters. As the
results discussed later will also prove, the stipulation that from the good or less
good O values the parameters belonging to the lowest possible 0 should be
chosen seems acceptable even if this O is relatively still too high. (We do not
intend to determine the function YfX) from the other curves, we only want to
match it to them and, at the same time, retain its characteristic features.)

If there are K logs to be corrected and (N-K) logs considered to be correct
in depth, where K can be one of the 1,2. ..., N values, then every iteration phase
consists of K cyclically inverted iterations. Taking one of the logs to be corrected
for Y), it is corrected in the way described above using the other (A-I) curves.
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Then the second, third, Ath log will be taken for Y1so that the (TV-1) curves
to be used will include those corrected before. For depth matching, apart from
giving the number of iterations, only the order number of the polynomial
describing the relative depth deviation in (3.7) should be prescribed.

4. Relative depth matching of well logs and the quantities derived from coring

In the course of geological exploration, for the integrated interpretation of
all information depth matching of data of different origin is required. Depth
errors may lead to apparent contradiction between well logging and core data.
Since the latter represent a small volume of rock, a small depth shift may cause
great difference. The depth correction method described in Section 3 cannot
directly be applied to this case since cores are not known at equidistant intervals,
and —as generally the yield is not complete - the missing neighbouring points
make derivation impossible even by approximation.

For phrasing the problem let us consider Fig. 2. The computed porosity
logs ¥YOT,), YZAXi).....\NXj). i= 1 , 2 areassumed to be correct in depth
in relation to each other. (This can be obtained by the method described in
Section 3.) Our aim is to match the quantities derived from the ®(XT),
in = 1.2......M core samples known at not equidistant sites to these logs. At
depth point Xm(in = 1,2,..., M). the Y Xm+J(Xm)], ..., YNNXm+ A(Xnj] curve
values, taken at the real depth point (Xm+A(Xn)), belong to the ®(XT) quantity
to be matched. The function describing the depth deviation is also illustrated
in the figure. The task is to define the function A(X) since in the knowledge of
this, depth correction means the transfer of the corresponding ®(XT) quantity
from the Xmdepth point to the [Xm+ A(Xm] point.

One can see that as opposed to the depth correction of the well logs, here
not a new function value will be calculated in every sampling point but the
corresponding quantity will be transferred to a new depth. The steps of the
solution are similar to those in Section 3. We assume that the values belonging
to each other are related; this relationship can be described by an operator F:

D(XT) = FLY,(Xm+A(XJI\ Y2Xm+ A(XN)). ... YN(Xm+ A{Xm)\
m=12 ..M 4.1)
Operator F is approximated by a linear combination of the curves:
FLYXXm+A{XJ] ...... W Xm+A(Xm)]\ =
= b0+ bl YI[Xm+A{Xm)] + ... + bBNYN[Xm+ A{Xn] (4.2)
m=12 .., M

Developing in a series the right side of Eq. (4.1), and — for the linearity in
A(Xm) — approximating it up to the first term, we can write:



.. .depth matching of borehole information... 343

Fig. 2 Matching of core data to porosity-depth functions derived from well logging curves
Yt(X). Y2(X)....... Yn(X) porosity logs considered to be correct in depth: ®(X)  porosity
values of core samples: J1(X) function of depth deviation

2. dbra. Magadatok mélységének illesztése karolazs mérésekb6l szarmaztatott porozitas
gorbékhez
YX), Y2(X), .... Yn(X) — mélységileg helyesnek tekintett porozitas szelvények:
@& a magadatokbol szamitott, nem azonos kdzokként ismert porozitas értékek:
/1(X) — a mélységellérést leird fliggvény

Puc. 2. cornacosanmne rny6uHbl KepHa ¢ KpUBOW MOPUCTOCTM, BbIBEAEHHON MO CKBaXUHHDIM
n3MepeHnaMm

Y'\X), YZ(X), ey Yn(x)—AMarpaMMbl NOpMCTOCTM, CYUTA LW MECH NPaBUNbHBIMU No [Ay6uHe;

@D - suiuMcneHHbie NO KepHY 3HAYEHMA NOPUCTOCTM, NONYUYEHHbIE 3a HEpPABHbIE WHTEPBANbl;

d(X) — QYyHKUMA, ONUCbIBAlO W as PAacXOXAeHUA no rnybuHe
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YXm+A(XIN * (X)) + A(XJ mYH(Xn) 4.3)
n=112 ,N m=12 M

In Eq. (4.3) the notations of Eq. (3.4) were used and the derivative can numeric-
ally be approximated by formulae (3.5) and (3.6).

The A(Xn) depth deviation is approximated by a polynomial the same way
as in Eq. (3.7):

A(Xm Kk a0+alXT+a2X1l+..+aPX? m= 1,2 , M 4.9

Substituting the approximations (4.2), (4.3) and (4.4) into the system of equa-
tions (4.1) one gets:

O(T) - b0+ yj XM YA(Xn)- X afll
= p-0

m=1,2,... M

This system of equations consists of M equations corresponding to the
number of core samples and includes (N+ P+2) unknowns from which (P+ 1)
are the coefficients of the polynomial describing the depth deviation and (jV+ 1)
are the parameters in the linear combination of the well logs. Since Eq. (4.5)
contains the products of the parameters b, n=01 .., N and ap
p = 0,1, P, the system of equations is not linear. IfM > N+ P +2 then the
overdetermined system of equations of this type can be solved by iteration using
the method of least squares. Because of series expansion (4.3) even the result
obtained by the iteration can be considered only as a first approximation; thus,
in order to avoid double iteration it is expedient to look for a perhaps less
accurate but clearer and faster method for the solution of Eq. (4.5).

Let us write Eqg. (4.5) in the form:

W~ ROFXBY G H XIX(xj e,

4.5)

m=12,..., M

For the two terms in braces in equation system (4.6) let us introduce the
notations

A(XJ = b0+ X bn¥r(XJ 4.7)

B(xJ= XbY,xJ | m=12 M (4.8)

=0
Using (4.7) and (4.8), (4.6) can be written as follows:

O(XT) * AXM+B(Xn) m=12 .., M (4.9)
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Relation (4.9) expresses in an illustrative way that the quantity ®(XT) from the
core sample can be composed of two terms. The first is a linear combination
of the quantities obtained from the well log measurements and the second is the
perturbation due to the depth deviation.

Since the B(Xn) part describing the perturbation is probably much smaller
than the A(Xn) term, the system of equations (4.6) can be solved in two steps.
First let us take the following quadratic sum:

M

0L = 1_ [®{xD-AXR (4.10)

As one can see from (4.7), in (4.10) only the parameters bn n =0, 12, ..., N
are included. Their determination can be carried out by minimizing

80,
- =0. n=012, ....N (4.11)

The normal equation system obtained by derivation is linear thus the determina-

tion of the unknowns presents no problem.
After calculating the parameters bnn = 0, 1, ..., N the following difference
can be formed:

AP{XT) = d(XT)-A(XJ m= 1.2,..,. M (4.12)
This can be approximated by the perturbation term of Eq. (4.9):
AdM)xB(XJ m=12 ., M (4.13)

In the expression of B(XJ the polynomial coefficients ap,p = 0, 1.....P are the

only unknowns (see Eq. 4.8) since coefficients 6,, n = 0, 1, ..., N were calculated

before. For the computation of ap, let us produce the following quadratic sum:
M

02= 1 Ne(XJ-B(XJY (4.14)

The value of 0 2is required to be minimal i.e. the derivatives according to ap,
p=0 1.2, .., Pshould become zero:

d&2
-N =
dap

The normal equation system which is obtained after performing the derivation
is also linear in the variables, thus the unknowns can easily be determined.
By introducing matrices, the algorithm of the solution is the following. Let:

BA) YAXX .. YIX)
Yi(X2  yAX2 .+ (X2 (4.16a)

YIXM)  Y2(XM) ..o Yn(Xm)

0 p=01,.,P (4.15)
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rapgr Vv
o= PXA - bi (4.16b)
_P(Xwm)_ v
The solution obtained by minimizing the quadratic sum (4.10) is
I = (M1IT M 1)1 (M1t @) @.17)
The difference (4.12) in vector form is
Ad = ©-M1 U (4.18)

Knowing the coefficients b,,sn = 1, 2, TVIiet us take

N

CXd =1 bX(xj mM=12 w M
=1

~C{Xt) X&Xy) .. XpC(XI) " Q"

M2 = C(X2 X2C(X2 .. X\C{X2 = 3

C(XM XMC(XM) ... XmC(Xm) R
The solution obtained from the minimization of the quadratic sum (4.14) is:
12 = (M2T =M2)-1 «(M2T =Ad) (4.20)

The non-linear, overdetermined equation system of (4.5) has been reduced to
two linear systems of equations, to be solved one after the other, by the matrix
algorithm of (4.16)—4.20).

By means of solution (4.20) obtained for the coefficients of the polynomial
describing the depth deviation the numerical value of the depth deviation AXm
can be computed for every core sample from relation (4.4). Depth correction
means the transferring of the quantities ®(X1), m = 1 2, ..., M consecutively
from depth Xmto depth [Xm+A(Xn]. Since the series expansion (4.3) was
performed only up to the first derivative, the depth correction can be considered
only as a first approximation. Considering the new depth values always as initial
data, the method can be repeated till the values of the quadratic differences,
(4.10) and (4.14), begin to decrease substantially. Note that core sampling point
Xmshould not necessarily coincide with one of the sampling points of well log
curveflsince interpolated curves can be obtained, for example, by formula (4.3)
as well.

In the algorithm it was assumed that the accuracy of the depth data of the
well log measurements is much greater than that of coring because of the
continuous measurement, thus the depth correction was performed only for the
depth values of the core samples. The point of interest in the method is that the
correlation coefficients often needed in practice are obtained together with the
depth correction.
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5. Relative depth matching of well logs and geological columns

In the course of industrial application it is often the case that the geological
column obtained from coring or approximately known from neighboui ing wells
should be made accurate by means of the well logs of the given borehole. The
YXj), Y2(Xj), WXj),j = 12 L well logs sampled and already correc-
ted according to depth by the method described in Section 3 are illustrated in
Fg. 3. The approximate knowledge of the geological column means that the
lithological code representing the rock type cannot unconditionally be given
even in a first approximation at every sampling point. (This may, for instance,
be due to the insufficient core yield.) Moreover, where it is known, at that
sampling point the indices k = 1, 2, ..., K are introduced in order to differen-
tiate the rock types. Thus YRK(Xj) means that the Xj sampling value of the uth
well log can be assigned to the rock type denoted by the index k. Let the number
of sampling points belonging to the rock types denoted by the indices
K =12, .., Kconsecutively be Jk = ¥,, ¥2, _ fK As in the previous Section,
we consider that the well logs are correct in depth, thus the Xj place of the /th
lithological code will be corrected at the sampling points for every /. We can
assume that on the well logging curves some [Xj+A(Xj)] real depth value
belongs to the Xj place to be corrected.

Approximating the function values taken at the real depth points the same
way as was done for (3.3), we can write:

YAAXJI+AIXF] * YA(X))+A(X))- (X))
J=12,..,L n=12...N
The depth deviation function A(XR is approximated by a polynomial, as in (3.7):

P

A(Xj) * a0+alXj+... +aPXp = X aPXj
- 0 (5.2

(5.1)

j =12, ..L
Substituting approximation (5.2) into relation (5.1) we get:

Y'RDG+AOG] « YA\Xj)+~ £ ap§d YEKX)) (5.3)

The average of the function values corrected by Eqg. (5.3) can be calculated by
rock types for every well logging curve:

(5.4)
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Flg 3 Matching of geological column to well logging curves
YAOAOQ. YZ(X) ....... Yn(X) well logs considered to be correct in depth; L lithological column;
A(X) - function of depth deviation

! . Geoldgiai rétegsor karotdzs gorbé ez torténdé igazitasa

3. dbra I k békh

Y,UA), sz) ....... Yn(X) - mélységileg helyesnek tekintett karotazs szelvények; L litologiai
rétegsor; A(X) a mélységeltérést leiré fuggvény

Pac. 3. cornacosanue nuTonorMueckoi KONOHKM C KapoTaXHbI MW KPUBLI MU
YOAO. Y2(A0. ¢--- Yn(X) — KapoTaXHble AmMarpamMMmbl, cHMTaAa W MNECA NPaBUNbHBLIMU NO rNy6uHe;

L — nuntTonormyeckKasas KONOHKa; A(X) q)yHKLU/Iﬂ, onucblBaw W asa pacxoxageHuna no I'ﬂy6VIHE‘

where C,(Xj) is the Kronecker-delta:
) if 1=k
wij) = if 1k
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In formula (5.4) the summation should be performed log by log at places of the
same Alithological code and the sum should be divided by the number of points
in the sum. If there are //curves and K different lithological codes then a total
of N m different values of Ark will be obtained.

Let us introduce the following quantities that can numerically be calculated
from the well logging curves:

Ark = J WK(Xj)) n=12.,N k=12 K (55

JKj:l

=t L xp r;aXXj) sH(Xj)
1

Jkij=

(5.6)
n= 12, N p=0%42 ,P, k=\,2,K
Expression (5.5) means the average function value of the «th curve belonging
to the Ath lithological code. Expression (5.6) represents the mean of the deriva-

tive of the «th curve weighted by the corresponding power of the depth value

belonging to the Ath rock type.
Using expressions (5.5) and (5.6) the corrected mean value defined by

relation (5.4) can be written — after some rearrangement — as follows:

Ark = Ank+ » ap-AW n=12,..., N «k=1,2,...,K (5.7
P=o0
The quadratic sum of the deviations from the average can be produced for every
rock type and for every type of well logging:

Ork= £ m X j +AiXJI-A'J}2+0K(Xj)
i= 1 (5.0)

n=12 .,N k=12

where the summation forj relates to places of the same rock type.
Substituting approximation (5.3) and relation (5.7) into the quadratic sum

of (5.8), we get:

Ok=£ (B A +(£ W )- T*XX)-AMl- £ a~A mSK(X)
i= 1 ( / J (

\'p =o p=o

5.Y)
n=12,...7v A= 1.2,.. 2

After rearranging expression (5.9) and summing by curves and by rock types
we can write:

0= £ £ ¢ X afXf YfIKX)- AfK w )

e ] -
(5.10)
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The meaning of the terms in the first square brackets of the quadratic sum
(5.10) is clear: the mean value belonging to the given rock and to the given curve
and calculable by (5.5) should be subtracted from the respective curve value for
every curve and every sampling point. The second square brackets contain the
coefficients ap,p = 0, 1, ..., P of the polynomial describing the deviation which
is to be determined. Furthermore, the derivatives of the logs weighted with the
powers of the depth value and the respective mean derivatives weighted with the
powers of the depth as defined by formula (5.6) can also be calculated numeric-
ally.

The coefficients of the polynomial describing depth deviations are deter-
mined so that (5.10) should be minimal, i.e. the derivatives according to the
variables should be zero:

° _ 0 =01,2,P 5.11

cap= 0 P0L.2, (5.11)
By performing the derivations of (5.11), a linear system of equations is obtained
for the coefficient of the polynomial consisting of (P+ 1) equations and includ-
ing (F+1) unknowns. The solution ensures that the quadratic sum of the
deviations from the means characterizing the rock types will be minimal for each
log. The solution using matrix formalism is the following. Let:

I (CKJU')-/0 | (T.YATT-TU) ..
n-1 not =1

M= X (YNT2-/0 X (T2r{exd-All) m X (xar:kx9-AE) oo

X WIY?\x6-a\2) .. X {Xpr:RXD-A%)
Matrix M consists of as many lines in as many sampling points the lithological
code is known. The A$ weighted mean values of the derivatives previously
calculated by formula (5.6) for the Ath lithological code should be subtracted
from the derivatives of each log multiplied by the powers of the depth. Further
notations are:

X (Ak- YTW)

a0
Y = X (Ank- y*\x2) (5.13)

N ap
X (Ank- YEXXJ)
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The number of the lines of vector Y corresponds to the number of the columns
of matrix M. Here, the curve values taken at the sampling points should be
subtracted from the mean function value defined by formula (5.5) for the Ath
lithological code. The solution obtainable by minimizing (5.10) using matrices
(5.12) and (5.13) is:

= (MTeM T 1+(IVT +Y) (5.14)

Knowing the polynomial coefficients a0, al,  apdetermined by solution (5.14)
the zf(Y,) curve defining the depth deviation can be obtained by means of
relation (5.2) for the sampling points i = 1,2, ..., L.

The correction of the lithological column consists of transferring the places
of lithological code jumps i.e. those of the layer boundaries from place X} to
the [Xj+A(Xj)] point by correction (5.2), and thus a new, corrected lithological
column is obtained. Since the series expansion (5.1) was performed only up to
the first term in order to preserve the linearity in A(X), the corrected geological
column can be regarded as a first approximation. If averages (5.5), (5.6) and
matrices (5.12), (5.13) are determined according to the new lithology, the
iteration can be continued by solution (5.14) till the value of Qdefined by (5.10)
substantially decreases.

To sum up, lithological columns are corrected by the above mathematical
statistical method using the constraint describing depth deviations by a polyno-
mial so that the quadratic sum of the differences between the measured values
and the respective means should be minimal for the entirety of rock types with
different mean values on different logs.

6. Conclusions

Relative depth matching of the information obtained from boreholes is an
essential condition for interpretation purposes. The elaborated mathematical
statistical method makes it possible for a computer to be used for the inter-
mediate step between measurement and interpretation, i.e. for relative depth
matching. It was illustrated that the measuring features enable the value of the
depth deviation varying from point to point to be approximated by a polyno-
mial. In this way the accordion-like depth correction is given a mathematical
phrasing.

The method enables the simultaneous correction of all the given logs but
it is possible that supposing certain curves to be correct in depth the others may
be matched to them. It follows from the mathematics of the method that at the
boundaries there are no missing values left thus the number of depth points will
not change during correction. The method is suitable for dealing with the
problems of matching core data and lithological columns to well logs as well.
Depth deviations are determined by calculation — instead of trials — thus being
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substantially faster even than the cross correlation method in spite of the fact
that — depending on the order of the polynomial — higher order deviations
are also considered.

The method induces hope that in production drillings the parameters of
reservoir geology may be determined with sufficient accuracy without coring,
merely from well logging, using the correlation coefficients from certain explora-
tion drillings. To apply the method in practice a computer program was written
[Szendrs 1978, 1980]. Its description and the experience gained with its applica-
tion as well as the results are due to be dealt with in a further paper.
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A MELYFURASBOL SZARMAZO INFORMACIOK AUTOMATIKUS RELATIV
MELYSEGEGYEZTETESE
. ELMELETI ATTEKINTES

SZENDRO Dénes

A mélyfarashol szarmazo informacidk alapjan térténd értelmezés el6feltétele, hogy az adott
katban lev6 adatok mélységhelyesek legyenek. A kdzds mélységpontra hozas céljabdl feltesszilk,
hogy a pontrél pontra valtozdé nagysagu A(X) relativ mélységeltérések polinommal kozelithet6k.
Sorba fejtve a mélységegyeztetésben részt vevd Y(X) szelvényt a mélység szerint, a Taylor-sorban
levé A(X) mélységeltérés éppen a polinom helyettesitési értékével egyezik meg. Minimalizalva az
egyeztetésben részt vevd adatokbol képezhet6 hibafliggvényt, a polinom egyitthatoi kiszamithatok,
s a korrigalt adatok a sorfejtés alapjan megkaphatok. Az eljarast néhanyszor az ésszes mennyiségre
megismeételve, a szamitott értékek a mélységkorrigalt adatokhoz konvergalnak. A médszer nem csak
a linearis elcstszasok korrigalasara alkalmas, hanem a polinom fokszamatdl fligg6en ,,harmonika-
z0” eltolédasok kikiiszébolésére is. Ha a mélységeltérést leir6 polinom fokszama nulla, azaz
konstans elcstszasrdl van sz6. akkor a mddszer a hagyomanyos keresztkorrelacios eljarassal meg-
egyez6 eredményt szolgaltat. Mivel azonban az elcslszast kiszdmolja, a hagyomanyos eljarasnal
lényegesen gyorsabb. Az eljaras alkalmas a karotazs szelvények kozotti, a magadatok és a karotazs
szelvények kdzotti, s a geoldgiai rétegsor és a karotazs szelvények kdzotti mélységeltérések korriga-
laséra.
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ABTOMATUYECKOE COINTIACOBAHWE AAHHbIX CKBAXWHHOW FEO®U3NKU
Mo OTHOCUTEJ/IbHbIM TNMYBNHAM
. TEOPETUYECKOE OBOCHOBAHUVE

[JeHew CEHAPE

MpefnocbINKoi MHTEPNpeTaLuun AaHHbIX CKBaXKWHHON reom3nKnN SBNSETCS NpaBWIbHOE
onpegeneHne rny6uHbl, K KOTOPO OTHOCATCA T€ WAW WHble faHHble. [N npuBedeHWUs LaHHbIX
K 06LLein rNyOMHHOW TOYKe NpeanonaraeTcs, YTO OTHOCMTENbHbIE PaCcX0oXAeHNsa Mo raybuHe J(X).
BE/IMYMHA KOTOPbIX MEHSIETCA OT TOUKM K TOUKe, anmnpoKCUMUPYHOTCS MONMHOMOM. locne pasno-
)KEHWs1 MOABEPrHYTOM cornacoBaHuto Mo ray6uHe kpueoi Y(X) B psg, OTKIOHEHWe Mo rny6uHe
N(X) B pagy Tailinopa TOYHO COBNafaeT coO 3HaYeHWeM MOACTAHOBKM MofAuHOMa. locne npuBege-
HUA K MUHUMYMY (YHKLMM OLIMGOK, 06pasyemMoil M3 y4yacTBYHOLIMX B COFNacoBaHUM AaHHbIX,
MOXHO BbIYMCAUTL KOIPMULMEHTLI NOAMHOMA W MOMYYUTb WUCMpPaBfieHHble AaHHbIe Ha OCHOBE
pasnoxeHus B paf. Ecnu Takas npouedypa MOBTOPSIETCA HECKONMbKO pa3 ANsi BCEX BeMUMH,
BbIYMC/IEHHbIE 3HAYEHUS NPUOAN3ATCA K MCMPABMEHHbIM 32 PacxXoXieHue no rny6uHe AaHHbIM.
MeTog NpurofeH He TONMbKO ANt UCMIPABNEHNS TMHEHbIX CMELLEHWIA, HO TaKXXe U1 AN YCTPaHeHUs
OTK/IOHEHUS C MEPeMEHHbIMM 3HaKaMy B 3aBMCMMOCTM OT CTeneHW nonuvHoma. Ecnu cTeneHb
MOIMHOMA, ONUCHIBAOLLErO OTK/IOHEHWe MO FNy6uHe, paBHa HY/O, T.e. MMeeT MeCTO NOCTOSHHOe
CMeLLeHMe, MeTO/ AaeT pe3ynbTaT, COBNafalLLnii ¢ TPAAMLMOHHBIM METOLOM B3aUMHOM Koppens-
ummn. MocKonbKy, 0fHaKO, MPU 3TOM BbIYMC/SETCA CMELLEHUe, JaHHbIA MeTof 3HaunTenbHO Gbl-
CTpee TPaAWLMOHHOIO, OH TaKXXe NO3BOJISIET BBECTM MOMPABKM 32 PACXOXAEHUS MO TNy6UHe MeXLY
KapoTaXHbIMW fuarpaMmamMu, Mexay KepHOM W KapOTaXHbIMU JuarpaMMamu, a TakKe Mexay
NIUTONOTNYECKOW KOMOHKOW M KapOTaXKHbIMW AnarpaMmMamu.






