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AUTOMATIC RELATIVE DEPTH MATCHING OF BOREHOLE
INFORMATION 

I. THEORETICAL REVIEW

Dénes SZENDRŐ*

One of the prerequisites for interpreting borehole information is that data of the given well 
should be correct according to depth. In order to obtain a common depth point it is assumed that 
the J(A') relative depth deviations changing from point to point can be approximated by a polyno
mial. Developing in a series the T(A') log or logs to be matched according to depth, the .4(30 depth 
deviations in the Taylor's series agree with the substitution values of the polynomial. Minimizing 
the error function which can be formed from the data to be matched, the coefficients of the 
polynomial can be calculated and the corrected data obtained. If the process is repeated several 
times the calculated values converge. The method is suitable not only for correcting linear slips but, 
depending on the degree of the polynomial, also for eliminating dev iations of varying sign. If the 
order of the polynomial describing the depth deviation is zero. i.e. it is a constant slip, the result 
obtained by the method is as good as that of the conventional cross correlation method. It is, 
however, substantially faster than the conventional one because of calculating the slip. The method 
is suitable for correcting depth deviations between well logs, between core data and well logs, and 
between the lithological column and well logs.

Keywords: well logging, depth deviation, borehole information, computer programs, algorithm, match
ing

1. Introduction

Similarly to every measurement, borehole information has its uncertainties 
characterizing the method, viz. the conditions, the instrument and the physical 
parameters of measurement. Both the method and the measured quantities may 
considerably differ from each other, but when determining their characteristics 
common features can be found as well. In the case of borehole information this 
common feature is their being recorded as a function of depth. Since measure
ments generally follow each other, measured values of geophysical and geologi
cal parameters corresponding to the same depth will not appear at the same 
place on the records, depth differences may occur. The causes of depth devia
tions will be discussed later.

In order to decrease the depth differences either the methodology should 
be modified or the logs should be corrected afterwards. In the first case the 
application of sonde trains would be necessary but even then there would not
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be any possibility to perform all the measurements simultaneously because of 
the great number of geophysical parameters. In the second case, in the conven
tional manual evaluation, the characteristic points of the curves (maximum, 
minimum, inflexion point, etc.) are taken into consideration when fitting the 
logs, i.e. matching relative depth. Using this method the experience of the expert 
and visual examination of the curves yield good results, but in the field of 
computer aided processing there is limited reference in the literature to depth 
matching.

In recent years attempts have been made to shift the curves to an extent 
determined by the operator, after reproducing the logs on a graphic display 
connected to a computer. It seems that this interactive method is suitable only 
for correcting very great deviations. The method mostly applied automatically 
corrects the constant slip of ihe logs. A reference log is selected, it is recorded 
for each run together with the geophysical parameters to be measured. The 
repeatedly measured log is considered as the base log. For depth matching cross 
correlation is computed between the base logs. Maxima of the correlation 
coefficient mark out the corresponding values. If this method is employed for 
the complete log, it only eliminates the constant deviation, although not only 
the extent but even the direction of the depth differences may vary from point 
to point. If cross correlation is performed for short intervals, then the problem 
arises in smoothing the differences at the boundaries of the intervals.

In this paper the mathematical phrasing of the possibilities of depth match
ing is presented, and a computer aided method is described which eliminates the 
above mentioned difficulty. A further advantage of the method to be described 
is that it is not necessary to measure the base log for each run. 2

2. Mathematical phrasing of depth differences

In order to describe mathematically the relative depth differences of well 
logs one has to start by examining the measurements. For well logging the sonde 
is lowered into the borehole by a cable. The signals emitted by the sonde are 
transmitted to galvanometers or to the magnetic tape recorder through cable- 
conductors. The camera is controlled by the movement of the cable through a 
transmission system whereas when using magnetic tape recording two indepen
dent depth determinations are used, viz. magnetic depth marks on the cable and 
the sampling interval controlled by the logging speed. Deviations from the 
correct depth values may originate from the following causes: differences in the 
reference points of the sondes; stretching of the cable caused by the interaction 
of the cable, the sonde and the borhole; inaccuracy of the transmission system 
between the camera and the cable; deviations from the set logging speed when 
recording on magnetic tape.

Dealing with the causes of the A(X) depth discrepancies in increasing order 
of the powers of the recorded X  depth of the sonde, leads to the following 
grouping:
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a) The constant term (of zero order) comes from the difference between the 
reference points of the sondes:

A(X)o = C (2.1)
b) The linear term is obtained from cable stretching caused by:

— cable stretching due to sonde weight. This can be calculated on the basis 
of Hooke's and Archimedes' laws supposing elastic deformation and 
including the buoyant force of the mud:

A{X)l = k - Q ^ l -  Ÿ j ' X  (2.2)

where к is the elastic module of the cable.
Q is the weight of the sonde in air, 
ys is the specific weight of the sonde, 
ym is the specific weight of the mud;

- cable stretching due to the friction of the sonde on the wall of the 
borehole and/or to the pressing of it against the wall:

A(X)2 = k p N - X  (2.3)
where p is the friction coefficient between the sonde and the sidewall, 

N is the pressure force against the sidewall; 
the changing of the actual size of the film or paper, when digitizing analog 
logs:

А(Х)ъ = к хХ (2.4)
c) The second order term is obtained by means of the following:

the weight of the cable lowered in the borehole is in linear ratio with the 
length of the cable thus if cable stretching obtained by Hooke's and 
Archimedes’ laws is integrated according to depth, a relation is obtained 
which is a depth function of second order:

АЦ0 4 = 2 kq (

where q is the weight of the cable for unit length, 
yc is the specific weight of the cable;

- the hydrostatic compression on the surface of the cable in the mud is 
proportional to its length. Thus the relation obtained by integrating the 
frictional force proportional to the hydrostatic compression -is also a 
depth function of second order:

X2 (2.5)

A(X)s = ~ kym( W +j)X2 ( 2 . 6)

where W is the friction of rest between cable and mud, 
j=j(v) is a quantity depending on logging speed;
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the force due to the friction of the cable on the wall of deviated boreholes 
is proportional to the component, perpendicular to the wall of the 
borehole, of the weight proportional to the length of the cable. Integrat
ing this effect according to depth gives a quadratic relationship:

A(X)b = ~ kqfi] ! 1 -  ~ j  sin (p ■ X2 (2.7)

where fi, is the friction coefficient between cable and sidewall.
tp is the angle between the axis of the borehole and the vertical: 

- integrating the effect of the temperature increasing quasi-linearly in 
depth, again a quadratic relation is obtained:

A(X)7 = 12 *д,Х2 (2.8)

where a is the linear thermal expansion coefficient of the cable, 
g, is the geothermic gradient.

d) Added to the former terms, the following can be approximated with those 
of higher order:

the effect of sticking and restarting of the sonde,
the effect of harmonic vibration of the sonde during the run,
the "depth correction” of the operator or, with digital recording, that of
the special electronic unit.

If logs of different runs are matched then the relative depth deviations are 
obtained as the difference of the two polynomials — which is also a polynomial 
The coefficients of the terms describing the relative depth difference are obtained 
from the changing of the parameters in relations (2.1)—(2.8) between two runs.

In the case of sidewall coring the same reasoning can be applied since the 
depth difference is caused by cable stretching here too. For conventional coring, 
deformation of the drill pipe should be taken into consideration instead of that 
of the cable. During well logging, tensile load affects the cable whereas in coring 
compressive forces are acting on the drill pipe, thus the depth differences owing 
to elastic strain are supposed to sum up.

3. Relative depth matching of well logs

For the mathematical phrasing let us consider Fig. I. As a first approach 
let us suppose that curves Y2(X). Y3(X), .... YN(X) are—related to each other 
correct in depth and we should like to match function Y{(X) to them. At depth
point Xh (i = 1,2......L), to function values Y2(Xj), T3(A'i), ..., YN(Xt) belongs
the value У,[Т, + А(Х()] of the function to be matched. For the sake of clarity 
the function values belonging to each other are marked in the figure and the 
deviation function A(X) is plotted at the bottom.
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Fig. I. Illustration of depth deviations of well logging curves 
Y{(X) curve, to be matched; Y2(X). Y3(X). УДУ) curves considered to be correct in 

depth; A(X) function of depth deviation

/. ábra. Karotázsgörbék mélységeltéréscinek szemléltetése
Y,(X) egyeztetni kívánt görbe; Y2(X). У3(У)....... УДУ) mélységileg helyesnek tekintett

görbék; A(X) a mélységeltérést leíró függvény

Рис. 1. Демонстрация расхождений между каротажными кривыми по глубине
УДУ) кривая, подлежащая согласованию по глубине; У2(У). У,(А)....... УДУ) кривые.
считающиеся правильными по глубине; А(Х) - функция, описывающая расхождения по

глубине

Our aim is to determine A(X) since in the knowledge of this, depth correc
tion means substituting the respective У,[Л",+ zf(A',)] function value into Y f X t) 
at the i = 1,2......L sampling points.

To perform the calculation we assume that the values belonging to each 
other are related; this relationship can be defined by an operator F since each 
log provides certain geophysical information about the same place:
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(3.1)
If the operator were precisely known, then the system of equations (3.1) would 
theoretically be solvable because it contains L unknowns in the values at the
i — 1,2......L sampling points of the d(2Q function of depth deviation and it
consists of altogether L equations. Knowing the F operator, however, would 
give the impression of a contradiction since it would mean that the У,(30 curve 
could be obtained from the other curves and so it would not be necessary to 
measure it. Naturally from geophysical aspects it cannot be true since the 
individual logging methods «yield additional characteristic information related 
to the other measurements. Since our aim is, besides keeping the characteristic 
features of the curve У,(AO, to match its characteristic places with those of the 
other curves— and not produce it from the other curves—exact knowledge of 
operator F is not required. Between certain logs there is evident correlation, e.g. 
the resistivity logs correlate with each other and with the SP log. In practice, 
in the course of processing, the SP and the gamma-ray logs are replaced by each 
other many times because of their similar characteristics. The porosity indicator 
logs, the neutron-gamma, the neutron-neutron and the acoustic logs are necess
arily correlated with each other.

With regard to quasi symmetrical logs it can be assumed that operator F 
can be approximated by their linear combination. The more curves there are in 
it, mathematically the more probable it is that with one of them the correlation 
is close. If the theoretical function-connection is not linear, it results in a 
decrease of the correlation coefficient; this, however, does not considerably 
influence the result of the subsequent calculations. (If a gradient curve is 
correlated then in the F operator the derivatives of the symmetrical curves 
should be used.)

From the above it can be assumed that operator Fean be approximated 
by the linear combination of the Y2(X), T3(T), YN(X) logs:

Here parameters bY, bN are further unknowns characterizing the correlation 
of the functions.

To determine the depth deviation varying from point to point, let us 
develop in a series the left side of relation (3.1) and to preserve the linearity in 
d(Af;), i.e. approximating it up to the first term, the following can be written:

i = 1, 2, L (3.2)

В Д  + ЖТ,)] *  Y,(Xd + A{Xd ■ Y m  i = 1« 2, L

Here the following notation was used:
(3.3)

(3.4)
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The derivative (3.4) exists for all analog logs since, due to the continuous 
recording of a finite speed, the curve is continuous and always has a definite 
tangent not perpendicular to the abscissa. Thereby it satisfies the criterion 
concerning the existence of the derivative.

If the УДА’,) curve is known from sampling points, then using the function 
values in the two-two neighbouring digitization points, the derivative (3.4) can 
be approximated by the formula [Obádovics 1977]:

1 Ж ) 12 h [У Д ^+ Д ^У Д ^+ Д  + вУДА ^Д- В Д _ 2)] (3.5)

i — 3, 4, ..., L — 2
where h is the sampling interval. There are other approximations using fewer 
or more neighbouring function values than Eq. (3.5), but this was chosen 
because with fewer points, statistical noise would be increased whereas relations 
with more sampling points result in an increase in machine time. Naturally at 
both ends of the curves where there are no neighbouring points one has to be 
content with an approximation with the left or right derivatives [O b á d o v ic s  
1977]:

Y №  * | г [ В Д +1) - В Д ) ]  i — 1,2 

В Д )  «  Jt [УДАД- Д] i = (L— 1), L
(3.6)

As we have seen in Section 2 relative depth deviations can be approximated by 
a polynomial:

A(Xf к  a0 + a1Xi + a2Xf + ... + aPXf  i = l , 2 , . . . , L  (3.7)

It should be noted that relation (3.7)—disregarding the physical meaning—is 
mathematically according to Weierstrass’ theorem [Obádovics 1977] in the case 
of a continuous function, since—choosing a suitably great number of power P 
any accuracy of the approximation can be achieved.

Substituting approximation (3.3)—using relation (3.7)—into the left side 
and, approximation (3.2) into the right side of equation system (3.1) the follow
ing is obtained:

УДА',) + УДА,) ■ [a0 + a , АД+ a2Xf + ... + aPXД «
*  + b2УДАД + b3Y3(Xi) +... + bNYN(Xt) i = 1, 2, ..., L (3.8)

One can see that instead of the Л(АД), i = 1, 2, ..., L unknowns of equation 
system (3.1), in relation (3.8) considerably fewer, only the ap, p = 0, 1, .... P 
coefficients in the polynomial of the depth deviation and the bn, n = 1,2, N 
parameters in the linear combinations of the functions, should be determined.

Since in this way the number of unknowns in (3.1) could be made much 
smaller than the number of equations, relation (3.8) becomes overdetermined
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and the unknowns can be determined, e.g. by the method of least squares 
[Jánossy 1965]. Forming the difference of the left and right side of relation (3.8) 
and then the quadratic sum the following can be written:

0 = X {вд.)+  r m  ■ [а0+«1**+ -+ M T ]-
i= 1

b1- b 2Y2(Xi) - . . . - b NYN{Xi)}2 (3.9)
The unknowns are determined so that 0  should be minimal, i.e. the derivatives 
according to the wanted parameters should be zero:

d&— = o,cap
дв
dbr = 0,

p = 0, 1,..., P 

n = 1,2, ..., N
(3.10)

The normal equation system obtained after performing the derivations (3.10) 
includes (N+ P+ 1) linear equations and as many unknowns. It should be noted 
that coefficients b„, n = 1,2, ..., N  will not be necessary further on: these are 
the so called surplus parameters needed only to establish the system of equa
tions.

By introducing matrices the solution of (3.8) will be clearer using the 
method of least squares. Let:

r l r 2(*i) n (* l)  • . Yn(Xt) ~y;(x  ,) ~Y((Xl)Xl

M = 1 Y2(X2) Y3(X2) . • Yn(X2) ~y;(x 2) - y;(x 2)x 2

1 g y3(*L) • ■ В Д - В Д ~Y[{XdXL
and

1

K> 
— 

__
_

1

I —

b {
b2

bN

_y[(Xl )_
1 —

a0 
a1

- в д ) * Г
- y ;(x 2)x p2

Y[(Xl)X{_

(3.11)

In matrix form (3.8) is:

Cl p

M • I «  Y j (3.12)

The matrix equation obtained from (3.9) and (3.10) using the method of least 
squares is:

(MT • M) • I =  M T • \\ (3.13)
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where MT is the transposed matrix of M. The solution of (3.13) is:
I = (MT • M)-1 • (MT • Y,) (3.14)

One can see that the overdetermined linear system of equations (3.8) can be 
solved relatively easily in a suitably ordered form by means of transposition, 
multiplication and inversion of the matrix.

Knowing the polynomial coefficients a0, ax, .... ap determined by (3.14) the 
depth deviation curve А(Хх) varying from point to point can numerically be 
given for every i = 1,2, L sampling point by relation (3.7). After calculating 
deviations A(Xt) the corrected curve values are determined as follows: knowing 
the values of А(Х{) and the sampling interval h. sampling point Xk nearest to 
the corrected depth value can be determined. The distance d(Xk) from this can 
be written as follows:

d{Xk) = А{Хд-{Хк- Х г)  (3.15)
where:

\d(Xk)\<h
Knowing Xk and d(Xk) the interpolated value of the corrected function value is: 

Y r r(Xt) = В Д  + A(Xf\ *  Yx(Xk) + d(Xk) ■ V;(Xk) (3.16)

i = 1,2, .... L

where T/(Xk) can be calculated from (3.5).
Since in order to preserve the linearity in А(Хх) the series development of

(3.3) went up to the first derivative only, (3.16) can be regarded as a first 
approximation only. Considering the corrected curve always as an initial value 
the iteration can be continued until the value of the quadratic deviation (3.9) 
no longer decreases to any great extent, i.e. the form of the corrected curve does 
not vary any more. It should be noted that because of assumption (3.2) the value 
of <9 given by (3.9) will not compulsorily approach zero with increasing number 
of iterations. This does not matter since, according to what was said at the 
beginning of the section, operator F in  (3.1) cannot accurately be given. More
over parameters b0, bx, .... bN in the linear combination of Eq. (3.2) are not 
directly included in the values of the polynomial calculated from Eq. (3.7); thus, 
presumably the polynomial is not too sensitive to these parameters. As the 
results discussed later will also prove, the stipulation that from the good or less 
good 0  values the parameters belonging to the lowest possible 0  should be 
chosen seems acceptable even if this 0  is relatively still too high. (We do not 
intend to determine the function YfX)  from the other curves, we only want to 
match it to them and, at the same time, retain its characteristic features.)

If there are К logs to be corrected and (N-K) logs considered to be correct 
in depth, where К can be one of the 1,2. ..., N  values, then every iteration phase 
consists of К cyclically inverted iterations. Taking one of the logs to be corrected 
for У), it is corrected in the way described above using the other (A-l) curves.
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Then the second, third, À'th log will be taken for Y1 so that the (TV-1) curves 
to be used will include those corrected before. For depth matching, apart from 
giving the number of iterations, only the order number of the polynomial 
describing the relative depth deviation in (3.7) should be prescribed.

4. Relative depth matching of well logs and the quantities derived from coring

In the course of geological exploration, for the integrated interpretation of 
all information depth matching of data of different origin is required. Depth 
errors may lead to apparent contradiction between well logging and core data. 
Since the latter represent a small volume of rock, a small depth shift may cause 
great difference. The depth correction method described in Section 3 cannot 
directly be applied to this case since cores are not known at equidistant intervals, 
and — as generally the yield is not complete - the missing neighbouring points 
make derivation impossible even by approximation.

For phrasing the problem let us consider Fig. 2. The computed porosity
logs УДТ,), Y2(Xi)......YN(Xj). i = 1 , 2 are assumed to be correct in depth
in relation to each other. (This can be obtained by the method described in 
Section 3.) Our aim is to match the quantities derived from the Ф(Хт),
in = 1.2......M  core samples known at not equidistant sites to these logs. At
depth point Xm (in = 1,2,..., M). the Y1[Xm+ J(Xm)], ..., YN[Xm + A(Xm)] curve 
values, taken at the real depth point (Xm + A(Xm)), belong to the Ф(Хт) quantity 
to be matched. The function describing the depth deviation is also illustrated 
in the figure. The task is to define the function A(X) since in the knowledge of 
this, depth correction means the transfer of the corresponding Ф(Хт) quantity 
from the Xm depth point to the [Xm + A(Xm)] point.

One can see that as opposed to the depth correction of the well logs, here 
not a new function value will be calculated in every sampling point but the 
corresponding quantity will be transferred to a new depth. The steps of the 
solution are similar to those in Section 3. We assume that the values belonging 
to each other are related; this relationship can be described by an operator F:

Ф(Хт) = F[Y,(Xm + A (X J \  Y2(Xm + A(Xm)). .... YN(Xm + A{Xm))\
m = 1,2, .... M (4.1)

Operator F is approximated by a linear combination of the curves:
F[Yx[Xm + A{XJ ] ......  YN[Xm + A(Xm)]\ =

= b0 + bl Yl[Xm + A{Xm)] + ... + bNYN[Xm + A{Xm)] (4.2)

m = 1, 2, ..., M
Developing in a series the right side of Eq. (4.1), and — for the linearity in 
A(Xm) — approximating it up to the first term, we can write:
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Fig. 2. Matching of core data to porosity-depth functions derived from well logging curves
Yt(X). Y2(X)....... Yn(X) porosity logs considered to be correct in depth: Ф(X) porosity

values of core samples: Л(Х) function of depth deviation

2. ábra. Magadatok mélységének illesztése karolázs mérésekből származtatott porozitás
görbékhez

YfX),  Y2(X), .... Yn(X) — mélységileg helyesnek tekintett porozitás szelvények:
Ф a magadatokból számított, nem azonos közökként ismert porozitás értékek:

/l(X) — a mélységellérést leíró függvény

Puc. 2. С о г л а с о в а н и е  г л у б и н ы  к е р н а  с  к р и в о й  п о р и с т о с т и ,  в ы в е д е н н о й  п о  с к в а ж и н н ы м

и з м е р е н и я м

Y^X), Y2(X), ..., Yn(X) — д и а г р а м м ы  п о р и с т о с т и ,  с ч и т а ю щ и е с я  п р а в и л ь н ы м и  п о  [ д у б и н е ;  

Ф -  в ы ч и с л е н н ы е  п о  к е р н у  з н а ч е н и я  п о р и с т о с т и ,  п о л у ч е н н ы е  з а  н е р а в н ы е  и н т е р в а л ы ;  

d(X) — ф у н к ц и я ,  о п и с ы в а ю щ а я  р а с х о ж д е н и я  п о  г л у б и н е
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Yn[Xm + A(XJ\  *  Yn(Xm) +  A(XJ ■ Yn'(Xm) (4.3)
n = 1, 2 , N m = 1, 2, M

In Eq. (4.3) the notations of Eq. (3.4) were used and the derivative can numeric
ally be approximated by formulae (3.5) and (3.6).

The A(Xm) depth deviation is approximated by a polynomial the same way 
as in Eq. (3.7):

A(Xm) к  а0 + а1Хт + а2Х1 + ... +  аРХ? m =  1, 2 , M  (4.4)
Substituting the approximations (4.2), (4.3) and (4.4) into the system of equa
tions (4.1) one gets:

Ф(^т) ~  b0+ Yj
n = 1

m = 1 ,2 ,..., M

Yn(Xm)+Yn'(Xm)- X аДЙ
P  =  0 (4.5)

This system of equations consists of M equations corresponding to the 
number of core samples and includes (N+ P+2) unknowns from which (P+ 1) 
are the coefficients of the polynomial describing the depth deviation and (jV+ 1) 
are the parameters in the linear combination of the well logs. Since Eq. (4.5) 
contains the products of the parameters b„ n = 0, 1, ..., N  and ap 
p = 0,1, P, the system of equations is not linear. If M  > N+ P + 2 then the
overdetermined system of equations of this type can be solved by iteration using 
the method of least squares. Because of series expansion (4.3) even the result 
obtained by the iteration can be considered only as a first approximation; thus, 
in order to avoid double iteration it is expedient to look for a perhaps less 
accurate but clearer and faster method for the solution of Eq. (4.5).

Let us write Eq. (4.5) in the form:

Ф(хт) * |è0+ X 6„y„(xj| + |
m = 1 ,2 ,..., M

X hX(x j
- P  =  0

apXl
(4.6)

For the two terms in braces in equation system (4.6) let us introduce the 
notations

A(XJ  = b0+ X bnYn(X J

B(XJ  = X b„Y;(xJ I
- P  =  0

m = 1,2, M

(4.7)

(4.8)

Using (4.7) and (4.8), (4.6) can be written as follows:
Ф(Хт) *  A{Xm) + B(Xm) m = 1,2, ..., M (4.9)
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Relation (4.9) expresses in an illustrative way that the quantity Ф(Хт) from the 
core sample can be composed of two terms. The first is a linear combination 
of the quantities obtained from the well log measurements and the second is the 
perturbation due to the depth deviation.

Since the B(Xm) part describing the perturbation is probably much smaller 
than the A(Xm) term, the system of equations (4.6) can be solved in two steps. 
First let us take the following quadratic sum:

M
01 = I  [Ф{Хт) - А ( Х т)}2 (4.10)

m = 1
As one can see from (4.7), in (4.10) only the parameters bn, n = 0, 1, 2, ..., N 
are included. Their determination can be carried out by minimizing

80,
---  = 0. n = 0, 1,2, . . . ,N  (4.11)db„

The normal equation system obtained by derivation is linear thus the determina
tion of the unknowns presents no problem.

After calculating the parameters bn, n = 0, 1, ..., N the following difference 
can be formed:

АФ{Хт) = Ф(Хт)- A ( X J  m =  1 ,2 ,..., M (4.12)
This can be approximated by the perturbation term of Eq. (4.9):

А Ф ^ ) х В ( Х J  m = 1,2, ..., M (4.13)

In the expression of B(XJ  the polynomial coefficients ap,p = 0, 1......P are the
only unknowns (see Eq. 4.8) since coefficients 6„, n = 0, 1, ..., N were calculated 
before. For the computation of ap, let us produce the following quadratic sum:

M

0 2 = I  № ( X J - B ( X J Y  (4.14)
m = 1

The value of 0 2 is required to be minimal i.e. the derivatives according to ap, 
p = 0, 1,2, ..., P should become zero:

d&2
- ^  = 0; p = 0, 1, . . . ,P  (4.15)dap

The normal equation system which is obtained after performing the derivation 
is also linear in the variables, thus the unknowns can easily be determined.

By introducing matrices, the algorithm of the solution is the following. Let:

В Д ) Y2(Xx) .... YJX,)
Yi(X2) y2(X2) .. • Yn(X2)

Y1(XM) Y2(Xm) .. • Yn(Xm)
(4 .1 6 a)
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г а д г V
Ф = Ф(Х2) I l  = bi

_Ф(Хм)_ _ v
The solution obtained by minimizing the quadratic sum (4.10) is 

II =  (M1T M l ) 1 (М1т Ф)

The difference (4.12) in vector form is
АФ =  Ф - М 1  • И

(4.16b)

(4.17)

(4.18)
Knowing the coefficients b„,sn = 1, 2, TV let us take

N

C(XJ == I  b X ( x j
n= 1

m = 1,2, • ••, M

~C{Xt) Х & Х у )  ... XplC(Xl) " ûo"
М2 = C(X2) X 2C(X2) ... X\C{X2) 12 = öl

C(XM) XMC(XM) ... XpmC(Xm) _«p_
The solution obtained from the minimization of the quadratic sum (4.14) is:

12 =  (M2T • М 2)-1 • (M2T • АФ) (4.20)
The non-linear, overdetermined equation system of (4.5) has been reduced to 
two linear systems of equations, to be solved one after the other, by the matrix 
algorithm of (4.16)—(4.20).

By means of solution (4.20) obtained for the coefficients of the polynomial 
describing the depth deviation the numerical value of the depth deviation AXm 
can be computed for every core sample from relation (4.4). Depth correction 
means the transferring of the quantities Ф(Хт), m = 1, 2, ..., M  consecutively 
from depth Xm to depth [Xm + A(Xm)]. Since the series expansion (4.3) was 
performed only up to the first derivative, the depth correction can be considered 
only as a first approximation. Considering the new depth values always as initial 
data, the method can be repeated till the values of the quadratic differences, 
(4.10) and (4.14), begin to decrease substantially. Note that core sampling point 
Xm should not necessarily coincide with one of the sampling points of well log 
curves since interpolated curves can be obtained, for example, by formula (4.3) 
as well.

In the algorithm it was assumed that the accuracy of the depth data of the 
well log measurements is much greater than that of coring because of the 
continuous measurement, thus the depth correction was performed only for the 
depth values of the core samples. The point of interest in the method is that the 
correlation coefficients often needed in practice are obtained together with the 
depth correction.
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5. Relative depth matching of well logs and geological columns

In the course of industrial application it is often the case that the geological 
column obtained from coring or approximately known from neighboui ing wells 
should be made accurate by means of the well logs of the given borehole. The 
YfXj), Y2(Xj), YN(Xj),j = 1, 2, L well logs sampled and already correc
ted according to depth by the method described in Section 3 are illustrated in 
Fig. 3. The approximate knowledge of the geological column means that the 
lithological code representing the rock type cannot unconditionally be given 
even in a first approximation at every sampling point. (This may, for instance, 
be due to the insufficient core yield.) Moreover, where it is known, at that 
sampling point the indices к = 1, 2, ..., К are introduced in order to differen
tiate the rock types. Thus Y},k)(Xj) means that the Xj sampling value of the uth 
well log can be assigned to the rock type denoted by the index k. Let the number 
of sampling points belonging to the rock types denoted by the indices
к = 1, 2, ..., К consecutively be Jk = У,, У2, ___fK. As in the previous Section,
we consider that the well logs are correct in depth, thus the Xj place of the /th 
lithological code will be corrected at the sampling points for every /. We can 
assume that on the well logging curves some [Xj + A(Xj)] real depth value 
belongs to the Xj place to be corrected.

Approximating the function values taken at the real depth points the same 
way as was done for (3.3), we can write:

./=  1,2, ..., L n = 1,2......N
The depth deviation function A(Xß is approximated by a polynomial, as in (3.7):

Substituting approximation (5.2) into relation (5.1) we get:

Y'k)[Xj + A(Xj)] «  Y*\Xj) + ^ £  ctpXj J Y fk\Xj) (5.3)

The average of the function values corrected by Eq. (5.3) can be calculated by 
rock types for every well logging curve:

Y f \ X J +AiXf] *  Y^(X j) + A(Xj)- Yn(Xj)
(5.1)

P

A(Xj) *  a0 + alXj +... + aPXpj = X aPXj
(5.2)P =  0

j  = 1,2, ...,L

L P

(5 .4)

n = 1,2, ..., N к = 1,2, . . . ,K
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Fig. 3. M a t c h i n g  o f  g e o l o g i c a l  c o l u m n  t o  w e l l  l o g g i n g  c u r v e s

У Д А 0 .  Y2(X)....... Yn(X) w e l l  l o g s  c o n s i d e r e d  t o  b e  c o r r e c t  in  d e p t h ;  L l i t h o l o g i c a l  c o l u m n ;

A(X) - f u n c t i o n  o f  d e p t h  d e v i a t i o n

3. ábra. G e o l ó g i a i  r é t e g s o r  k a r o t á z s  g ö r b é k h e z  t ö r t é n ő  i g a z í t á s a

УДА'), Y2(X)....... Yn(X) - m é l y s é g i l e g  h e l y e s n e k  t e k i n t e t t  k a r o t á z s  s z e l v é n y e k ;  L l i t o l ó g i a i

r é t e g s o r ;  A(X) a  m é l y s é g e l t é r é s t  l e í r ó  f ü g g v é n y

Рас. 3. С о г л а с о в а н и е  л и т о л о г и ч е с к о й  к о л о н к и  с  к а р о т а ж н ы м и  к р и в ы м и  

УД А 0 .  У2( А 0 .  •--- Yn(X) —  к а р о т а ж н ы е  д и а г р а м м ы ,  с ч и т а ю щ и е с я  п р а в и л ь н ы м и  п о  г л у б и н е ;  

L — л и т о л о г и ч е с к а я  к о л о н к а ;  А(Х) ф у н к ц и я ,  о п и с ы в а ю щ а я  р а с х о ж д е н и я  п о  г л у б и н е

where Ök,(Xj) is the Kronecker-delta:

W j )  =
if 1=к 
if 1фк
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In formula (5.4) the summation should be performed log by log at places of the 
same A lithological code and the sum should be divided by the number of points 
in the sum. If there are //curves and К different lithological codes then a total 
of N ■ к different values of A'nk will be obtained.

Let us introduce the following quantities that can numerically be calculated 
from the well logging curves:

Ank = J  ■ ôkl(Xj) n = 1, 2, ..., N к = 1, 2, К  (5.5)
J  к  j =  1

=  t L  x pj-  r;aXXj) skl(Xj)
J k  j =  1 (5.6)

n = 1,2, N, p = 0, 1, 2 , P, к = \ , 2 , K
Expression (5.5) means the average function value of the «th curve belonging 
to the Ath lithological code. Expression (5.6) represents the mean of the deriva
tive of the «th curve weighted by the corresponding power of the depth value 
belonging to the Ath rock type.

Using expressions (5.5) and (5.6) the corrected mean value defined by 
relation (5.4) can be written — after some rearrangement — as follows:

A'nk = Алк+ ^  ap -AW n = 1,2,..., N к =1 ,2 , . . . ,  К (5.7)
P = о

The quadratic sum of the deviations from the average can be produced for every 
rock type and for every type of well logging:

0'nk = £  m X j  + A i X J - A ' J } 2 • 0kl(Xj)
j =  1 (5.o)

n = 1,2, ..., N к = 1,2
where the summation for j  relates to places of the same rock type.

Substituting approximation (5.3) and relation (5.7) into the quadratic sum 
of (5.8), we get:

O'nk = £  ( в д  + (  £  W ) -  Г * Х Х ) - А Л-  £  a ^ A  ■ Skl(Xj)
j =  l ( \ p  =  o  / p  = o  J (5.У)

n = 1,2, ...,7V A = 1 ,2,..., Zf
After rearranging expression (5.9) and summing by curves and by rock types 
we can write:

0  =  £  £  £  
n -  1 к = 1 j —1

X a f X f  Y f lK X ) -  Afk)
P = 0

W )

(5 .10)
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The meaning of the terms in the first square brackets of the quadratic sum 
(5.10) is clear: the mean value belonging to the given rock and to the given curve 
and calculable by (5.5) should be subtracted from the respective curve value for 
every curve and every sampling point. The second square brackets contain the 
coefficients ap, p = 0, 1, ..., P of the polynomial describing the deviation which 
is to be determined. Furthermore, the derivatives of the logs weighted with the 
powers of the depth value and the respective mean derivatives weighted with the 
powers of the depth as defined by formula (5.6) can also be calculated numeric
ally.

The coefficients of the polynomial describing depth deviations are deter
mined so that (5.10) should be minimal, i.e. the derivatives according to the 
variables should be zero:

с в
= 0, p = 0, 1 , 2 , P (5.11)cap

By performing the derivations of (5.11 ), a linear system of equations is obtained 
for the coefficient of the polynomial consisting of (P+ 1) equations and includ
ing (F’+ l)  unknowns. The solution ensures that the quadratic sum of the 
deviations from the means characterizing the rock types will be minimal for each 
log. The solution using matrix formalism is the following. Let:

M =

I  ( C kU ' , ) - / 0  I  ( Т .У Л Т Т - Т Ц 1) ..
n - 1  n — 1

X (У Л т 2) - / 0  X (T2 r;{kXx2)-Al l)  ■■
n= 1
X (x p2r : k\ x 2) - A !£>)

X X WlY ? \ x ô - a \2) ..
/1 = 1  /1 = 1

X {XpLr : k\XL)-A%)

(5.12)

Matrix M consists of as many lines in as many sampling points the lithological 
code is known. The A $  weighted mean values of the derivatives previously 
calculated by formula (5.6) for the Ath lithological code should be subtracted 
from the derivatives of each log multiplied by the powers of the depth. Further 
notations are:

Y =

X (A„k-  Y f W )
n = l

X (Ank-  y * \ x 2))

N

X (Ank-  YfXXJ)

a0

ap.

(5.13)
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The number of the lines of vector Y corresponds to the number of the columns 
of matrix M. Here, the curve values taken at the sampling points should be 
subtracted from the mean function value defined by formula (5.5) for the Ath 
lithological code. The solution obtainable by minimizing (5.10) using matrices
(5.12) and (5.13) is:

I = (MT • М Г 1 • (IVT • Y) (5.14)
Knowing the polynomial coefficients a0, al, ap determined by solution (5.14) 
the zf(Y,) curve defining the depth deviation can be obtained by means of 
relation (5.2) for the sampling points i = 1,2, ..., L.

The correction of the lithological column consists of transferring the places 
of lithological code jumps i.e. those of the layer boundaries from place X} to 
the [Xj+A(Xj)] point by correction (5.2), and thus a new, corrected lithological 
column is obtained. Since the series expansion (5.1) was performed only up to 
the first term in order to preserve the linearity in A(X), the corrected geological 
column can be regarded as a first approximation. If averages (5.5), (5.6) and 
matrices (5.12), (5.13) are determined according to the new lithology, the 
iteration can be continued by solution (5.14) till the value of <9 defined by (5.10) 
substantially decreases.

To sum up, lithological columns are corrected by the above mathematical 
statistical method using the constraint describing depth deviations by a polyno
mial so that the quadratic sum of the differences between the measured values 
and the respective means should be minimal for the entirety of rock types with 
different mean values on different logs.

6. Conclusions

Relative depth matching of the information obtained from boreholes is an 
essential condition for interpretation purposes. The elaborated mathematical 
statistical method makes it possible for a computer to be used for the inter
mediate step between measurement and interpretation, i.e. for relative depth 
matching. It was illustrated that the measuring features enable the value of the 
depth deviation varying from point to point to be approximated by a polyno
mial. In this way the accordion-like depth correction is given a mathematical 
phrasing.

The method enables the simultaneous correction of all the given logs but 
it is possible that supposing certain curves to be correct in depth the others may 
be matched to them. It follows from the mathematics of the method that at the 
boundaries there are no missing values left thus the number of depth points will 
not change during correction. The method is suitable for dealing with the 
problems of matching core data and lithological columns to well logs as well. 
Depth deviations are determined by calculation — instead of trials — thus being
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substantially faster even than the cross correlation method in spite of the fact 
that — depending on the order of the polynomial — higher order deviations 
are also considered.

The method induces hope that in production drillings the parameters of 
reservoir geology may be determined with sufficient accuracy without coring, 
merely from well logging, using the correlation coefficients from certain explora
tion drillings. To apply the method in practice a computer program was written 
[Sz e n d r ő  1978, 1980]. Its description and the experience gained with its applica
tion as well as the results are due to be dealt with in a further paper.
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A MÉLYFÚRÁSBÓL SZÁRMAZÓ INFORMÁCIÓK AUTOMATIKUS RELATÍV 
MÉLYSÉGEGYEZTETÉSE 

I. ELMÉLETI ÁTTEKINTÉS

SZENDRÖ Dénes

A mélyfúrásból származó információk alapján történő értelmezés előfeltétele, hogy az adott 
kútban levő adatok mélységhelyesek legyenek. A közös mélységpontra hozás céljából feltesszük, 
hogy a pontról pontra változó nagyságú A(X) relatív mélységeltérések polinommal közelíthetők. 
Sorba fejtve a mélységegyeztetésben részt vevő Y(X) szelvényt a mélység szerint, a Taylor-sorban 
levő A(X) mélységeltérés éppen a polinom helyettesítési értékével egyezik meg. Minimalizálva az 
egyeztetésben részt vevő adatokból képezhető hibafüggvényt, a polinom együtthatói kiszámíthatók, 
s a korrigált adatok a sorfejtés alapján megkaphatok. Az eljárást néhányszor az összes mennyiségre 
megismételve, a számított értékek a mélységkorrigált adatokhoz konvergálnak. A módszer nem csak 
a lineáris elcsúszások korrigálására alkalmas, hanem a polinom fokszámától függően „harmoniká- 
zó” eltolódások kiküszöbölésére is. Ha a mélységeltérést leíró polinom fokszáma nulla, azaz 
konstans elcsúszásról van szó. akkor a módszer a hagyományos keresztkorrelációs eljárással meg
egyező eredményt szolgáltat. Mivel azonban az elcsúszást kiszámolja, a hagyományos eljárásnál 
lényegesen gyorsabb. Az eljárás alkalmas a karotázs szelvények közötti, a magadatok és a karotázs 
szelvények közötti, s a geológiai rétegsor és a karotázs szelvények közötti mélységeltérések korrigá
lására.
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АВТОМАТИЧЕСКОЕ СОГЛАСОВАНИЕ ДАННЫХ СКВАЖИННОЙ ГЕОФИЗИКИ 
ПО ОТНОСИТЕЛЬНЫМ ГЛУБИНАМ 
I. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ

Денеш СЕНДРЁ

Предпосылкой интерпретации данных скважинной геофизики является правильное 
определение глубины, к которой относятся те или иные данные. Для приведения данных 
к общей глубинной точке предполагается, что относительные расхождения по глубине J(X). 
величина которых меняется от точки к точке, аппроксимируются полиномом. После разло
жения подвергнутой согласованию по глубине кривой Y(X) в ряд, отклонение по глубине 
Л(Х) в ряду Тэйлора точно совпадает со значением подстановки полинома. После приведе
ния к минимуму функции ошибок, образуемой из участвующих в согласовании данных, 
можно вычислить коэффициенты полинома и получить исправленные данные на основе 
разложения в ряд. Если такая процедура повторяется несколько раз для всех величин, 
вычисленные значения приблизятся к исправленным за расхождение по глубине данным. 
Метод пригоден не только для исправления линейных смещений, но также и для устранения 
отклонения с переменными знаками в зависимости от степени полинома. Если степень 
полинома, описывающего отклонение по глубине, равна нулю, т.е. имеет место постоянное 
смещение, метод дает результат, совпадающий с традиционным методом взаимной корреля
ции. Поскольку, однако, при этом вычисляется смещение, данный метод значительно бы
стрее традиционного, он также позволяет ввести поправки за расхождения по глубине между 
каротажными диаграммами, между керном и каротажными диаграммами, а также между 
литологической колонкой и каротажными диаграммами.




