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THE INTERPRETATION OF RESISTIVITY SOUNDING
OVER WEATHERED ROCKS

L ZIMA*

Exponentially increasing resistivity with depth is supposed for a layer of weathered rocks
(transitional layer). For this case a simple recursive formula has been developed for computing the
resistivity transform function. The resistivity transform function for sections containing transitional
layers and layers of constant resistivity can easily be calculated by combining the formula in
question with the well-known recursive formula for layers of constant resistivity. Resistivity sound-
ing curves can be obtained by digital convolution of the resistivity transform function with a set
of filter coefficients. Interpretation of field curves is difficult and has to be based on a certain model
of a resistivity section. A combination of numerical and graphical methods in resistivity transform
domain is suggested for the interpretation. Examples of the interpretation from a metamorphic rock
area are given. Obtained results are discussed and compared with drilling and seismic data.

Keywords: resistivity sounding, weathered rocks, transitional layer, interpretation

1. Introduction

When one interprets resistivity sounding measurements, one Supposes
horizontally stratified earth. The layers have different but constant resistivity
and they can be considered as resistivity uniform or homogeneous layers.
However, in some cases the resistivity varies, more or less continuously, in a
certain direction in the layer. Such layers may be regarded as transitional layers.

Many authors have presented theoretical solutions for the potential of
direct current source in the case of continuously varying conductivity or resistiv-
ity with depth. The solutions of Stichter [1933] and Sunde [1949] belong to
the oldest works. A three-layer model where the second layer has a linear
variation of conductivity with depth was considered by Mallick and Roy
[1968] and by Jain [1972]. Various other models with linear, exponential, power
law or more complicated dependences of resistivity or conductivity with depth
have been studied, for example, by Lal [1970], Paul and Banerjee [1970],
Stoyer and Wait [1977], Mallick and Jain [1979], Banerjee et al. [1980a, bj.
Koefoed [1979a] derived a recursive formula for the resistivity transform func-
tion in layers in which resistivity varies linearly with depth. Some practical
results in the interpretation of sections containing transitional layers were
obtained by Patella [1977, 1978] and especially by Mundry and Zschau
[1983].
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The zone of weathered rock is a characteristic example of a transitio-
nal layer. Weathered rock in situ often exhibits a typical transition from
quite decomposed rock through partly weathered and jointed rock to un-
weathered rock [Or11ier 1969]. Because the resistivity of rock depends on the
intensity of weathering, we may observe a continuous increase of resistivity with
depth [Dortman 1976, M altick and Roy 1968, Stotzner 1975] This fact has
to be taken into account when interpreting the resistivity sounding measure-
ments over weathered rocks. The exact quantitative expression for the resis-
tivity/depth relationship is very difficult to find. The most suitable approxima-
tions are in the form of a linear or exponential function; the latter is used in this
study.

2. Theory

The differential equation for the electric potential V of a direct current
source in a medium with conductivity a may be written as [Grant and West

1965]

V-(ffvK) = 0 (1)
If the resistivity g = - varies with depth, i.e. p=p(z), we obtain

1 dg(z) dV
Q& ~dz" &T
The current source is placed at the origin of the coordinate system. In cylindrical

coordinates according to the symmetry with respect to the z-axis, equation (2)
becomes

V2V — (2

Fkj. 1 Model of transitional layer
I. dbra. Az atmeneti réteg modellje

Puc. 1 Mogenb nepexogHoro cnos
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For horizontally stratified earth with layers each having constant resistivity,
equation (3) is reduced to Laplace’s equation. Its solution by separation of
variables gives us an expression for the potential in the /-th homogeneous layer

C
VA, z) = j [ANe e '-+B,U)e"-y0(/.r)d/. 4
o}

where JO(kr) is a Bessel function of the first kind and zero order, /. is the
separation constant, and .4,(2), /?,(/) are functions to be determined from the
boundary conditions for the potential.

Potential in the transitional layer

Let us consider that in the /-th layer (Fig. /) resistivity exponentially varies
with depth

Q) =Qedr ) |), r/_I<r<r/, ®)
On the upper boundary of this layer (z=dl_,, g(z) =ga on the lower boundary
of the /-th layer Q(z) =ghand then a from (5) becomes

on In

@ Q (6)
di-di-x >h

where hi is the thickness of the layer. In our case resistivity increases with depth

in this transitional layer (gh>qu) and thus a>0. Substituting (5) into (3) we

obtain

In

d2v , 12V, G2V 1V _ g 0

This equation may be solved by separation of variables V(r.z)  R(z)Z(2).
Then (7) results in two equations

d2tf  1dR
+

dr7 r dr AR =0 @

and

-k2Z =0 ©)

The solution of (8) satisfying the far-source condition for the potential is JO(kr).
Equation (9) is a linear differential equation the solution of which is
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Z(z) = E(.)e'z+ F(A)ew (10
where
_arlazedlp, . aja2rd)) 1)
2 2
A general solution of (7) can be written in the form
X
VXI’,--) = J [£.,(/)el-+ F (/)ewl7o0(ATr)d/ (12)

0

where VJr. -) is the potential in the /-th transitional layer.

Boundary conditions

Let us suppose that the transitional layer is embedded between two hom-
ogeneous layers. The potential in the homogeneous layer is equal to the poten-
tial in the transitional layer at the boundary between them; the same applies to
normal components of current density. On the upper boundary of the tran-
sitional layer at r =i/i_laccording to (4) and (12) we obtain

A (De  -111 ,L)e™-1= ()t 1+ F{k)ewd~ (13)
6'1I (ne -1+ ABi_I(/.)e/d 1 = —1[in(k)e\/d- 1+ wFEK)ewdHI] (14)
- Qa

On the lower boundary of the transitional layer (z=di), under the same con-
ditions it holds that

apen +age""" = Aix{X)z~>A+rBi+x(X)e'S (15)
[(AL)e"T + n/r(ent] = -——[~IL4i+,(l)e "[+95-+1F)em]  (16)

We divide both sides of (13) and (15) by the corresponding sides of (14) and (16).
The following equations are the result

n,_(/)+ 1, -£m())-F,()ed -
IG_G)- Aii(G)e2" 1 ., vEIU) +wfil)”, 'y
—£,(/) 4”,(/) ed‘(w-v) Au M )+ BAMY -bif (18)

VE(X) +WFA)ed(W~\)  G4X Ai+M )-B i+M W U

Now we introduce the function 7]+1(A) which is equal to the right-hand side of
(18). This function represents the ratio of the potential to the normal component
of current density and it is called the resistivity transform function [Matveev
1974. Koefoed 1979b]. Following Koefoed’s [1979a] logical deduction it is
possible to equate the right-hand side of (17) with 7](/). Through solving (17)
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for the ratio EEX)/FEX) and substituting this into the left-hand side of (18) we
obtain the relation between 7](0) and Ti+AM) for the transitional layer. It follows
from (11) that vw = -] 2and after some manipulations we obtain

T,X)[v-i r e + j _ e- hiw- i7y

M) = Qi) 1« atvm]- Qlw-ve~ g v] @9
The solution of this equation for 7](d) can be written as
TI+1(A) [w- ve-hiiw~"3+ Aghf1- e- hiw~)]
W) = Qa1 [1- e- m - 13- ghv- we H(wY (20)

If a=C=J then after substitution v——Xand w= +A (choice after (11)) we
obtain
) TA [1+ e~Ui\~ g{1—e-mA
ri+m) (21)
e{l+e~w ]—7XA) [1—e~m 1
and
7+1(A) [1+e-wF+ g{1—~m1]
YT o+ e+ THH(A) [L—e L]
which are known recursive relations for the resistivity transform function in the
case of a homogeneous layer [Koefoed 1979D],

(22)

Calculation and transformation of sounding curves

The relation for the apparent resistivity ga(r) can be derived from the
expression for the potential on the earth’s surface. For Schlumberger array we
have [Ghosh 1971a]

gar) = 21 TEX)JfXr)AaX (23)
0

The resistivity transform Tt(2) can easily be calculated by means of recursive
relations which were presented above. For the homogeneous layer we use
relation (22) and for the transitional layer equation (20). Calculation starts from
last layer (T,,(d) = p,,) and proceeds through individual layers upwards using the
values of JA = AB12 = r. Thus the resistivity section composed from homoge-
neous and transitional layers can be calculated in this way. Calculation of ga(r)
presents no problem because (23) can be converted into digital convolution
[Ghosh 1971h]

gaTXr) = ?’\77-}1(A), m=0,1,2,... (24)
where dij) are inverse filter coefficients.
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Further it is possible to express the resistivity transform function A
from (23) by Hankel transformation. Again in digital form it becomes

rev) =l c”rj\n- m=2012 .. (25)
J
where ru) are forward filter coefficients. Applying (25) to the measured field
values ga(r) we obtain resistivity transform curve 7)(A). Recursive relations (19)
and (21) may be used for reduction to a lower boundary plane [Koefoed 1979h],
It means that we “remove” the upper layer the parameters of which are known.
In this manner we may go down to the last layer (I,(A) = "T).

Although it could be of great interest to examine in details the transfer of
errors of the measured ga(r) curve to the 7)(7.) curve, this is beyond the scope
of this paper.

Recursive relations (19), (20), (21) and (22) can easily be programmed on
a pocket calculator (e.g. HP 67). Such a calculator could also be used to
calculate the gar) curve and to transform the resistivity curve. As a suitable set
of coefficients, that of Nyman and Landisman [1977] may be used; it consists
of 13 coefficients with an optimum sampling rate of 4.438 points per decade.
The calculation time needed for interpreting one sounding curve is about 15-30
minutes using a HP 67.

3. Interpretation of sounding curves over weathered rocks

It is obvious from the preceding part that there is no problem in calculating
the resistivity sounding curve for sections with homogeneous and transitional
layers. In contrast, it is not so easy to interpret the measured field curve. The
first important step in the interpretation procedure is to introduce the geological
model. In our case the model has three main parts: surface layer of homoge-
neous resistivity (or layers), weathered rock (transitional layer) and un-
weathered rock with constant resistivity. The necessity for this geological-
geophysical approach is illustrated in Fig. 2. The measured curve may be
interpreted (within given limits of accuracy) in terms of at least three equivalent
models with different geological meanings. If we suppose the existence of
weathered rock, then model 3 is most acceptable. We use this model to interpret
similar sounding curves in the given area.

At present, many interpretation techniques exist. One of them is the inter-
pretation in the resistivity transform domain, which utilizes recursive relation
for the succesive “removal™ of upper layers [Koefoed 1979b]. This method is
particularly important in our case because it enables us to reduce the measured
curve on the surface of the transitional. A combined graphical and numerical
method of interpretation has been elaborated consisting of the following.

The measured curve gjr) is first transformed into curve Tj(A) by means of
relation (25). The resistivity and thickness of the first layer are determined
graphically by two-layer master curves (in the gar) or 7](A) domain). The curve



.resistivity sounding... 325

max.
Nwm deviation
{0 50 (O 500 va'r' -4%  +4%
com) b
Vo
I\
9a«r> \ \ .
j/
v -V 3
r
I 1
* measured values v B \p— \/
\ \
10 mmodel 1 o iated > \
* model 2 m values \ (VAR 'y
model 3 .
374 '
o S I\
4 11
I\
2
3 J o1

50 9,-l00 h,=14 91-00 hi1=1.2 100 h.=1 \
~ajures, PIgRET

5
-.62=310 h,=12.2

100 O VIAVMVA b= 20

15-f

ro@ \!
(M) m
/¢«d. 2, Equivalent models with different geological approach of interpretation
2. abra. Ekvivalens modellek az értelmezésre vonatkozé kilonbdz6 foldtani elképzelésekkel

Puc. 2. 9KBMBa/IEHTHbIe MOJENN C pa3HbIMU FeosI0rMYecKMMmM NoAX04aMy K UHTepnpeTauun

is then reduced downwards (21), i.e. we “remove” the first layer. If the overbur-
den is composed of more homogeneous layers we repeat this procedure until we
reach the surface of weathered rock. This moment may be recognized, for
example, from seismic measurements, drilling data, or from characteristic fea-
tures of the curve. Thus we have obtained a sounding curve “measured” directly
on the surface of weathered rock. The asymptotic behaviour of the curve
determines resistivities gaand gb. Exponentially increasing resistivity with depth
is supposed between these two values. In order to determine the thickness of the
transitional layer it is possible to use a precalculated set of master curves T,(/)
for the three-layer model with a transitional second layer (variable ghYga and
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constant h2h\). There may be several such sets for suitable ratios h2lhxand on
comparing the reduced curve with these we obtain h2.

Another method for the approximate determination of the thickness of the
transitional layer uses longitudinal conductance S. The decrease in conductance
Sgwith depth in the transitional layer may be expressed as

dSg= ~ (26)
Qz)
After substituting relation (5) for g(z) and in consequence of (6), integrating (26)
from dj_, to d{gives

AN hh @ @
9 QO @ (27)

@
The resistivities ga, ghare known and Sgmay be determined by subtracting the
longitudinal conductances = hl/gl, S2 = h2/Q2, «= from the total conduc-

tance 5. The total conductance can be defined graphically by means of two-layer
master curves [Ketter and Frischknecht 1970, M atveev 1974] Thus

In*

ht = AN[S-(St+S2+ ... -s
Qa% (51 ( )] s

The final step is to calculate the sounding curve (T~O) or g&r)) for inter-
preted parameters of the whole section, comparing the calculated curve with the
measured curve. Interpretation is complete when the calculated and measured
curves coincide. If there is some discrepancy, interpretation should be repeated
after modifying the resistivities and thicknesses.

4. Practical examples

Some results obtained from interpreting sounding curves from metamor-
phic rock area in SE Bohemia are presented. Biotite paragneiss is the dominat-
ing rock in this area; it is mostly covered with unconsolidated sediments (sand,
gravel, clay) of small thickness. Fractured zones and deeply weathered parts of
gneiss are suitable places for migration and accumulation of ground water.
Resistivity sounding (Schlumberger array) in combination with shallow refrac-
tion seismics were used for determining depth and intensity of weathering and
the VLF method was used for searching for linear zones of fractured rocks.

An example of the interpretation of a resistivity sounding curve near a well
is shown in Fig. 3. Sands and gravel-sands with resistivity of 460 Dm are
deposited under the surface soil. The upper part of the bedrock consists of quite
decomposed weathered gneiss (sand-clay eluvium) which has a resistivity of
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Fig. 3. Example of interpretation of resistivity sounding curve near a well and comparison with
resistivity log

3. Ubru. Példa furélyuk kozelében nyert ellenallas-szondazasi gorbe kiértékelésére és az eredmény
Osszehasonlitasa a lyukban felvett ellenallas-szelvénnyel

Puc. 3. MpuMep MHTEPNpeTaLnn KPMUBOK 30HAMPOBAHMS MO METOA4Y COMPOTMBAEHUS B6AM3M
CKBaXMHbI 1 ee COMOCTAB/IEHNE C KAPOTAXHOM AnMarpaMmmoit ConpoTMBEHUS

about 250 Qm. Successive transition through strongly jointed weathered parts
into slightly jointed and compact gneiss appears lower. It is characterized by
increasing resistivity with depth. The interpretation of weathered rock as a
transitional layer corresponds well with the resistivity log curve.

It is known that in weathered rock the seismic velocity is lower than in
compact rock. Thus the weathered rock zone may be regarded as a velocity
transitional layer t00 [Dortman 1976]. This problem was studied by Skopec
and Hrach [1976]. They elaborated a special interpretation procedure for
determining the distribution of velocities of seismic waves at various depths.
Figure 4 demonstrates a comparison of their results with the interpretation of
resistivity sounding measurements. The unconsolidated overburden with a
thickness of 2.4 m has a velocity of 300 m/s and a resistivity of 330 Qm. Strongly
weathered gneiss has a surface velocity of 1400 m/s and a resistivity of 460 Qm.
In the downgoing direction both resistivity and seismic velocity increase. Even
at depths of 5-7 m gneiss may still be considered as weathered rock (2000 m/s,
500-600 Qm).
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emeasured values
» calculated

Fig. 4. The results of interpretation of resistivity and seismic measurements
4. abra. Az ellenallasmérések cs a szeizmikus mérések kiértékelésének eredménye

Puc. 4. Pe3ynbTaTbl UHTEPMNpETaLMMU KPUBbLIX COMPOTUBNEHUS U JaHHbIX celicMopa3BeKu

Joint interpretation of resistivity and seismic measurements was carried out
at many places in the given area. Comparison of interpreted resistivities and
seismic velocities in weathered gneiss with respect to drilling results is sum-
marized in Fig. 5 This figure enables one to approximate by estimate the
weathering intensity on the basis of resistivities and seismic velocities.

In the lower part of Fig. 6 an interpretation of resistivity sounding measure-
ments along profile A-A' is shown. High resistivities at small depth were found
at sounding points Nos. 9-13. From Fig. 5 we may deduce the occurrence of
compact or only slightly jointed gneiss under the overburden.

Another situation is at soundings Nos. 7 and 8 in the western part of the
profile. Low resistivities on the surface of gneiss and relatively slow increase in
their values with depth offers evidence of the presence of strongly weathered
gneiss. The conductivity anomaly of the VLF method is also situated in this part
of the profile (see upper part of Fig. 6). The anomalous VLF zone can be
followed on several profiles and it is caused by fractured and weathered gneiss.
It is also obvious that the ground-water well situated in this zone has five times
higher specific yield than the other well localized outside this zone.
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Fig. 5. Approximate estimation of gneiss weathering on the basis of resistivities and velocities
1 - decomposed gneiss (sand-clay eluvium); 2 weathered gneiss; 3 — slightly weathered,
strongly jointed gneiss; 4  slightly jointed gneiss; 5  compact gneiss

5. abra. A gneisz mallottsaganak becslése, fajlagos ellenallasok és sebességek alapjan:
1— teljesen bontott gneisz (homokos-agyagos eluvium); 2 mallott gneisz; 3  gyengén
mallott. er6sen repedezett gneisz; 4  gyengén repedezett gneisz; 5 — tomor gneisz

Puc. 5. Mpn6nusnTenbHas OLEHKa BbIBETPUBAHUSA THECOB HA OCHOBAHUW COMPOTUB/EHWUIA
1 cKopocTei
| COBEepLIEeHHO pa3foXeHHble THeNChbl (MecHaHO-rNHUCTbLIN 3MH0BUIA); 2 — BbIBETPESbIE
rHelicbl: 3 - cnabo BbIBETpeNble, CUMNLHO TPELLUHOBATbIE THelicbl; 4 cnabo TpewymHoBaThble
FHeNCbl; 5  MacCUBHble THENCbI

5. Conclusions

A simple recursive formula for computing the resistivity transform function
has been developed for transitional layers with exponential increase in resistivity
with depth. A graphical-numerical method for interpreting resistivity soundig
curves has been suggested. The method is based on interpreting the resistivity
transform domain which opens the way to reducing the resistivity transform
curve towards the surface of weathered rock. As has been demonstrated by
practical examples, the assumption that the weathered rock may be approxi-
mated by a transitional layer corresponds better to reality.
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Fig. 6. Results of resistivity sounding (lower part) and VLF measurements (upper part) at
Pojbuky locality. North is at the top of the map

6. abra. Az ellenallas-szondazasok (alul) és VLF mérések (felil) eredménye Pojbuky kdzelében.
A térkép E-felé van tajolva

Puc. 6. Pe3ynbTaTbl 30HAMPOBAHUIA METOLOM COMNPOTUBAEHUS (BHW3Y) U U3MEPEHWIA METOA0M
C[BP (BBepxy) — yu4acTok [lMoibykun. CeBep — BBepX M0 KapTe
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MALLOIT KOZETEKEN VEGZETT ELLENALLAS-SZONDAZAS KIERTEKELESE
L. ZIMA

A mélységgel exponencialisan névekvd ellenallasrél feltételezziik, hogy az malloit k6zeteken
allo (atmeneti) réteget jelez. Erre az esetre egy egyszer( rekurziv képletet vezettiink le. a fajlagos
ellendllas transzformacios fiiggvényének kiszamitasahoz. Ez a fuiggvény kdnnyen kiszamithato
valtozo es allandé ellenallasu rétegeket tartalmazo szelvényre, a targyalt képlet és az allando fajlagos
ellenallasu rétegekre kidolgozott, ismert rekurziv képlet 6sszekapcsolasa Gtjan. Az ellenallas-szon-
dazasi gorbe megkaphaté az ellenallas transzformacids fliggvény és sziir6egyitthatok digitalis
konvoluciodjaval. A terepi gorbék kiértékelése nehéz és egy feltételezett fajlagos ellenallas-modellen
kell alapulnia. A kiértékeléshez numerikus és grafikus modszerek kombinacidjat javasoljuk, a
fajlagos ellendllas transzformacids tartomanyaban. Kiértékelési példat mutatunk be metamorf
kézetek teriiletérél. Ismertetjik az eredményeket és dsszehasonlitjuk ezeket a farasi és szeizmikus
adatokkal.

MHTEPMPETAUNA KPMBbIX 30HANPOBAHVA METOAOM COMPOTUBAEHNA
B BbIBETPE/IbIX NMOPOAAX

N. 3NMA

ConpoTuBneHne, Bo3pacTatoLLee ¢ rMy6GUHOA No 3KENOHEHLMANIbLHOMY 3aKOHY, NPeAnonoXu-
TeNbHO ABNSETCA MPU3HAKOM Hannums (NepexofHOii) 30HbI BbIBETPENbIX NOPOA. [ns aToro ciyyas
6blna paspaboTaHa NpocTas peKypcuBHas opMyna C Le/bto BbluncieHUs yHKUMK npeobpa3oBa-
HUA CONPOTUBNEHUs. DYHKLMSA Npeobpa3oBaHMA CONPOTUBNEHWUS MOXET 6blTb NIErKo BblYMCEHA
[N pa3pe3oB, COCTOALLMX WX NEPexXofHbiX CMOEB W CNOEB MOCTOSHHOIO YAeNbHOro COnpoTMBIe-
HKS. MyTeM couveTaHus 0b6cyXaaeMor (opMynbl C M3BECTHOM PEKYPCUBHON (hOpMY/OiA AN CNoes
NMOCTOSIHHOTO YfieNbHOro CconpoTuBieHus. Kpueas 30HAMPOBaHWA MO MeTOAY COMPOTMBAEHUS
MOXeT GbITb MOMyYeHa My reM LhpoBOiA KOHBONOLMM (DYHKLMU Npeo6pa3oBaHMsi CONPOTUBEHUS
N UNBTPOBBLIX KO3(PMULMEHTOB. VIHTepnpeTaLns NoneBbix KPUBbLIX TPyA0eMKa 1 JO/MKHa 6a3unpo-
BaTbCS Ha NpejnonaraeMoli Mogenn paspesa yfenbHbIX CONPOTUBNEHNIA. PekoMeHayeTcss KOMGK-
Hauus LMcpoBbIX U rpadMyeckmx MeToAoB B 06/1acT Npeobpa3oBaHWsi CONPOTUBNEHUIA ANS WH-
repnpeTtauumn. MpuBOAATCS NMPUMepPbl MHTepMNpeTaLmMn U3 paiioHa pacnpocTpaHeHus MeTamopdu-
yeckux nopog. MonyyeHHble pe3ynbTaTbl 06CYXAAKTCSA W CONOCTABAATCA C faHHbIMU BypeHus
1 celicMOpa3sBeKM.



