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A FRESH LOOK AT CAUSALITY IN WAVE PROPAGATION

Peter HUBRAL* and Martin TYGEL**

Causality is a fundamental physical principle in wave propagation. As is well known, it means
that there can be no response before an excitation. “Mathematical causality” on the other hand,
implies that a mathematical solution describing the physical reality should have no contribution for
all limes before the source excitation. Unlike physical causality, mathematical causality need not.
however, be adhered to. Mathematically causal are, for instance, all solutions that describe the
response of a layered medium to a transient causal source formulated with the Sommerfeld or the
Weyl integral. It is well known that the resulting solution integrals then have an infinite integration
limit. However, this can simply be changed to a finite integration limit by relaxing the mathematical
causality requirement and looking for noncausal solutions that are symmetric in time with respect
to the instant of source excitation, after which they agree with the causal response. Therefore,
time-symmetry gives wave propagation a certain completeness that has not previously been
achieved. In this paper a time-symmetric broad-band transmission response of a point source near
the planar interface separating two homogeneous acoustic half spaces of distinct constant velocities
is formulated. It offers a nice example on how to use time-symmetry considerations to obtain simpler
expressions in a direct way that are fairly easy to analyse. When tunnelling can be observed (i.e.,
when the source is close to the interface in the medium of higher velocity), the broad-band
transmission response can be simulated as a superposition of homogeneous plane waves only. From
a straightforward inspection oflhe solution integral, the phenomenon of tunnelling is easily inferred
and a so-called quasi-spherical T"-wavc can be extracted.

Keywords: acoustical waves, point source, homogeneous half-space, wave propagation, velocity

l. Introduction

When studying the response of a point source from one or more planar
interfaces, one usually considers the Sommerfeld or Weyl integrals as the
starting point for formulating the solutions. These, as is well known, are
(mathematically) causal and exhibit an infinite integration limit. The limit can
be changed to a finite one by applying the so-called Causality Trick [Tygel and
Hubral 1985; Hubral and Tygel 1986]. This provides a finite-range integral
solution that can be evaluated more exactly.

A certain number of recent publications in the literature of seismic explora-
tion have demonstrated revived interest in the phenomenon of tunnelling
[Tsvankin 1982; Bortfeld and Fertig 1983; Kuhn 1985; Kim and Behrens
1986]. This phenomenon is, in principle, well understood [Brekhovskikh 1980;
Daley and Hron 1983], so any further investigation may appear unnecessary.

* Bundesanstalt fir Geowissenschaften und Rohstoffe, 3 Hannover 51, BRD
** |nstituto de Mathematica e Computagao Cientifica, 13100 Campinas, S.P., Brasil
Paper presented at the 47th meeting of the EAEG, 4—7 June, 1985, Budapest, Hungary



278 Hubral-Tygel

However, we believe that the following analysis of this phenomenon is par-
ticularly simple and for that matter interesting. It serves as an example to
demonstrate the value of transforming a mathematically causal solution integral
into a noncausal one. This may then—as is the case with the solution studied

here -be more easily analysed.

2. Transient Weyl integral for a broad-band point source

As shown previously in. our paper [Tygel and Hubral 1984], one can
represent the acoustic broad-band potential for a point source at point S
(Fig. 1) as a superposition of homogeneous and inhomogeneous plane waves
as follows

- RRi)/R = Re {0IKr,z, /)} (la)
where
| 1¥2+i.j Zf'i
HAnr, z, t) = 2:—,1 dOsin 0 _ dtp PAX, T, z, /), (Ib)
-2
= A'(t- hcos O/c, -n mR/c,). (le)
= A'(t—z+ /) cos O/ci—/ sin Olcy), (Id)
nmR = gsin 0+zcos 0. (le)
g = Xcos tp+y sin tp (O
R=1f2+(z+hf (19)
and
r2= n2+y2. (Ih)

Odenotes the Dirac delta function; signifies the derivative with respect to the
argument; c, and p, are the velocity and density of the upper medium (medium
1 and c2 and g2 of the lower one (medium 2); (with 0<tp< 2n) is the azimuth
angle and (0<0< n/2)n(0 = n/2+ Ir, 0< r< 00) is the “incidence angle" of the
so-called analytic transient plane (ATP) wave ®,(n\y, z, /) that is defined with
the help of the following analytic d-function

. . 10(C) +i/itE  if 1 is real
= | exp (i(of) © itim i > 0 @

As also shown in [Tygel and Hubral 1984] Eq. (la) can be utilized to construct
the complete causal broad-band transient reflection/transmission response from
a planar acoustic interface (Fig. 1) by strictly superposing the reflected/trans-
mitted ATP waves that accompany_thoselwhich simulate the lower half of the
spherical broad-band source 6(t—R/cJ/R for z> - h.
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Fig. 1. Acoustic media c/[l and
(Qi>c2) separated by a planar
interface
S — source; Pt and P2 —
observation points. A 2-D model

1 é&bra. Sik hatarfelulet altal
elvalasztott akusztikus kozegek
(0i. fi) és (g2 c2)

S — forrés, P, és P2 — észlelési
pontok. Kétdimenziés modell

Puc. I. Akyctuueckme cpegbl (g,, C,)
n (g2, c2). pasgensiemble NAOCKAM
pasgenom
5 — ncTouHmk, Pt n P2 — Toukn
HabntogeHns. [oyxmepHas Mogenb

3. Transient causal transmission response

In the following, we will investigate the transmission potential only. It has
the form (see Eq. (55b) in [Tyger and Hubra1 1984])

Pr(p - 0 = Re {®T(r, z, )} (32)
where
D+, 7
D, (r,2,/) = ne désin 0 D(0)  dtp A'(t—h cos O/c, - nr «R/e2), (3b)
n7-mR = —[j sin Q—M(0)\ (3c)
and
M(0) = |/(c¥c2)2-sin20. (3d)
The plane wave transmission coefficient is
D(0) = 2qi cos 0/[g2cos 0+qg{M(0)\ (3e)

where the square root is defined as
larz if >
(a= a i a>0, (30
t\at if a<O0.

The potential (3a) is causal (i.e., it can be shown to have no contribution to
r<0).
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As shown in [Hubral and Tygel 1986], the infinite integration limit in
formula (3a) can easily be removed by applying the so-called Causality Trick,
One readily obtains then a simple geometrically transparent time-symmetric
finite-range integral expression for the transmission response, which (see Sec-
tion 5) is, of course, noncausal. This however does not matter because it still
perfectly describes the desired causal broad-band response (Green’s function)
given by formula (3a) for t>0, i.e., for the time of actual interest after the
explosion.

4. Applying the Causality Trick to the incident potential

Prior to applying the Causality Trick to the transmission response (3a), let
us use it in connection with the incident potential (Ib). The Causality Trick
implies then the following operation

n<l,, (. 2, 1) = Re {®IL(r, T, 1) - O, 2, - ij}. (4a)

The bar denotes complex conjugate. It is obvious that the right-hand side of
formula (4a) is identical to that of formula (Ib) for ?>0 as Re ®IT, z, - t) has
no contribution to />0.

Expression (4a) can be shown [Hubral and Tygel 1985] to correspond to

NAino(r-, 0 = Rc {a®]]... + ad{rc}, (4b)
where
-1
Pl = - dOsin 0  dipA'(t—hcos Ojcx- nmR/c,) (4c)
A(t- R/cMNR- A{t+ R/CX)/R (4d)
and
A =0 (de)

Potential (4a) is not causal, but describes, as Eq. (4d) indicates, a so-called
time-symmetric point source. This agrees however with the causal point source
potential (la) for />0 and z> —h, i.e,, tgnc = O{t—R/c”/R for i>0.

5. Applying the Causality Trick to the transmission response

As indicated in [Hubral and Tygel 1985], the application of the Causality
Trick to the transient causal transmission response (3a) provides the so-called
"time-symmetric transmission potential”

H = Re {dT(T0, 1,2 t)- OT(TO, 1, Z, - O} (5a)

where
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®, (0, r,r, t) =

Inc dosin 0 D(0)  dtp A'(t-h cos Qjcx- tisin 0/c2~zM(0))  (5b)

with Tg = cos h “(ciAi) if A>c2and ro=0ifc, <c2

Like the time-symmetric source, solution (5a) is of physical interest only
lor /> 0. It can further be simplified by analytically performing the *-integration
as shown in the Appendix (see Eg. A.2). We will not, however, perform this
integration as our objective here is to bring solution (5a) into a geometrically
more transparent form that will make it immediately possible to infer the
so-called P*-wave and some of its features. In the following we now assume that
¢y > c2. Ihe P*-wave is then a spherical wave in the lower medium that appears
to originate at /=0 at point O (Fig. 1).

Now that we have reviewed the essential steps that lead to the time-symmet-
ric transmission potential (5a), we will reformulate the response and begin with
its analysis.

6. Transmission response in terms of up- and downgoing homogeneous
plane waves

The transmission response (5a) can be rewritten as a superposition integral
of homogeneous (down- and upgoing) ATP waves only. This will simplify the
interpretation of this response as a surface integral since one will no longer have
to pay any attention to the inhomogeneous ATP waves, which have, for in-
stance, their presence in the causal solution integral (3a).

Let us start by writing the potential (5b) in the form

2
&/M(ro,r, z, t) = Inci dOsin 0 D{0)  dtp A'(t—h cos O/ci RI<>

njlfriro %a
dosin 0D(0)  dtp A'(t—h cos 0/c{- nreR/c2) (6a)
0
In the second term of Eq. (6a) we consider the natural change of coordinates
sin Qjc! = sin y/c2, which is suggested by Snell's law and transforms the vertical
imaginary path 0 = n/2+h (0<r<ro)into the horizontal real one yc<y<n/2,
where yc = sin-1 (c2/cj) is the critical angle. Recall that c{>e2.
Calling the second term in formula (6a) ®*(10, r, z, /), we can write

2ncx
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T2

P (1o t) = ey ] dysinyD(y) dipJ'(f +ihM(y)/c2—m ¢R/c2) (6b)
where

meR = tjsiny+zcosy (6¢)
and

Ly) = Jsin2y-(c2c,)2. (6d)

Note that M(y) in Eg. (6d) is always positive in the range yc <y <
Also,
2)(y) = 2qi cos Y/[B, cosy- iQRV{y)\ @)

Transforming in a similar way as in [Hubral and Tygel 1985] the second
expression ®T(r, z, - 1) on the right-hand side of formula (5a) and combining
it with the first leads to

2n
-1
« Re{NOT} . d0sin 0 D(0) dip6\t-h cos O/cx- nreR/c?)
0 0
+ Re dysinyD(y) d<A'(t+ ihM(y)/c2—m mR/c2) >. (8)

Here the (“-integration in both terms can readily be performed. Doing this
however destroys the immediate geometrical appeal which formula (8) provides
as a surface integral over transient homogeneous plane waves only. Let us now
analyse expression (8). We base the analysis on a comparison with formulae (4).

It is quite plausible to expect that if the integration variable 0 in formula
(4c) would only cover the smaller angular range OL<0<OH, the resulting plane
wave superposition will still approximate the spherical potential (la) for r>0
within the angular range OL<0<OH. Likewiseg, it is equally reasonable to expect
that if the homogeneous ATP waves in formula (4c) would have in addition a
slowly varying O-dependent amplitude and/or pulse shape, one could still ob-
serve a quasi-spherical wave field radiating away from S for />0.

As we will note below, the second term of Eq. (8) has a great similarity with
the representation (4c). This similarity turns out very useful as a means of
understanding the P*-wave.
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7. Detection of the P*-wave

The first term on the right-hand side of Eq. (8) can be clearly recognized
as a superposition of down- and upgoing homogeneous plane waves of identical
b'-pulse waveshape and 0-dependent amplitude. These b'-pulse plane waves
radiate at /=0 through point 5 and are responsible for the direct transmitted
wave (see example in Section 8).

We now pay attention to the second term in Eqg. (8). This is responsible for
the so-called /™*-wave (see example in Section 8). The second term can be
recognized as a superposition integral of homogeneous ATP waves of varying
amplitude and wave shape. Each ATP wave can be expressed as

D{y)A'{t + ihM(y)/c2- m+R/c2) = D(y)h(t, - ihM(y)/c2) * A'(t—m+R/c2) (9)

where

0(t~oc) if a is real

_ ~Im* iflma >0 (10)

[(t—Re a)2+ (Im a)2

The symbol * denotes convolution over t. On account of expression (9) we can
very clearly see that all ATP waves used in the second term of Eq. (8) pass
simultaneously at /= 0 through the epicentre 0 (and not through point S as the
b'-waves in the first term of Eq. (8)). The directional unit vectors of propagation
cover the limited angular range yc < y < n—yc\ 0<tp<2n upon the unit sphere
centred at 0.

The second term thus gives already directly by inspection a clear indication
that the spherical /’'-wave exists in the vicinity of the wavefront t = R c2
(R2 = r2+z2)within the angular range yc < y < n/2 of the unit sphere centred
at O. This hint comes a) straight from the mathematical formulation of the
transmission response (8) in terms of a superposition of homogeneous ATP
waves and b) from a comparison with the time-symmetric source representation
integral (4c). No need exists to employ any more involved mathematical analysis

in order to detect and extract this particular event. (In fact let us remark that
the P*-wave cannot be associated with a distinct singularity of the integrand in

Eg. (3b).)

8. Example

To get a better appreciation of the significance of the P*-wave within the
total response, we evaluated integral (8) at the fixed time /= 0.06 s for different
values of r and z. The reflection response was likewise computed with the solution
integral described by Hubral and Tygel [1986]. In other words, we computed
what is in general called a snapshot. The model was defined by the following
parameters; Pi =Q2=1g/cm3, ¢*3000 m/s, c¢2= 1500 m/s and /?= 10 m. The
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frame was specified within the range —1000 m<z< 1000 m and - 1000 m<r<
< 1000 m. Instead of using the incident point-source potential Re A(t—R/cy),
we computed the response for the incident potential Re A(t +ie—R/c”/R with
£=0.004. Displayed in Figure 2 is the total pressure field in the form of an
isometric plot. The critical angle is yc=30°. In the upper medium one clearly
recognizes the superposition of the upgoing direct and reflected wave (both
events cannot be separated). In the lower medium we observe the downgoing
transmitted wave and the P*-wave.

T
z
Fig. 2. Snapshot of the pressure wavefield in the r-z plane of the model described in the
example
2. dbra. A példaban ismertetett modell r-z sikjaban kialakult nyomashulldiméi pillanatfelvétele

Puc. 2. CHMMOK nons BOJSIH CXaTusa Mo MA0CKOCTU F-z MOJenu, OMWCaHHOW B npumepe

9. Simplified expression of the P*-wave

Above we observed the R*-wave as a spherical concentration of energy in
the transmitted wavefield provided that Ci>C2. In the Appendix we will show
that fort = R/c2, R»h andr = Rsin/; z=Rcosy (yc<y < n/2)itcan be
approximated as

0,1, z, 1) = Re [D{y)b{t, - ihM(y')/c2) *A(t-R/c2)/R} (11)

where R2 = r2+1z2.
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Formula (11) completely agrees with the transient (high-frequency ap-
proximation) potential one obtains from Brekhovskikh’s formula [1980, p. 282,
Eq. (32.11)], where the second term is ignored.

10. Conclusion

The Causality Trick provides a simple means of transforming infinite-range
to finite-range solution integrals. For this reason it may lead to a simpler
analysis of the solution integrals and a better detection or understanding of the
events that make up the total response. This paper demonstrates that a fairly
simple representation integral can be obtained for the transmission response
from a planar acoustic interface for the case CI>C2. It is expressed in two terms
that have the form of a surface integral. The superposition involves homoge-
neous ATP waves only that pass at t=0 either through point S or point 0. The
P*-wave can directly be inferred from Eq. (8) as the second term. It has a similar
structure to the time-symmetric point source (see Eg. (4c)).

An approximate transient expression of the P*-wave has been extracted.
It agrees with the time-harmonic equivalent expression for this wave given by
Brekhovskikh [1980, p. 282, Eq. (32.11)].

We believe that the easy detectability of the F*-wave and the insight that
the time-symmetric formulation (8) of the transmission response for c{>c2
offers, are clear indications of the value of the Causality Trick in analysing a
solution in order to better understand higher-order wave propagation pheno-
mena.
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Appendix
We consider the second (complex) term in Eqg. (8). Namely
n i
dysinyd(y) ép m mKjc2)\ (AT)

0
where
t{y) = t+ihM(y)/c2
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We suppose that R»h and t=R/c2. We know that [see Tygel and Hubral
1984]

J d3(t(y) —m mR/e2) = 2[r sin2y/cj - (F(y)- zcos y/c2)2]" 12 (A.2
0

where the square root is of the form \'n2—a2 (b>0, Ima > 0) and satisfies
Re \b2-cr >0 if Ima>0,
and
b\-a2 if (2<b2
N-fsgn (a) \b2—a22 \fb2<a2
Introducing Eg. (A.2) into Eq. (A.l) we obtain

\h2—a2 = (A3)

. d .
X[r2sin2y/cj —(F(y)-z cos y/c2)2] 2 =

e dy sin y D(y) —[r2sin2yjc\ - (I'(y)- r cos ylc2)Z]

dy sin'y D(y) ('(y)- z cos y/c2) x
271C2
3
x [r2sin2yli2- (T(y)-z cos y/c2)2] 2 (A4

Let us investigate this potential upon the ray specified by the angles (0<<p<2n)
and y (yc <y < n/2), where the angle y' is such that cos y' = z/R; siny' = r/R.
We can write Eg. (A.4) as

O* (01,2, 1) = 292 dysinyD(y) (c2(y)/R- cos ycos Y

ZR
3
[- (cos y- c2Fr(y) cos y'jR)2+ sin2y'(l - c2rAy)//?2] 2 (A.5)
If t=R/c2and R»h, then for all y (yc<y<n —y0)
Hy) = R/c2+ihM(y)/c2 = HY) = ric2+ ihM(y")/c2, (A.6)

this being the case since
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\ihM(y')/c2\ = hIM(y") ljc2 < h/c2« Rjc2 and  \M(y)\<\.

Hence for t = R\c2and R»h, we have t(y)= F")= Ffor all y. In this case we
write

71-yc

oT(10, 1, Z, 1) H?g [* dysiny D{y) (c2/R-cos y’cosy) X

_3
X [{cos y—c2i"cos y'//?)2+ sin2y'(I - c\F2IR2)] 2 (A.7)

Moreover, at t = T2c2, the integrand in Eqg. (A.7) possesses a singularity at
y=y'. Namely, if F= R/c2 that integrand reduces to

siny D(y) (1- cosy cosy) [- (cosy- cosy')?] 32 =

siny D 1- cosycos/ ! __isin y._D(y) A.8
1 - cosvcecos/)y e =
yB) ( y ) /Xos y—cos y Icos y—cos y'YJ (A-8)

where the sign convention for the square root was used.
More specifically we have at '= R/c2

a = F—=zcosylc2 = R(c2ZHR—cos / cosy)/c2 = R(1—eo0sy cos y)/c2 > 0
so that

1 |
W2-a2= —isgn (a)\h2~a2\2 = - i\(cos y—cos y')2\2 = - i|cos y—cos Y'\.
Therefore
(h2-32f 2- (. ir-w2y) 3= (-|\h2—a2\y3=
n 1 L. zL
(- TI0BF-COSYjj T0BYy-COSYT

It follows that most of the weight of the integral (A.7) is concentrated in the
neighbourhood of y=y'

In the light of this observation we draw the following conclusions:
a) The integral (A.7) should not change significantly if we change the integra-
tion limits from [yc, n—yq to [0, n].
b) The integral (A.7) should also not vary significantly if we replace D(y) by its
value at y=y', D(y') as what matters happens in the vicinity of y=y.

In this case we get

1

o* 7,2, 1) nRZD(y') dy sin y (c2T/R- cos 'y cosy) X
0
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X [—(cos y—C2t cos //A)2+ sin2/ (1- c2 2R 2 -
= D{y) d( dysin y[- (cos y~ c2t cos y'/™)2+ sin2y' (1- c2 2//?2)] 2

- D{y)A(t—RI/c2)/R = D(y")A(7+ihM(y')/c2-R/c2)/R =
= D(y")b(t, — ihM(y")/c2) * A(t—R/c2)/R (A.9)
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A HULLAMTERJEDESBEN MEGNYILVANULO OKSAGI OSSZEFUGGESEK
UJ MEGVILAGITASBAN

Peter HUBRAL és Martin TYGEL

Az oksag alapvetd fizikai elv a hullamterjedésben. Mint ismeretes, az oksag azt jelenti, hogy
gerjesztés el6tt nem lehet atvitel. A ,,matematikai oksag” viszont azt jelenti, hogy a fizikai valésagot
leir6 matematikai megoldas nem terjedhet ki a forras gerjesztése el6tti idére. Azonban a fizikai
ok-okozati viszonytol eltéréen, a matematikai oksag elvéhez nem kell ragaszkodni. Matematikai
oksag példaul minden olyan megoldas, mely leirja a rétegzett kozeg valaszat a Sommerfeld- vagy
Weyl-integrallal leirhatd atmeneti okszer(i forrasra. Jol ismert, hogy ekkor az ered6 megoldasi
integralok végtelen integralasi hatarral rendelkeznek. Ez azonban egyszeriien atvaltoztathato véges
integralasi hatarral a matematikai oksagi kévetelmény enyhitése Gtjan és olyan nem-oksagi megol-
dasok keresése Utjan, melyek id6ben szimmetrikusak a forras gerjesztésének pillanatara vonatkoz-
tatva, minekutana megegyeznek az okszer( atvitellel. igy az idébeli szimmetria a hullamterjedésnek
bizonyos teljességet ad, mely kordbban nem volt elérhet. Ebben a cikkben megfogalmazzuk két
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eltéré, allandd sebességgel bird6 homogén akusztikus félteret elvalasztd sik hatarfellilet kdzelében
elhelyezked6 pontszer(i forras id6ben szimmetrikus, szélessavi atviteli fliggvényét. Ez szép példajat
nydjtja annak, hogy hogyan hasznalhatjuk fel az id6beli szimmetriara vonatkozé megfontolasain-
kat olyan egyszer(ibb kifejezések kozvetlen Gton torténd elallitasara, melyek viszonylag kénnyen
elemezhet6k. Amikor alagut-hatas figyelhet6 meg (vagyis amikor a forras a nagyobb sebességl
kozegben kozel van a hatarfellilethez), akkor a szélessavl atviteli fliggvény csupan a homogén
sikhullamok szuperponalasaval szimulalhat6. A megoldasi integral kozvetlen megfigyelésébdl az
alagut-hatas jelenségére kdnnyen lehet kdvetkeztetni és egy Ugynevezett kvazi-szferikus ~-hullam
vezethetd le.

HOBbIV B3rnag HA NMPUHLM MPUYMHHOCTW B PACMIPOCTPAHEHWI BOJIH
Metep XYBPAJT n MapTtuH ThITE/]

MPUYMHHOCTbL SBNSETCS OCHOBHBLIM (BM3NYECKMM MPUHLMMNOM B pacnpocTpaHeHUn BOsH. Kak
M3BECTHO, OHA O3HAuyaeT, YTO He MOXeT ObITb Mepefaun A0 BO36YXAeHus. «MatemaTuyeckas
NPUYMHHOCTb» BHYLLAET, C APYroli CTOPOHBI, YTO OMUChIBatOLLLEe (hM3NYECKYHO peasbHOCTb MaTeMa-
TUYECKOE PELLEHNE He AOMKHO 0XBaTblBaTb BCE BPEMEHA [0 BO3GYX/AEHUS UCTOYHMKA. B oTanuum
OT MPUYMHHOCTY B (hM3UKe, MaTeMaTMUeCKas MPUUMHHOCTL He 0653aTeNlbHO A0MKHA CO6N0AATLCS.
MatemaTnyeckas NPUUMHHOCTb, HampuUMep, NpejcTaBfieHa BCEMU PELUEHWSIMU, OMUCHIBAKOLLMMM
noBeJeHWe COMCTON cpefbl NOA BAMSIHUEM MEPEXOLHOr0 MPUUUHHOTO UCTOYHUKA, ONUCHIBAEMOrO
UHTerpanamu 3omeptensia unu Belina. M3BecTHO, 4TO pe3ynbTupyloLiMe MHTErpabl peLleHus
npu 3ToM 06/1a4alT 6ECKOHEYHbIM NpesenoM UHTerpupoBaHns. OgHaKo, OH MOXeT GbITb NPOCTO
npeo6pasoBaH B KOHEYHbIli Npefen MHTerpupoBaHus nyTem ocnabneHus TpeboBaHus MaTemartuue-
CKOM MPUYMHHOCTU W OTbICKAHUS HEMPUUMHHBIX PELUEHWA, KOTOpPbIe SBASOTCA CUMMETPUYHBIMM
BO BPEMEHM MO OTHOLUEHWIO K MOMEHTY BO36YXXAEHWSI UCTOYHMKA, MOCMe Yero OHM COBMajatoT
C MPUYMHHBIM OTBETOM. [03TOMY CUMMETPUSI BO BPEMEHW [aeT pacnpoCTPaHEHUIO BOMH HEKOTO-
pylo MONHOTY, KOTOpas OKasanachb paHblle HefocsiraeMoii. B HacToseli pa6oTe dopmynupyetcs
CUMMETpPUYHAs BO BPEMEHU LUMPOKOMOOCHAs XapakKTepucTuKa nepesayn TOYEUHOrO UCTOYHNKA,
Haxogserocs B6M3M NIOCKOro pazjena Mexay AByMs O4HOPOAHBLIMU aKyCTUYeCKUMK MOaynpo-
CTPaHCTBaMM C IBHbIMU MOCTOSHHLIMU CKOPOCTAMU. ITO SIBASETCS XOPOLUMM NPUMEPOM NPUMEHe-
HUS1 COOBPaXKEHUI A MO CUMMETPUM BO BPEMEHW ANS1 MOMYyYeHUs NPSMbIM MyTemM 60fee NPoOCTbIX
BbIPQXEHWI, KOTOPble OTHOCUTENbHO NIErKO NOABEPranTCs aHanusy. Mpyu HaAIMYUM TYHHENbHOTO
adekta (T. € NpY XaHOXKAEHWM WUCTOYHUKA BOMM3N pa3dena B Cpede MOBLILIEHHON CKOPOCTU)
LUMPOKOMNONOCHasA XapaKTepucTuKa nepesayn CUMYMpYeTcs HanoXeHWeM TO/bKO OLHOPOAHbIX
NA0CKMX BOMH. M0 HenocpeCcTBEHHOMY HaGMIOLEHUI0 MHTerpana peLleHns Nerko caenatb 3aKo-
UeHMe 0 HalMUYMKU TYHHENbHOTO SIBNEHWSI 1 MOXKHO BbIBECTM T. H. KBa3u-CepuUUYECKYo BONHY P*.
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REMOVAL OF MEDIUM AND LONG-WAVELENGTH STATICS
ANOMALY FROM VELOCITY GATHERS (A 2-D MODEL STUDY)

Ernest F. PAAL*

The anomalies associated with the weathered layer can affect the seismic data in different
ways, they can change or completely remove the relief from structures with small closure. They can
distort the shape of the reflection hyperbolae on velocity gathers. But their most obvious effect is
the lowering of the signal-to-noise ratio together with causing a deterioration in the resolution of
reflected events on the stacked seismic traces.

Among the three types of anomalies: long, medium and short, the medium and the long-
wavelength ones are the most difficult to determine. The medium-wavelength anomaly is the one
which distorts the shape of the reflection time-distance curves on velocity gathers and, therefore,
the subsequent velocity analysis that scans these distorted, higher order curves hyperboiically results
in erroneously defined VNMO velocities with decreased coherency values.

A 2-D model study example is used to demonstrate how the medium-wavelength anomaly
distorts the normally hyperboiically shaped reflected arrivals. As a solution to the problem an
iterative processing stream is presented where the combined effects of long-wavelength refraction
and short-wavelength reflection static procedures are required. The removal of the medium-
wavelength component is mainly required for accurate VNMO velocity determinations not so much
for the sake of good normal-moveout corrections but rather to obtain correct migration velocities
and more importantly reliable Dix interval velocities for time-to-depth conversion.

Keywords: seismic methods, reflection methods, low-velocity zone, signal-to-noise ratio, static correc-
tion

1. Introduction

Static anomalies associated with the weathered or low-velocity layer (LVL)
can affect seismic data in different ways. They can change or completely remove
the relief from structures with small closure. They can distort the shape of the
reflection hyperbolae on velocity gathers. But their most obvious effect is the
lowering of the signal-to-noise ratio together with adversely affecting the resolu-
tion of reflected events on the stacked seismic traces.

Among the three types of anomalies: long, medium and short, the medium
and the long wavelength ones are the most difficult to determine. In this
discussion wavelength defines the length or lateral extent of the anomaly with
respect to the maximum source-to-receiver distance or spread length. Therefore,
one spread length is equivalent to one wavelength. Our characterization and

* Exxon Production Research Company, P. O. Box 2189, Houston, Texas 77252-2189, USA
Paper presented at the 47th meeting of the EAEG, 4-7 June, 1985, Budapest, Hungary
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Separation of the LVL anomaly spectrum into these three components are the
result of the three different types of effects these anomalies have on the various
forms of the seismic data. In this work we assume the following approximate
separation for these three components of the LVL-anomaly spectrum. The
lateral extent of the short-wavelength anomaly is from the existing receiver
interval to about one quarter of a spread length. For the medium-wavelength
anomaly this extent is from one quarter to three-quarters of a spread length.
And finally the long-wavelength anomaly extends from three-quarters of a
wavelength to the extent of the entire seismic line.

We want to emphasize in this discussion, by showing the results of this
model-study, that the complete removal of the medium wavelength anomaly
requires the use of both residual reflection and surface consistent refraction
static correction methods. The medium-wavelength anomaly is the one which
distorts the shape of the reflection time-distance curves on velocity gathers and,
therefore, the subsequent velocity determination routine that scans these distor-
ted, higher than second order curves hyperbolically results in erroneously
defined VNMO-velocities with decreased coherency values. We will follow-
through a 2-D model study example to demonstrate how the medium-
wavelength anomaly distorts the normally hyperbolically shaped reflected ar-
rivals. As a solution to this problem an iterative processing stream will be
presented where the combined application of long-wavelength refraction and
short-wavelength reflection static procedures are required. As a result of this
special processing flow the gained accuracy of VNMO-velocities is not primarily
important for the sake of better normal-moveout corrections but rather to
obtain reliable Dix interval velocities for time-to-depth conversions.

2. Discussion

In an idealized way Hg. 1 describes the problem caused by medium-
wavelength LVVL components on a source gather collected above a rather simple
2-D model (even the Snell’s-law effects were ignored). The hyperbolic time-dis-
tance curve (dashed line) represents the shape of the reflected arrival from a
single, flat reflector when there is no LVL, but only one single homogeneous
layer.

The heavy, distorted curve with the “X”-es represents the time-distance
curve with the medium-wavelength LVL distortion resulting from a weathered
layer situated just below the surface. The other, hyperbolic curves represent
some possible hyperbolic-scan functions which might sweep this gather in order
to find the best fit to this distorted curve. There are several curves where some
similarity can be found, none of which will correctly represent the actual VNMO
velocity from the surface down to the reflector. The obtained coherency values
as a measure of how well a scanning function matches the actual data, will be
relatively small also in this case on the time-velocity plot associated with this
gather.
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Fig. 1. Simplistic model to demonstrate the effect of the medium-wavelength LVL-anomaly on
a source gather
| — time-distance curve with medium-wavelength LVL distortion; 2  hyperbolic
time-distance curve; 3  possible hyperbolic scan functions

I. abra. Egyszer(sitett modell a kdzepes hullamhosszlsagu lazaréteg-anomalia hatasanak
szemléltetésére robbantépont szerinti csatornagyujtésrc

| Gt-id6 gorbe kodzepes hullamhosszlUsagu lazaréteg torzitassal; 2 hiperbolikus Gt id6
gorbe; 3 lehetséges hiperbolikus modell fliggvények

Puc. 1 ¥YnpolieHHas MOAeNb 418 WANKOCTpaLun BAusHUS aHoMmanuu 3MC, BbI3BaHHOI
BO/IHAMMW CPEeHMX ANVH, Ha 0TOGpaHHble celicMUYeckne Tpacehl
1— roporpag ¢ nckaxeHnem 3MC, BbI3BaHHbIM BOJIHAMU CPEAHUX A/INH;
2 — runepbonuyeckunii rogorpad; 3 - BO3MOXHbIe (DYHKUMU TMNepbonnMyeckoro o6cnexmnsaHms

To look into this problem in more detail and with a more quantitative
scrutiny next we will discuss our 2-D model. The upper part of Figure 2
represents the near-surface portion of the model. This part comprises topo-
graphic undulations up to approximately 55 meters maximum, which are in the
medium and long wavelength range in relation to the almost 3000 meter spread
length. The actual LVL-thickness varies with all three components of the
anomaly spectrum, and it reaches a maximum value around 60 meters. The
LVL-velocity is 915 m/s and the first subweathering layer velocity is 2285 m/s,
their ratio being exactly 0.4. This value is found to hold surprisingly well in

many places around the world.
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spread length

Fig. 2. Model providing the synthetic data by non-zero-olTset ray tracing
2. abra. A vizsgalat céljara hasznalt modell

Puc. 2. Mogenb, 3a pacyeToB

Below the weathered layer, we placed 5 flat reflectors with depths indicated
on the left hand side of the model. The synthetic traces from the mode! were
generated by non-zero offset ray tracing. The data represent 48-channel offset
recording resulting in 24 fold CDP coverage with 61 meters station and shot
interval.

The model is a very close replica of an actual seismic line. Figure 3 is the
“stack” of the near trace in each stacking bin without any LVL or elevation
static corrections. It verifies our contention that the model represents all three
components of the LVL-anomaly spectrum as far as the LVL-thickness varia-
tion is concerned. This is especially a correct statement as far as the reflection
from the base of the LVL is concerned. It does not have any topographic effects,
but only the effects due to LVL-thickness changes.

On the Model two CDP-gathers are selected for more detailed analysis.
One is extracted at a place on the model where the topography and the LVL-
thickness change is the greatest (SP 274). This gather will only serve to drama-
tize how bad this distortion can become in extreme cases due to the medium-
wavelength anomalies.
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Fig. 3. Time section obtained after stacking the near-trace without the application of any
elevation or LVL corrections

3. abra. A robbantopont-kdzeli csatornak dsszegzésével nyert idészelvény, lopografikus- és
lazaréteg-korrekcio nélkil

Puc. 3. BpemeHHOIi pa3pes, NOMy4YeHHbIA B pe3ynbTaTe HakonneHus 61M3Koi Tpaccol 6e3
nonpasku 3a BbicoTy nnn 3MC

The location for the second gather (SP 178) was selected where these
variations (topography & LVL) are the mildest on the model. This example will
serve as a reminder that even at the most unexpected location there can be
enough inherent nonhyperbolic distortion due to the medium-wavelength com-
ponent that the error in velocity determination will exceed the error normally
acceptable for depth conversion in this type of geological setting. (Small
amounts of nonhyperbolic distortion cannot necessarily be detected with the
naked eye as we will see on our second velocity gather).

Several of the CDP gathers are displayed in Fig. 4; these gathers were
extracted along the line at a certain, constant distance interval. Each gather
represents the refracted first arrival and five reflected time-distance curves on
which the medium-wavelength distortions are obvious.

In Fig. 5 we display the gather which is extracted from the model at the
most complex topographic and LVL variations (SP 274). We normally combine
two stacking bins (2 x 24 traces) to form these velocity gathers. The reason is
to increase the multiplicity of offsets for better velocity definition. In spite of
the removal of the distortion caused by the topographic effect (residual elevation
statics applied), a large amount of medium-wavelength distortion is still present
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GATHERS WITHOUT STATICS APPLIED

Fiy. 4. 15 CDP gathers evenly distributed along the surface of the model, showing the distorted
time-distance curves due to the medium-wavelength anomalies

4. dabra. 15 egyenkozl kdzos mélységpontos csatornagy(jtés kozepes hullamhosszisagu
anomalidk torzitd hatadsadnak szemléltetésére

Pur. 4. OT60p celicmmuecknx Tpacc no 15-n O T, pacnpegeneHHbIX paBHOMEPHO MO
NOBEPXHOCTU MOJE/NN, KOTOPble NOKa3blBaOT UCKaXEHHble roAorpadbl, CBA3aHHbIe
C aHOMaNVAMW BOJSIH CPefHUX L/INH

on the time-distance curves. Multiple velocity picks with the same coherency
values can be seen. The maximum velocity difference between picks representing
the same reflector reaches as much as 3500 ft/s = 1066 m/s.

The non-hyperbolic distortion is clearly visible on the uncorrected gather.
The corrected gather traces with the designated “correct” VNMO-function are
displayed to the right of the uncorrected gather. After the application of this
hyperbolic, second order correction to these gather traces did not transform the
reflected events to the desired flat disposition. This can be looked at as further
proof that the pre-NMO time-distance curves are higher than second order.

Figure 6 displays this same gather after the removal of the residual value
of all static anomalies from the gather. The reason behind the removal only of
the residual static effects vs. of their total values is that we want to maintain the
reference of these velocities to a plane surface, near to the actual topographic
surface. The applied residual corrections (refraction, reflection and elevation)
reduce both source and receiver time values to this plane.
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Fig. 5. Noiseless gather and time-velocity event display with only residual elevation statics
applied for SP 274
A — the result of the hyerbolic scanning for two stacking bins (coherency peaks triangles and
circles, size proportional with measure of coherency); B —the uncorrected (raw) gather traces;
C — NMO-corrected gather-traces; D — sum of NMO-corrected gather displayed 5 times

5. dabra. Zajmentes csatornagydijtés és id6-sebesség fliggvény a 274-es robbantépontra, maradék
topografikus statikus korrekcié alkalmazasa utan
A — két kozos mélységpont hiperbolikus sebességvizsgalatanak eredménye
(a koherenciacstcsokat haromszdgek és kérok abrazoljak, méretiik aranyos a koherencia
mértékével); B korrigalasan (nyers) csatornagyijtések; C  csatornagyiijtések NMO
korrekcié utan; D a korrigalt csatornak Osszege, 0tszdr egymas utan kiiratva

Puc. 5. OT60p celicmmnyeckmx Tpacc 6e3 Lwyma 1 rpamk 3aBUCUMOCTN BPEMEHM OT CKOPOCTU
ana MB 274 ¢ npuMeHeHMeM TOJ/IbKO OCTAaTOYHOI CTaTUYeCKO MonpaBKu
A pesynbTaT runep60nnyeckoro o6cnefoBaHNA ABYX COBOKYMHOCTEA HakomaeHus (Nuku
KOrepeHTHOCTM M306paXkeHbl TPeYroNbHUKaMM U KPYXKaMu, pasMmep MX NPonopLMoHaneH
BE/IMYMHE KOTepeHTHOCTW); B oT6op HencnpasneHHbIX Tpacc; C — oT6op Tpacc nocne
BBEAEHWA KMHEMAaTM4YecKoi monpasku; D cymma cencMuueckux Tpacc mocne BBefeHUs
KMHEMaTMYecKol nonpasku, BbluepyeHHas 5 pas
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Fig. 6. Noiseless gather with all LVL-anomalies removed by refraction, reflection and elevation
static correction procedures

6. abra. Zajmentes csatornagyljtés és id6-sebesség fiiggvény lazaréteg korrekcid (refrakcios,

reflexios és topografikus) utan

Puc. 6. OT6Op ceiicMuuecknx Tpacc 6e3 Lyma 1 rpagvk 3aBUCMMOCTI BPEMEHW OT CKOPOCTY
C ycTpaHeHueM Bcex aHomanuii 3MC nyTem BBefieHMs cTaTU4eckux nonpasok OB, MB u 3a
BbICOTY

The formula used for this residual static correction calculation is the
following:

RESID, = TOTAL,----:A}\VeNTOTAL,

where i = trace no. in the gather
N = max. trace no. in the gather

RESID;
TOTAL;

Residual correction for trace i

the sum of all LVVL and elevation corrections with their total
values reducing each trace to the datum plane.

Figure 6 of the corrected gather provides the proof that the previously
distorted reflections were fully restored to their proper shapes, and the velocity
determination process (hyperbolic scanning) could find only one matching
hyperbola to 4 out of 5 of these reflections with large coherency values.
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Hg. 7. CDP-gather and time-velocity event display for SP 178 where random noise was added
to the signal and only residual elevation static corrections were applied

7. abra. Kdézos mélységpontos csatornagydiijtés és id6-sebesség fliggvény a 178-as
robbantépontra, véletlen zaj hozzaadasaval, maradék topografikus korrekcié alkalmazasa utan

Puc. 7. OT60p ceiicMmuueckux Tpacc ¢ OF'T v rpaduK 3aBUCMMOCTI BPEMEHW OT CKOPOCTU ANs
MB 178, rae K curHany 6bin fo6aBneH ClydaidHblii LWyM, a MPUMEHsNach TONbKO 0CTaTouYHas
cTaTnyeckas Momnpaeka 3a BbICOTY

Now we will move to the other, somewhat less distorted gather on the
model (SP 178). Here, to simulate real data gathering conditions more closely
we added random noise with a 15 to 1 signal-to-noise ratio to corrupt our
gather traces. While the noise on Figs 7 and 8 looks overwhelming, in actuality
this will not impede to any considerable degree the cross correlation routine,
which is used in all residual reflection static procedures, to find the short and
the low to medium-wavelength anomaly components of the LVL [Wiggins et
al. 1976, Farrel and Euwema 1984]

The addition of random noise to pure synthetic signals, unfortunately does
not quite simulate real data. In real data we encounter, besides additive, random
noises variations in source energy and in source and geophone coupling. In
addition direct and hyperbolically arriving noises are being added and convol-
ved with the signal. Some other factors are the various loss mechanisms due to
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geometric divergence, inelastic attenuation, conversion losses and energy scat-
tering in the near surface. Due to these further degradation takes place in our
signal amplitude spectrum and to the trace to trace similarity of the reflected
pulse. Under these conditions we have found that the need for both static
correction procedures (refraction and reflection) is highly desirable. As far as
the result of this model study is concerned the above message was portrayed
only qualitatively because we fell somewhat short of simulating real data
conditions. In Fig. 7 it is very difficult to see the coherent reflection events on
both the corrected and uncorrected displays. If we look at the “sum traces”,
which are the stacked gather traces repeated five times on the right side of the
corrected gather they immediately tell the story. The amplitudes of the 5 events
on these traces are practically'zero. On the left side, on the time-velocity event
display no coherency peaks with any acceptable size or any pattern can be
detected in the clutter of the randomly distributed low value event picks.
Obviously the short-wavelength component which was not affected by the
residual elevation correction values plus the random noise caused this degrada-
tion in S/N ratio.

Figure 8 displays the same gather which, in addition to the residual eleva-
tion statics, was processed by a residual reflection static process also. Significant
improvements can be detected in S/N ratio on both gather displays and in the
coherency values of the reflected arrivals on the time-velocity plot. What is even
more noticeable, which is the main message of this discussion, is the fact that
in spite of the considerable improvement the velocity picks as a result of the
hyperbolic scans are still incorrectly positioned in respect to the correct values.
These are 50-75 m/s otf from the solid line of the VNMO curve. Also interesting
is that there are only singular values displayed, which might indicate to the
casual observer that everything is in order and all the medium-wavelength
distortion was removed. This false assumption can also be adopted by examin-
ing the corrected and uncorrected gathers. By visual means there can be seen
no distortion whatsoever on these gathers, indicating that the naked eye cannot
detect this distortion until it is already too large. As far as the quality of these
gathers is concerned, for NMO correction there are some errors for the higher
frequency components. The centre frequency of this synthetic pulse is 25 Hz.
Taking the reflection just below 2 seconds where the difference between the
picked and the correct velocity is approximately 250 ft/s = 75 m/s the residual
At is 15 ms. as the following calculation indicates.

e

e WH T _W +(Zl|)J -2.111 = 0.2919

1
2

A Teorr - + T O0O= ii9800Y + (2.111)f] 2.111 = 0.2766

n as7ss6l v 7

AAT = ATar—ATar = 0.2919-0.2766 = 0.015 = 15ms
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Fig. 8. The same as Fig. 7, after residua! elevation and reflection statics application
8. abra. Ugyanaz, mint a 7. dbra. maradék topografikus és reflexios statikus korrekcié utan

Puc. 8. To e, UTO ¥ Ha puC. 7, MOCNe BBEAEHUS MOMPaBKW 3a OCTATOUYHYH BbICOTY
1 cTaTuyeckoii nonpasku OB

This same 250 ft/s or 75 m/s error in velocity on the other hand in respect
to the generally allowed not more than 1%—1.5% error in depth conversions is
too large. The error here is 2.85%:

T0=2111s  YTwo=8786 ft/s AV =250 ft/s

ToW 2111 87
;- 02 28 8 _ 90736 ft = 2826.4 m

7 = TOONO-AV) - 2.111(8786-250) _ g0 e praco

AZ=80.4 m=263.9 ft

z
7 m100 = 2.85%.

=corr

The error in absolute depth due to not using Dix’s converted interval
velocities is 263.9 ft or 80.4 meters.
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Fig. 9. The same as Fig. 7, after residual elevation and residual refraction statics application

9. abra. Ugyanaz, mint a 7. abra, maradék topografikus és maradék refrakcios statikus
korrekci6 utén

Puc. 9. To e, U4TO U Ha puC. 7, NOCNe BBEAEHWS MOMPaBKM 33 OCTATOYHYIO BbICOTY
1 0CTaTOYHOW CTaTMYecKoii nonpasku MB

Figure 9 is the gather with residual elevation and refraction statics. The
differences with Fig. 8 are immediately apparent. Since the refraction statics,
even the surface consistent ones, are not as effective against the short-
wavelength components as are the reflection static procedures, the coherency
peaks on the plot are smaller in value. This can also be seen when we examine
the corrected and uncorrected gathers and the 5 sum traces. All these show a
reduction in signal-to-noise ratio which indicates that the alignment of the traces
in the stacking bin has been disturbed by a laterally high frequency near-surface
event. These are the negative aspects of this comparison between Figs. 8 and 9.
The advantage of the refraction (Fig. 9) vs. reflection (Fig. 8) process is in the
improvement of the velocities for 4 out of the 5events. Three of these peaks were
correctly positioned on the designated velocity curve.

When both refraction and reflection statics are applied in addition to
residual elevation statics (Fig. 10), all three components of the LVL anomaly
spectrum are removed. This can be verified by the accurately positioned velocity
event picks which all lie on the correct velocity function, and by the improve-
ment of the coherency or S/N ratio of the gather traces. The sum traces, just
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Fig. 10. The same as Fig. 7, after residual elevation, refraction and reflection statics application

10. (ihm. Ugyanaz, mint a 7. abra, maradék topografikus, refrakcios és reflexios statikus
korrekci6 utan

Pite. 10. To >e, 4TO U Ha puC. 7, NOCNe BBEAEHUS OCTATOYHOW MOMpPaBKW 3a BbICOTY
1 cTaTnyeckoit nonpaskn MB n OB

right from the corrected gather, will indicate both of these improvements. The
summed wavelet amplitudes representing the five distinct reflections are the
highest and the wavelets have shortest duration among all 4 displays we have
analysed.

This figure portrays the fact that a definite improvement both in velocity
picks and in the coherency values of the reflections can be realized by this
combined process.

Our final display (Fig. 11) is a flow diagram which discusses the iterative
process flow that was applied to these model traces and is being applied to all
of our land data gathers where the initial analysis indicates medium-wavelength
distortions on the reflected arrivals. The input tape to this process should be a
gain recovered CDP ordered trace data set with the appropriate header records
which carry information for further processing. The data might already have
been subjected to some other processes either for first-arrival (refraction) or for
reflection enhancement.

The first step is to determine the long-wavelength refraction statics which
will be stored for later application in the trace headers. Parallel with the



304 E. F. Paal

Fig. 1l. Generalized data flow diagram illustrating the iterative application of the various static
correction values with appropriate quality control checks inserted

I1. cihra. Altalanositott folyamatébra a kilénféle statikus korrekcids értékek iterativ
alkalmazasanak szemléltetésére, megfelel6 mindség-ellen6rzé vizsgalatok kdzbeiktatasaval
I kdzds mélységpontos rendezés, erdsités helyreallitds; 2 hosszu periddusu statikusok
meghatarozasa és értékek tarolasa; 3 - - NMO és statikus korrekcidk alkalmazasa (hosszu
periédustu + topografikus statikusok); 4 ~ maradék reflexids statikusok meghatarozasa és
alkalmazasa; 5  csatornavalogatas sebesség-meghatarozasra és az SBN-ek dsszegzése;
6 gyl(jtészalag; 7  a) statikusok eltavolitasa, b) NMO eltavolitasa; 8 — sebességanalizis;
9  Kkiiras; 10  sebesség j0? 11 - Uj sebesség-meghatarozas az NMO-korrekciéhoz;
12 - kdzds mélységpontos dsszegzés; 13 — Osszegszalag

Puc. 11. O606WeHHas gnarpamma 06paboTKu, UANKOCTPUPYLOLLAs UTepaTUBHOE MPUMEHEHWE
pasHbIX 3HAYEeHWI CTAaTUYECKON MOMpPaBKW C BK/HOYEHMEM COOTBETCTBYHOLLMX MpPOLEAyp
NPOBEPKN KayecTBa:

1 ot6op no OI'T, BOCCTaHOBNEHWE YCUNEHUSA; 2 — OMpPeAeneHne 1 XpaHeHVe 3HauYeHui
[AMHOBOJTHOBLIX NONPaBOK; 3 - MPYMEHEHNE KMHEMATUYECKON W cTaTu4eckmx (ANNMHOBOMHOBOM
+ Tonorpatuyeckoil) Nonpaeok; 4 - onpeaeneHne U NPUMEHEHME OCTATOYHbIX CTaTUYECKMX
nonpaesok; 5  0oT60p Tpacc AN onpefeneHns cKopocTn n cymmupoaHne SBN; 6 — neHTa, Ha
KOTOPYH O0TOMpatoTCs Tpacchl, 7 --a) BBeAEHWEe CTaTUYEeCKMX MONpPaBoK, b) BBeAeHME
KWHeEMaTMYecKnx NonpaBoK; 8  aHanu3 ckopocTeil; 9 — BbIBOA Ha gucnneit; 10 — cKopocTb
npasunbHa? 11  HOBOe OnpefeneHne CKOPOCTU ANS KWHEMATUYECKON NOMpaBKu;

12 HakonneHne O T; 13 — HaKonuTeNbHas NeHTa

long-wavelength statics determination the analysis of the initial stacking veloci-
ties should also take place to optimize the processing time. Then the data will
be NMO corrected and the elevation and long-wavelength statics will be ap-
plied. Next the residual reflection statics are determined and also applied to the
data. At this point before we go any further it is advisable to see for quality
control purposes how well W& have done so far and stack the data. If they fulfil
our expectation then we can proceed to form the velocity gathers. These gathers
which are formed as a combination of more than one stacking bin are extracted
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at certain intervals along the line and output to the so called *“gather-tape”
data set.

At this point processing the gathers are in the NMO and static corrected
form. i.e. they are referenced to datum. For velocity analysis, as we know, the
gathers should be referenced to the surface and must not be NMO corrected.
Therefore, in the following step we remove that part of the static correction
(bulk shift) which is the difference between the datum and the surface reference
planes (in reverse order). This difference represents a bulk shift, in time, for all
traces in the gather. Velocity analysis follows, the result of which will provide
a better set of velocity values. We compare these with the previous set in order
to make the correct decision: either to loop back with these better velocities to
obtain a better NMO correction or, if satisfied after stacking for quality control,
we can declare the gathers to be suitable for the next process.

The next process—generally when the data are intended for time-to-depth
conversion—is a velocity smoothing process along horizons. The result will
provide the required velocity quality (free from statistical and other local
variations) for this final and crucial step. This iterative loop was used on our
synthetic model-data set which we processed through this loop only once in
order to come up with the correct velocities. Our experience with real data
indicates that generally two iterations are necessary for the required data
improvement.

3. Conclusion

This model study demonstrated that the removal of the medium-
wavelength static anomalies required the combined use of refraction and reflec-
tion statics procedures. This message was portrayed in the result of this study
only qualitatively. The reason is that the data we used for the study did not
faithfully simulate real data. It is by no means adequate to simulate real data
gathering conditions simply by adding random noise to pure synthetic signals.

From this study we learned that to obtain velocities which are accurate
enough for time-to-depth conversions residual elevation and reflection statics
alone under all possible LVL conditions, cannot resolve reliably the static
anomalies quite up to a wavelength. Generally with fairly good quality data the
resolution range of short-wavelength reflection and long-wavelength, surface
consistent, refraction static procedures have a comfortable overlap just above
the half wavelength range. As the data quality (S/N) deteriorates this overlap
will shrink to a narrower zone.
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KOZEPES ES HOSSZU HULLAMHOSSZUSAGU STATIKUS ANOMALIAK
ELTAVOLITASA SEBESSEGMEGHATAROZASRA VALOGATOTT CSATORNAKBOL
(2-D MODELLTANULMANY)

Ernest F. PAAL

A lazaréteggel kapcsolatos anomalidk kilonféleképpen befolyasolhatjak a szeizmikus adato-
kat. Megvaltoztathatjak vagy teljesen eltlintethetik kis amplitid6ju szerkezetek domborzati for-
mait. Eltorzithatjak a k6zds mélységpontos csatornagydijtés reflexiés hiperbolainak alakjat. Leg-
szembet(in6bb hatasuk ajel/zaj viszony csdkkenése, amely rontja a reflexids beérkezések felbontasat
az 0sszegezett szeizmikus csatornakon.

A hosszl, kdzép és rovid hullamhosszisagu anomaliatipus kozil a kozép és hosszi hullam-
hossz anomaliakat nehéz meghatarozni. A kdzepes hullamhosszi anomalia torzitja el a reflexios
Gt-id6 gorbék alakjat a csatornagyjtfcsekben, s ezért az ezt kdvetd sebességanalizis, amely hiperbo-
likusan vizsgalja ezeket az eltorzitott, magasabb rend( goérbéket, hibasan meghatarozott VNMO
sebességeket eredményez, csokkentett koherenciaértékekkel. Egy 2-D modelitanulmany példajat
hasznaljuk fel annak bemutatasara, hogy hogyan torzitja el a kdzepes hullamhosszi anomaélia a
normalisan hiperbola formaja reflexios beérkezéseket. A probléma megoldasaként bemutatunk egy
iteracids feldolgozasi folyamatot, ahol a hossz( hullamhosszu refrakcios és a rovid hullamhosszi
reflexids statikus eljaras kombinalt hatasara van sziikség. A kozepes hullamhosszi komponens
eltavolitasa féleg a pontos VNMO sebességmeghatarozasokhoz sziikséges, nem annyira a jo NMO
korrekciok érdekében, hanem inkabb helyes migraciés sebességek eléallitasa céljabdl, és ami még
fontosabb: megbizhatd Dix intervallumsebességek el6allitasara az id6-mélység atalakitashoz.

YCTPAHEHUNE CTATUYECKUNX AHOMAJIA B CPEAHE- N HU3KOYACTOTHOM
OVNATMA3OHE BOJIH MO CENCMUNYECKMM TPACCAM, NMOAOBPAHHBIM /1
AHANN3A CKOPOCTEWN (MCCNEAOBAHUE HA ABYXMEPHOW MOJE/IN)

QpHecT ®. MAN

MpuypoYeHHble K 30He ManbiX CKOPOCTel aHOManuu MOryT MOBAMATb Ha celicMMyecKue
[aHHble pasHbIMKU NyTAMW. OHW MOTYT U3MEHWUTb WU MOMHOCTbI0 YCTPaHUTL penbed CTPYKTYp
He60/bLLOro 3aMblKaHUs. OHWM MOTyT MCKaXaTb (OpMYy rnep6onbl OTPaXEHHbIX BOMH Ha OTO-
GpaHHbIX ceiicMuyecknx Tpaccax. OfjHaKo, caMbiM SBHbIM AD(HEKTOM SIBNSETCA CHUXKEHME OTHOLLe-
HUS CUTHAI—LUYM, KOTOpPOe MPUBOAWT K YXYALUEHUIO pa3pelleHns OTPaXKeHUH Ha HaKOMIeHHbIX
celicMnyecKnx Tpaccax.

Cpeau Tpex TUMOB aHOMaWiA: AIMHHBIX, CPEAHMX N KOPOTKUX — Haubonee TpyaHO onpefe-
NATb aHOMaNMM CO CPeAHUMU U ANMHHBIMU BOMTHAMU. AHOManWs €O CPefHel ANNHOW BOMH MCKa-
XaeT hopMy roforpadoB 0TPaXKeHHbIX BOH Ha 0TOBPaHHbIX CEACMUYECKMX Tpaccax, B CBS3N C YeM
nocnefyowmii aHann3 cKopocTeld, Npu KOTOPOM rMnep6oInyecky 06¢cnesytoTcsl 3T UCKaXKEHHbIe
KpUBble BbICOKOTO NOpsAKa, fAaeT OLMBOYHO onpesensieMble CKOPOCTU C MOHVKEHHBIMW 3HAUYEHMSA-
MW KOTepeHTHOCTW. WccnefoBaHne Ha ABYXMEPHOW MOAenM NOKasbiBaeT UCKAKEHUE BCTYNNEHWI
OTPaXEHHbIX BOMIH, UMEIOLLMX B HOPMasbHOM Cflyyae runep6onmyeckyto hopMy, aHoManmsMu
BOJH CPeHUX AUH. [Nns pelleHus npo6neMbl B paboTe NpuBOAWUTCA Npouesypa UTepaKTUBKOIA
06paboTKM, B KOTOPOI HEO6X0AMMbI KOMOGUHMPOBaHHbIe 3h(heKTbl ANIMHOBOMHOBOW CTaTUYECKOM
nonpaBku C MPUMEHEHWEM MPENOM/EHHbIX BOMH U KOPOTKOBOJ/IHOBOM CTaTUYeCKO MompaBKu
C NPUMEHEHUEM OTPaXEHHbIX BOMH. YCTpaHeHWe COCTaBAALWEA CO CPeAHUMU AIMHAMU BOJH
TpebyeTcs npex/e BCEro AN TOYHOro onpefeNieHnst CKOPOCTU He CTONbKO B MHTEpPecax MosyyeHus
XOPOLUUX KNHEMATUYECKUX NOMPaBOK, Kak C Lie/bio NOMyYeHUs NPaBMbHbIX CKOPOCTER MUrpauum,
1 4TO ele 60iee BaXHO, /15 MOMYUEHNS HAJEXHbIX MHTEPBA/IbHBIX CKOpOCTei [ukca ans npeobpa-
30BaHUsA BPEMEHU B TyGUHY.
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HOW VIBRATOR BEHAVIOUR INFLUENCES SEISMIC RESULTS

Hans A. K. EDELMANN*

The paper describes empirically the phenomenon of a viscous layer under the base-plate of
a /'-wave vibrator as a pre-requisite for coupling on different types of ground. The effect of this
viscous layer can be derived from the phase behaviour of the ground force and from the active power
transmitted into the ground by a P-wave vibrator. The consequences of the vibrator behaviour for
the discrimination of phase and amplitude anomalies of seismic reflections are discussed.

Keywords: seismic sources, reflection methods, P-wave vibrator, VIBROSEIS", amplitude, phase,
anomalies, vibrator-ground coupling

1. Introduction

It has been well known since the beginning of VIBROSEIS® applications
that many of the non-linear effects related to VIBROSEIS® operation are
introduced by the non-linear behaviour of the ground. Under unfavourable
circumstances more energy is transformed into the range of harmonic frequen-
cies than is available in the fundamental frequency range [Edelmann 1982].
Nevertheless, many interesting investigations have been made which ignore
non-linear effects in a first approach. These investigations foster the impression
that the behaviour of the vibrator in the field could be understood and controll-
ed on the basis of a linear model. In the following | have tried to describe a
phenomenon which has been observed in many areas and which strongly
contributes to the non-linear behaviour of the ground. This effect can be
described from measurement results.

2. Some remarks about the theories of the servohydraulic vibrator

Several theories have been developed to describe the behaviour of a ser-
vohydraulic vibrator on different types of ground [Lerwill 1981, Safar 1984].
To make numerical calculations on the basis of such a model, some assumptions
have to be made. Lerwill, for example, assumes that the so-called driving force
of the vibrator is constant, i.e. independent of frequency. Another assumption
is that the coupling between base-plate and underlying soil is constant. Detailed
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investigations from different vibrators show that both assumptions are valid
only to a limited extent. Under certain conditions these assumptions are not
valid at all and therefore conclusions, with respect to vibrator design, should
not be drawn from this theory. In practice today, therefore, we build ser-
vohydraulic vibrators which are mainly based on modern rules of machine
technology, but are not a product of strictly followed theoretical models.

The approach made by Sallas [1984] which is based on the measurement
of different physical parameters of a vibrator, has a far better chance of gaining
practical application. The reaction of the ground to the operating vibrator
cannot normally be predicted. In this situation the reaction must be measured
and the result of this measurement must be fed back to correct the input values
of the vibrator. This means that the output of the vibrator can be controlled
in such a way that geophysical parameters are kept within certain limits and,
at the same time, the vibrator is not destroyed by overload.

Today there still are many vibrator manufacturers who mislead their clients
by giving them peak force values which can be transformed into seismic energy
only under very rare specific circumstances. And still today, geophysicists
cannot say precisely which parameter can be regarded as the main parameter
of a vibrator — to be controlled and guaranteed by the manufacturer. Many
manufacturers would feel far better if they knew more about this. The problem
has been solved by some manufacturers by providing a toggle switch in the
vibrator control unit so that the customer can make his own choice out of
base-plate acceleration, base-plate velocity, and base-plate displacement.

3. Source characteristic

Discussions about vibrator output were re-opened when VIBROSEIS"
records were required to be linked meticulously with dynamite records [Broetz
et al. 1985]. None of the parameters mentioned above proved to be comparable
to the impulse emitted from a dynamite shot. Initially some people believed that
the problems could be solved by a polarity decision until they noticed that there
existed a frequency dependent phase shift between dynamite records and VI-
BROSEIS records, both measured in the far-field range or in routine seismic
records [Wagenbreth et al. 1985]. Some investigations indicate that the phase
characteristic of the ground force of the vibrator comes closer to the phase
characteristic of a dynamite shot and to a certain extent is phase-wise less
sensitive to variations introduced by changing surface conditions [Martinez
1985].

As long as it is only the determination of travel times that is the main
objective of seismic measurements, we have to worry only about the phase-
characteristic of what we regard as vibrator output. But as soon as we want to
separate variations in phase and amplitude caused by surface effects from
variations caused by the exploration target, we cannot any longer rely upon a
constant phase characteristic of the vibrator output, but also have to keep an
eye on the amplitude characteristic.
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4. A reproducible source characteristic

To distinguish anomalies due to transmission and reflection properties of
the target zone, the amplitude and phase characteristic as well as the trans-
mission effects of near-surface layers must be taken into account. This is
normally done by equalizing CMP traces to an average characteristic using an
adequate time window. This method works well as long as the variability of the
target-zone effect is larger than the variability of the other factors, i.e. source
characteristic and near-surface layer characteristic. Inevitable noise introduces
additional problems for the inherent wavelet processing step.

To improve the capabilities of the seismic method with respect to resolu-
tion, the reproducibility of the source characteristic should be as good as
possible. It is therefore not so important to find out a specific parameter such
as base-plate acceleration, reaction mass acceleration, ground force or any other
as long as the parameter we select can be used to control the reproducibility of
the seismic source characteristic. To come closer to the solution of this problem,
it is very helpful to investigate what is going on under a vibrator base-plate.

5. The viscous zone

The vertical movement of the base-plate leads to high shear stress values
in the ground at the outer rim of the plate [Tan 1985]. This again leads to a
reduction of the shear modulus in this area which results in a radial viscous
zone. By this the stress is released in the outer part and increases in the centre
part under the base-plate. Dependent upon the force amplitude, the frequency
and the preload, a radial flow begins, and then continues or comes to a standstill
during the sweep period. Compaction of the material under the base-plate may
take place; this compaction is determined by the grain size distribution and
water saturation. The compaction which has been achieved at higher frequency
and lower amplitudes may be destroyed at lower frequencies and higher am-
plitudes. At higher preloads, higher amplitudes can be applied without destroy-
ing this compaction. Size and properties of the viscous zone under the vibrator
base-plate very much depend upon the local properties of the soil. Deeply frozen
ground, e.g., ground which is frozen down to the zone of higher compaction,
provides excellent coupling conditions for vibrators, also at high force am-
plitudes, whereas in dry and loose sand large force amplitudes may lead to a
permanent radial viscous flow under the base-plate during the sweep operation.
In the same survey area, therefore, coupling on compacted soil and coupling
through a viscous zone is possible. In many cases, coupling through a viscous
zone takes place at low frequencies whereas at high frequencies coupling on
compacted ground takes place. Therefore the elastic properties of the soil are
frequency dependent and dependent upon the process of the preceding period;
this dependence leads to a rather complex phase characteristic of the ground
force when compared with base-plate acceleration.
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6. The coupling of the base-plate at its worst

A great difference exists between the impedances of vibrator and soil in
view of which efficient coupling can only be achieved in a very limited frequency
range. Large forces therefore must inevitably lead to a continuous break-up of
the soil and thus to a viscous coupling as described above. Only in this way are
larger displacement amplitudes of the base-plate made possible, and only
through this viscous zone is the base-plate thoroughly coupled to the ground.

Base-plates are not ideally rigid. When being operated on the viscous flow
pillow, they change their shape at specific resonance frequencies. At higher
frequencies which still lie within the range of the transmitted frequency band,
amplitudes at different points of the base-plate are out of phase so that the
pressure amplitude which acts on the ground can appreciably be reduced by
destructive interference. Hard material under the base-plate such as outcrop-
ping rock may worsen the coupling, so that a viscous flow pillow cannot be
formed.

7. The phase characteristic of the ground force

If we regard the ground force as the decisive output parameter which
controls the phase and amplitude of the outgoing seismic signal and at the same
time compensates for the base-plate acceleration signal to be inphase with the
vibrator input sweep, it is instructive to analyse the phase deviation between
these two parameters. When using the ground model taking into account
ground compliance, radiation resistance, and radiation mass [Safar 1984] this
phase angle can vary between 0° lag for zero frequency approaching 180° lag
for very high frequencies. The amount of phase lag depends upon the character
of the soil. For soft soil (mud) larger phase lags are possible at high frequencies
than for hard soil (chalk). Because of the fact that a viscous flow zone forms
under the base-plate at low frequencies, in practice the phase shift can be far
larger for low frequencies than is predicted by the linear theory. Phase-shifts of
90° are not anomalous, which are reduced at higher frequencies to a level
comparable with the theoretical values. A large phase-shift is a strong indication
for the elastic properties of the soil drastically changing as a function of
frequency.

8. The active power generated by a vibrator

The difference between the theoretical model and practice comes out very
clearly when comparing the active power radiated by a vibrator. From the
theoretical model the active power can be calculated as the square of the
base-plate velocity multiplied by the radiation resistance. This leads to the
rather smooth curve (curve A) in Fig. 1 The curve was derived from the model
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Fig. 1. Emitted active power of
a vibrator on sand as a function of
frequency
A — calculated from [Lerwit1 1981];
B — measured

1 abra. A vibrator leadott aktiv
teljesitménye homokon, a frekvencia
fliggvényében
A — Lerwill [1981] adataibdl
szamitva; B — mért értékek

Puc. 1. Bbinyckaemas BU6paTopom
aKTMBHAA MOLLHOCTb Ha Mecke
B 3aBMCMMOCTM OT 4acToThl
A pacueTHasa no J1epsnn[!981];
B 3amMepeHHas

given by Lerwint [1981]. Fora radiation resistance for sand Rr = 2 m1()6 Ns/m.
curve A reaches a maximum at about 35 Hz and then drops slowly towards high
frequencies. This calculated result differs strongly from the results achieved
from measurements on sandy soil. As the system becomes non-linear, the
product of ground force and base-plate velocity has to be determined by
measurement and is shown as curve B for comparison. It can be seen that an
appreciable amount of energy is transformed into soil flow which is a dominat-
ing process in seismic energy generation.

9. Conclusions

From measurements it can be shown that a vibrator generates an appreci-
able amount of active power. This supports the assumption that the base-plate
is underlain by a visco-elastic pillow which is necessary to couple the plate to
the ground and to generate seismic elastic energy for seismic purposes.
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HOGYAN BEFOLYASOLJAK A VIBRATOR TULAJDONSAGAL
A SZEIZMIKUS EREDMENYEKET

Hans A. K. EDELMANN

A tanulmany tapasztalati alapon ismerteti a P-hullam vibrator alaplemeze alatt kialakul6
viszkozus réteget, amely bizonyos talajtipusokon — a csatolas el6feltétele. A viszkdzus réteg
hatasa levezethet6 a talajban fellép6 er6hatas fazisviszonyaibol és a P-hulldm vibratornak a talajba
juttatott aktiv teljesitményébdl. A tanulmany megvizsgalja, hogy milyen kovetkezményekkel jarnak
a vibrator tulajdonsagai a reflektalt hullamok fazis- és amplitidé-anomaliainak megkilénboztetése
szempontjabol.

KAK BVAKOT TEXHWHECKWNE XAPAKTEPUCTUVKW BUBPATOPA
HA CEMCMNYECKWE PE3YJIbTATbI

lManc A. K. 94E/IbMAH

B pa60Te aeTcs IMNMPUYECKOe OMUcaHKe BA3KOro NaacTa nog onopHoi nauToit Bu6patopa
BO/H CaTWA B KA4ecTBe NpeanocbIKM CBA3M NPK pasHbIX TUMax Moys. BAusHME Takoro BS3KOTO
nnacTa BbIBOAUTCA 13 (ha30BOr0 MOBEAEHUS CUMbI, AEACTBYIOLLE/ HA TPYHT, U aKTUBHON MOLLHO-
CTW, NepefiaBaeMoil B No4By BMGPATOPOM BOMH CxaTus. O6CYXAaloTcs NOCNeACTBUA MOBeAeHNS
BUGpaTOpa AN BblAeNeHNs (a30BbIX U aMMAUTYAHbIX aHOManWii B CEACMUYECKNX OTPaXKEHUSAX.
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ERROR PROPAGATION FOR POTENTIAL FIELD DATA
PROCESSING IN THE FREQUENCY DOMAIN

Marian VAN*

The accuracy of gravity/magnetic data processing in the frequency domain is studied by
assuming each observed value to be subject to a random error of standard deviation /:. For a certain
filter characteristic, the standard deviation of the final results is derived as a function of E. of the
sampling interval and the number of field values used for compulation. The accuracy of the upward
continuation in the frequency domain at great elevations above the datum plane is also discussed.
A magnetic model is used to illustrate the theoretical results.

Keywords: gravity field, magnetic field, frequency domain analysis, errors, standard deviation, upward
continuation

1 Spectral algorithm

Classical formulae for data processing in the space domain allow direct
evaluation of the accuracy of the final results as a function of the random errors
added to the observed values [Rosenbach 1953]. This paper presents similar
results when the computations are based on filtering performed in the frequency
domain.

A given pair of DFTs (discrete Fourier transforms) is defined [Mesko
1984] as

N- 1
Gr= 1 (kexp (~juk)
k,n =0, 1...A-1 (1)

N- 1

%= 1W X GnexpOJ
n=0

with
j = AT, ukn—2nkn/N.

G denotes the direct DFT of the sampled field g at an interval v N is the number
of field values used for computation. Both direct and inverse DFTs can be
computed with fast routines, their input and output include complex quantities
with real (rk, Rn) and imaginary (ak, An) sets of coefficients.

* Geoph. Labs., University of Bucharest, Str. Traian Vuia 6. 70138 Bucharest 37, Romania
Manuscript received: 6 August, 1986
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At the beginning, the input sets are initialized as

rk=gk
k=01 N-—1 ©)
ak="°
and the direct DFT is performed. The output of the routine is
N- 1
Rn = XO,k COS u kn
and n=0, 1 N-1 3
N- 1
A,,= - X sin Lm
k=0
Generally, a filter of characteristic coefficients
Hn+jin n=01..,N-1 @

multiplies the complex signal represented by Eq. (3). The real and the imaginary
part of the new signal are consequently

R* = H,R,,—IMn
and n=01 N-1 5)
A* = H,An+ImR,

respectively.
The inverse DFT is performed and the output gives the result of the filtering

rt = 1N n)éo (R*cos I<kn~A*sinuk) Kk =0,1, N-1 (6)
By using Egs. (2), (3) and (5), Eq. (6) becomes finally
r*= 1IN )_( (. Xo cos vapk+InsmvpkK k=0, 1, N~1 (7)
where 7
vprk = 2ji(p-k)n/N
2. Random errors
Let us suppose that each field value gk is subject to a random error of

standard deviation E. The Gaussian law of error propagation gives the standard
deviation of Eq. (7) as

E*=V X (ar*/pgp2E k=01..,N-1 ®)

Differentiating Eg. (7) and taking into account the orthogonality of the
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trigonometric functions involved, a final formula (which is independent of k)
is obtained as

E* = ]/#0+05 X1 (HR+11 + HKHN.*-/*/,,-*) E/R ©)
. e

In the case of some classical filters, the last formula can be simplified. For
the analytical continuation to a level h above/under the datum plane, the filter
coefficients in Eq. (4) are

Hn=-exp (- 2mli/s/N), /,=0 n=0,1 .. At-1 (10)
Here, negative values of h correspond to downward continuation. Then Eq. (9)
becomes
E* = [140.5(™—D exp (NaB) + ().5[cxp (Na)-exp (u))/[exp (@ ~ J EA N
. (1
with
a = —4nh/s/IN N0

The formula corresponding to the horizontal derivative of the field is
E* = nE/s/IN [W—1)(A 2) 3 (12)

Similar formulae can be derived in the cases of the first and second vertical
derivative of the field. They are

E* = nEjs J[{N—1/N (13)
and
E* = In2Ejs2]/(N~ 1) (TN3—8N2+2N+2)/I5/N2 (14)

respectively.
Formula (9) can be extended to surface data processing (an M x N field

values matrix) as
E* - Ej\2MN x
a—1 N—Ii M-1 N-1
Bt X X (Hikeid+ X X (fikHu- In-ic hJw - Lo
(15)

3. Numerical application

A magnetic noise was simulated with the aid of 64 values, (pseudo) ran-
domly distributed in the range of - 100 to 100 nT at a sampling interval of20 m.
The arithmetic mean of those values was rigorously set to zero because /
approaching infinity in Eq. (10) makes all the filter coefficients vanish except HO.
From Eq. (7) one can conclude that the upward continued field in the frequency
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domain does not vanish at great elevations above the datum plane. All its values
approach the arithmetic mean of the input data (Fig. 1).

The above noise was analytically continued in the frequency domain.
Figure 2 shows the good agreement of the results of that continuation with the
values predicted by Eq. (11). High values of noise (in the range of - 11.500 to
12.900 nT) are obtained when the downward continuation is performed at 20 m
below the datum plane (the predicted value is = 10,300 nT). The necessity of
using a smoothing filter is obvious in this case. Numerical tests have indicated
the validity of Egs. (12), (13) and (14).

Fig. 1. Z component ol the magnetic field (solid line) of two semi-infinite vertical magnetized
dykes at different elevations above the datum plane. Dashed lines show the values obtained with
the spectral algorithm. The arrow shows the arithmetic mean of the processed data. Sampling
interval is 20 m. magnetization is 100 nT

I. abra. Két félig-vcgtelen, fliggéleges magnesezett telér magneses terének Z komponense
(folytonos vonal) a vonatkozasi szint felett kiilonb6z8 magassagokban. A szaggatott vonal
a spektralis algoritmussal kapott értékekei mutatja. A nyil a feldolgozott adatok szamtani

kozépértékét jelzi. Mintavételi kdz 20 m. a magnesezettség 100 nT

Puc. /. BepTukanbHas cocTaBffloWas MarHUTHOro nons (CNAoLHas MHKA) ABYX
Nnony-6CCKOHEYHbIX BEPTUKA/IbHBIX HaMarHMYeHHbIX XU Ha pasHblX BbICOTaX Haj OCHOBHOIWA
NA0CKOCTbO. TMyHKTMPOM MOKasaHbl 3HAYeHUs, NOyYeHHbIE NPU MOMOLLM CMEKTPaIbHOro
anroputMa. CTpenkoi nokasaHa apuTMeTUYeckas cpeaHsas 06paboTaHHbIX AaHHbIX. Lllar

KBaHTOBaHUS 20 M. HaMarHU4YeHHOCTb 100 HT
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20 40 60 80 100
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Fig. 2. Range of the upward continued noise at various elevations above the datum plane. Solid
lines show the theoretical predicted values

2. abra. A fels6 féltérbe folytatott zaj tartomanya a vonatkozasi szint felett kiillonb6z8
magassagokban. Folytonos vonalakkal jeleztik az elméletileg el6re jelzett értékeket

Pite. 2. lmana3oH NpoAo/MKEHHOT0 BBEPX LUYMa Ha PasHbIX BbICOTAX Haj, OCHOBHOI
NAOCKOCTb0. CM/OLIHOMA NMHWEA NOKa3aHbl TEOPETUYECKM NPe/CKasaHHble 3HauYeHMs

4. Conclusions

It is possible to predict quantitatively the impact of random errors on the
final results of potential field data processing in the frequency domain. In some
cases, smoothing filters are necessary to obtain stable results [Bullard and
Cooper 1948, Grant and West 1965, lana8 and Moldoveanu 1974, Meskoé
1984]. The transfer function for such filters depends generally on an unknown
parameter. Equation (9) suggests a possibility for choosing that value by keep-
ing the errors within a certain range.

Erroneous results are obtained when the upward continuation is performed
in the frequency domain at great elevations above the datum plane. It is useful
to compare the continued values with arithmetic mean of the processed data as
a means of estimating the accuracy of the results. A number of techniques
designed to minimize the edge effects and the finite number of observation
points are expected to improve that accuracy [Cordell and G rauch 1982, Ivan
1986].
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HIBATF.RJEDES POTENCIALTER-ADATOK FREKVENCIATARTOMANYBELI
FELDOLGOZASANAL

Marian IVAN

Gravitacios és magneses adatok frekvenciatartomanyban végzett feldolgozasanak pontossa-
gat gy vizsgaltuk, hogy minden észlelt értékel a normal eltérés E véletlenszer(i hibajaval terheltnek
tekintettlink. Egy bizonyos sziir6karaklcrisztikara vonatkozéan a végleges eredmények normal
eltérése az a mintavételi koz és a szamitashoz felhasznalt tér-értékek szama fliggvényeként
vezethetd le. Példaként targyaljuk frekvenciatartomanyban a fels6 féltérbe val6 folytatas pontossa-
gat. a vonatkozasi szint feletti nagy magassagokon. Az elméleti eredményeket magneses modellen
szemléltetjlk.

OLIEHKA OLWMBOK MPUN OBPABOTKE OAHHBLIX MO MOJAM MOTEHUWAIOB
B HACTOTHOW OBNACTU

MapunaH VIBAH

To4HOCTb 06pa6OTKM B YaCTOTHOM 06/1acTW ipaBMpasBefKM U MarHUTOpasBefKu AaHHbIX
U3yyaeTcs Mpu NPeanonoXeHUn, UTo Kaxaoe HabntofeHHOe 3HAUYeHMe HECeT CyuyaiiHylo OLUMGKY
E HOpPManbHOro OTKNOHeHUs. [0 HEKOTOPOI XapakTepucTuku hunbTpa HopManbHOe OTKIOHEeHNe
OKOHYaTe/NbHbIX Pe3yNbTaTOB MOXET GblTh BbIBEAEHO KaK (yHKUMA E, Wwara KBaHTOBaHUS W KO-
UecTBa MCMO/b30BaHHbIX ANS pacyeTa 3HaueHUin nons. Kpome TOro, 06CYXAaeTcs TOUHOCTb NPo-
[O/DKEHUS B BepXHee MoMynpoCTPaHCTBO B YACTOTHOI 061acTU Ha GONbLUNX BbICOTaX Haf OCHOB-
HOM MMOCKOCTbO. MPUBOAMTCA MarHUTHas MOAEeNb ANs WAMOCTPALWM TEOPeTUYECKUX Pe3y/b-
TaToB.
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THE INTERPRETATION OF RESISTIVITY SOUNDING
OVER WEATHERED ROCKS

L ZIMA*

Exponentially increasing resistivity with depth is supposed for a layer of weathered rocks
(transitional layer). For this case a simple recursive formula has been developed for computing the
resistivity transform function. The resistivity transform function for sections containing transitional
layers and layers of constant resistivity can easily be calculated by combining the formula in
question with the well-known recursive formula for layers of constant resistivity. Resistivity sound-
ing curves can be obtained by digital convolution of the resistivity transform function with a set
of filter coefficients. Interpretation of field curves is difficult and has to be based on a certain model
of a resistivity section. A combination of numerical and graphical methods in resistivity transform
domain is suggested for the interpretation. Examples of the interpretation from a metamorphic rock
area are given. Obtained results are discussed and compared with drilling and seismic data.

Keywords: resistivity sounding, weathered rocks, transitional layer, interpretation

1. Introduction

When one interprets resistivity sounding measurements, one Supposes
horizontally stratified earth. The layers have different but constant resistivity
and they can be considered as resistivity uniform or homogeneous layers.
However, in some cases the resistivity varies, more or less continuously, in a
certain direction in the layer. Such layers may be regarded as transitional layers.

Many authors have presented theoretical solutions for the potential of
direct current source in the case of continuously varying conductivity or resistiv-
ity with depth. The solutions of Stichter [1933] and Sunde [1949] belong to
the oldest works. A three-layer model where the second layer has a linear
variation of conductivity with depth was considered by Mallick and Roy
[1968] and by Jain [1972]. Various other models with linear, exponential, power
law or more complicated dependences of resistivity or conductivity with depth
have been studied, for example, by Lal [1970], Paul and Banerjee [1970],
Stoyer and Wait [1977], Mallick and Jain [1979], Banerjee et al. [1980a, bj.
Koefoed [1979a] derived a recursive formula for the resistivity transform func-
tion in layers in which resistivity varies linearly with depth. Some practical
results in the interpretation of sections containing transitional layers were
obtained by Patella [1977, 1978] and especially by Mundry and Zschau
[1983].

* GEOFYZIKA n. p. Brno, Geologicka 2, 152 00 Prague 5. Czechoslovakia
Paper presented at the 47th meeting of the EAEG. 4-7 June. 1985, Budapest, Hungary
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The zone of weathered rock is a characteristic example of a transitio-
nal layer. Weathered rock in situ often exhibits a typical transition from
quite decomposed rock through partly weathered and jointed rock to un-
weathered rock [Or11ier 1969]. Because the resistivity of rock depends on the
intensity of weathering, we may observe a continuous increase of resistivity with
depth [Dortman 1976, M altick and Roy 1968, Stotzner 1975] This fact has
to be taken into account when interpreting the resistivity sounding measure-
ments over weathered rocks. The exact quantitative expression for the resis-
tivity/depth relationship is very difficult to find. The most suitable approxima-
tions are in the form of a linear or exponential function; the latter is used in this
study.

2. Theory

The differential equation for the electric potential V of a direct current
source in a medium with conductivity a may be written as [Grant and West

1965]

V-(ffvK) = 0 (1)
If the resistivity g = - varies with depth, i.e. p=p(z), we obtain

1 dg(z) dV
Q& ~dz" &T
The current source is placed at the origin of the coordinate system. In cylindrical

coordinates according to the symmetry with respect to the z-axis, equation (2)
becomes

V2V — (2

Fkj. 1 Model of transitional layer
I. dbra. Az atmeneti réteg modellje

Puc. 1 Mogenb nepexogHoro cnos
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V. 1w gV 1) (v o

dr2 rodr 2 9(z) az vz

For horizontally stratified earth with layers each having constant resistivity,
equation (3) is reduced to Laplace’s equation. Its solution by separation of
variables gives us an expression for the potential in the /-th homogeneous layer

C
VA, z) = j [ANe e '-+B,U)e"-y0(/.r)d/. 4
o}

where JO(kr) is a Bessel function of the first kind and zero order, /. is the
separation constant, and .4,(2), /?,(/) are functions to be determined from the
boundary conditions for the potential.

Potential in the transitional layer

Let us consider that in the /-th layer (Fig. /) resistivity exponentially varies
with depth

Q) =Qedr ) |), r/_I<r<r/, ®)
On the upper boundary of this layer (z=dl_,, g(z) =ga on the lower boundary
of the /-th layer Q(z) =ghand then a from (5) becomes

on In

@ Q (6)
di-di-x >h

where hi is the thickness of the layer. In our case resistivity increases with depth

in this transitional layer (gh>qu) and thus a>0. Substituting (5) into (3) we

obtain

In

d2v , 12V, G2V 1V _ g 0

This equation may be solved by separation of variables V(r.z)  R(z)Z(2).
Then (7) results in two equations

d2tf  1dR
+

dr7 r dr AR =0 @

and

-k2Z =0 ©)

The solution of (8) satisfying the far-source condition for the potential is JO(kr).
Equation (9) is a linear differential equation the solution of which is
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Z(z) = E(.)e'z+ F(A)ew (10
where
_arlazedlp, . aja2rd)) 1)
2 2
A general solution of (7) can be written in the form
X
VXI’,--) = J [£.,(/)el-+ F (/)ewl7o0(ATr)d/ (12)

0

where VJr. -) is the potential in the /-th transitional layer.

Boundary conditions

Let us suppose that the transitional layer is embedded between two hom-
ogeneous layers. The potential in the homogeneous layer is equal to the poten-
tial in the transitional layer at the boundary between them; the same applies to
normal components of current density. On the upper boundary of the tran-
sitional layer at r =i/i_laccording to (4) and (12) we obtain

A (De  -111 ,L)e™-1= ()t 1+ F{k)ewd~ (13)
6'1I (ne -1+ ABi_I(/.)e/d 1 = —1[in(k)e\/d- 1+ wFEK)ewdHI] (14)
- Qa

On the lower boundary of the transitional layer (z=di), under the same con-
ditions it holds that

apen +age""" = Aix{X)z~>A+rBi+x(X)e'S (15)
[(AL)e"T + n/r(ent] = -——[~IL4i+,(l)e "[+95-+1F)em]  (16)

We divide both sides of (13) and (15) by the corresponding sides of (14) and (16).
The following equations are the result

n,_(/)+ 1, -£m())-F,()ed -
IG_G)- Aii(G)e2" 1 ., vEIU) +wfil)”, 'y
—£,(/) 4”,(/) ed‘(w-v) Au M )+ BAMY -bif (18)

VE(X) +WFA)ed(W~\)  G4X Ai+M )-B i+M W U

Now we introduce the function 7]+1(A) which is equal to the right-hand side of
(18). This function represents the ratio of the potential to the normal component
of current density and it is called the resistivity transform function [Matveev
1974. Koefoed 1979b]. Following Koefoed’s [1979a] logical deduction it is
possible to equate the right-hand side of (17) with 7](/). Through solving (17)
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for the ratio EEX)/FEX) and substituting this into the left-hand side of (18) we
obtain the relation between 7](0) and Ti+AM) for the transitional layer. It follows
from (11) that vw = -] 2and after some manipulations we obtain

T,X)[v-i r e + j _ e- hiw- i7y

M) = Qi) 1« atvm]- Qlw-ve~ g v] @9
The solution of this equation for 7](d) can be written as
TI+1(A) [w- ve-hiiw~"3+ Aghf1- e- hiw~)]
W) = Qa1 [1- e- m - 13- ghv- we H(wY (20)

If a=C=J then after substitution v——Xand w= +A (choice after (11)) we
obtain
) TA [1+ e~Ui\~ g{1—e-mA
ri+m) (21)
e{l+e~w ]—7XA) [1—e~m 1
and
7+1(A) [1+e-wF+ g{1—~m1]
YT o+ e+ THH(A) [L—e L]
which are known recursive relations for the resistivity transform function in the
case of a homogeneous layer [Koefoed 1979D],

(22)

Calculation and transformation of sounding curves

The relation for the apparent resistivity ga(r) can be derived from the
expression for the potential on the earth’s surface. For Schlumberger array we
have [Ghosh 1971a]

gar) = 21 TEX)JfXr)AaX (23)
0

The resistivity transform Tt(2) can easily be calculated by means of recursive
relations which were presented above. For the homogeneous layer we use
relation (22) and for the transitional layer equation (20). Calculation starts from
last layer (T,,(d) = p,,) and proceeds through individual layers upwards using the
values of JA = AB12 = r. Thus the resistivity section composed from homoge-
neous and transitional layers can be calculated in this way. Calculation of ga(r)
presents no problem because (23) can be converted into digital convolution
[Ghosh 1971h]

gaTXr) = ?’\77-}1(A), m=0,1,2,... (24)
where dij) are inverse filter coefficients.
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Further it is possible to express the resistivity transform function A
from (23) by Hankel transformation. Again in digital form it becomes

rev) =l c”rj\n- m=2012 .. (25)
J
where ru) are forward filter coefficients. Applying (25) to the measured field
values ga(r) we obtain resistivity transform curve 7)(A). Recursive relations (19)
and (21) may be used for reduction to a lower boundary plane [Koefoed 1979h],
It means that we “remove” the upper layer the parameters of which are known.
In this manner we may go down to the last layer (I,(A) = "T).

Although it could be of great interest to examine in details the transfer of
errors of the measured ga(r) curve to the 7)(7.) curve, this is beyond the scope
of this paper.

Recursive relations (19), (20), (21) and (22) can easily be programmed on
a pocket calculator (e.g. HP 67). Such a calculator could also be used to
calculate the gar) curve and to transform the resistivity curve. As a suitable set
of coefficients, that of Nyman and Landisman [1977] may be used; it consists
of 13 coefficients with an optimum sampling rate of 4.438 points per decade.
The calculation time needed for interpreting one sounding curve is about 15-30
minutes using a HP 67.

3. Interpretation of sounding curves over weathered rocks

It is obvious from the preceding part that there is no problem in calculating
the resistivity sounding curve for sections with homogeneous and transitional
layers. In contrast, it is not so easy to interpret the measured field curve. The
first important step in the interpretation procedure is to introduce the geological
model. In our case the model has three main parts: surface layer of homoge-
neous resistivity (or layers), weathered rock (transitional layer) and un-
weathered rock with constant resistivity. The necessity for this geological-
geophysical approach is illustrated in Fig. 2. The measured curve may be
interpreted (within given limits of accuracy) in terms of at least three equivalent
models with different geological meanings. If we suppose the existence of
weathered rock, then model 3 is most acceptable. We use this model to interpret
similar sounding curves in the given area.

At present, many interpretation techniques exist. One of them is the inter-
pretation in the resistivity transform domain, which utilizes recursive relation
for the succesive “removal™ of upper layers [Koefoed 1979b]. This method is
particularly important in our case because it enables us to reduce the measured
curve on the surface of the transitional. A combined graphical and numerical
method of interpretation has been elaborated consisting of the following.

The measured curve gjr) is first transformed into curve Tj(A) by means of
relation (25). The resistivity and thickness of the first layer are determined
graphically by two-layer master curves (in the gar) or 7](A) domain). The curve
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Puc. 2. 9KBMBa/IEHTHbIe MOJENN C pa3HbIMU FeosI0rMYecKMMmM NoAX04aMy K UHTepnpeTauun

is then reduced downwards (21), i.e. we “remove” the first layer. If the overbur-
den is composed of more homogeneous layers we repeat this procedure until we
reach the surface of weathered rock. This moment may be recognized, for
example, from seismic measurements, drilling data, or from characteristic fea-
tures of the curve. Thus we have obtained a sounding curve “measured” directly
on the surface of weathered rock. The asymptotic behaviour of the curve
determines resistivities gaand gb. Exponentially increasing resistivity with depth
is supposed between these two values. In order to determine the thickness of the
transitional layer it is possible to use a precalculated set of master curves T,(/)
for the three-layer model with a transitional second layer (variable ghYga and
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constant h2h\). There may be several such sets for suitable ratios h2lhxand on
comparing the reduced curve with these we obtain h2.

Another method for the approximate determination of the thickness of the
transitional layer uses longitudinal conductance S. The decrease in conductance
Sgwith depth in the transitional layer may be expressed as

dSg= ~ (26)
Qz)
After substituting relation (5) for g(z) and in consequence of (6), integrating (26)
from dj_, to d{gives

AN hh @ @
9 QO @ (27)

@
The resistivities ga, ghare known and Sgmay be determined by subtracting the
longitudinal conductances = hl/gl, S2 = h2/Q2, «= from the total conduc-

tance 5. The total conductance can be defined graphically by means of two-layer
master curves [Ketter and Frischknecht 1970, M atveev 1974] Thus

In*

ht = AN[S-(St+S2+ ... -s
Qa% (51 ( )] s

The final step is to calculate the sounding curve (T~O) or g&r)) for inter-
preted parameters of the whole section, comparing the calculated curve with the
measured curve. Interpretation is complete when the calculated and measured
curves coincide. If there is some discrepancy, interpretation should be repeated
after modifying the resistivities and thicknesses.

4. Practical examples

Some results obtained from interpreting sounding curves from metamor-
phic rock area in SE Bohemia are presented. Biotite paragneiss is the dominat-
ing rock in this area; it is mostly covered with unconsolidated sediments (sand,
gravel, clay) of small thickness. Fractured zones and deeply weathered parts of
gneiss are suitable places for migration and accumulation of ground water.
Resistivity sounding (Schlumberger array) in combination with shallow refrac-
tion seismics were used for determining depth and intensity of weathering and
the VLF method was used for searching for linear zones of fractured rocks.

An example of the interpretation of a resistivity sounding curve near a well
is shown in Fig. 3. Sands and gravel-sands with resistivity of 460 Dm are
deposited under the surface soil. The upper part of the bedrock consists of quite
decomposed weathered gneiss (sand-clay eluvium) which has a resistivity of
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Fig. 3. Example of interpretation of resistivity sounding curve near a well and comparison with
resistivity log

3. Ubru. Példa furélyuk kozelében nyert ellenallas-szondazasi gorbe kiértékelésére és az eredmény
Osszehasonlitasa a lyukban felvett ellenallas-szelvénnyel

Puc. 3. MpuMep MHTEPNpeTaLnn KPMUBOK 30HAMPOBAHMS MO METOA4Y COMPOTMBAEHUS B6AM3M
CKBaXMHbI 1 ee COMOCTAB/IEHNE C KAPOTAXHOM AnMarpaMmmoit ConpoTMBEHUS

about 250 Qm. Successive transition through strongly jointed weathered parts
into slightly jointed and compact gneiss appears lower. It is characterized by
increasing resistivity with depth. The interpretation of weathered rock as a
transitional layer corresponds well with the resistivity log curve.

It is known that in weathered rock the seismic velocity is lower than in
compact rock. Thus the weathered rock zone may be regarded as a velocity
transitional layer t00 [Dortman 1976]. This problem was studied by Skopec
and Hrach [1976]. They elaborated a special interpretation procedure for
determining the distribution of velocities of seismic waves at various depths.
Figure 4 demonstrates a comparison of their results with the interpretation of
resistivity sounding measurements. The unconsolidated overburden with a
thickness of 2.4 m has a velocity of 300 m/s and a resistivity of 330 Qm. Strongly
weathered gneiss has a surface velocity of 1400 m/s and a resistivity of 460 Qm.
In the downgoing direction both resistivity and seismic velocity increase. Even
at depths of 5-7 m gneiss may still be considered as weathered rock (2000 m/s,
500-600 Qm).
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emeasured values
» calculated

Fig. 4. The results of interpretation of resistivity and seismic measurements
4. abra. Az ellenallasmérések cs a szeizmikus mérések kiértékelésének eredménye

Puc. 4. Pe3ynbTaTbl UHTEPMNpETaLMMU KPUBbLIX COMPOTUBNEHUS U JaHHbIX celicMopa3BeKu

Joint interpretation of resistivity and seismic measurements was carried out
at many places in the given area. Comparison of interpreted resistivities and
seismic velocities in weathered gneiss with respect to drilling results is sum-
marized in Fig. 5 This figure enables one to approximate by estimate the
weathering intensity on the basis of resistivities and seismic velocities.

In the lower part of Fig. 6 an interpretation of resistivity sounding measure-
ments along profile A-A' is shown. High resistivities at small depth were found
at sounding points Nos. 9-13. From Fig. 5 we may deduce the occurrence of
compact or only slightly jointed gneiss under the overburden.

Another situation is at soundings Nos. 7 and 8 in the western part of the
profile. Low resistivities on the surface of gneiss and relatively slow increase in
their values with depth offers evidence of the presence of strongly weathered
gneiss. The conductivity anomaly of the VLF method is also situated in this part
of the profile (see upper part of Fig. 6). The anomalous VLF zone can be
followed on several profiles and it is caused by fractured and weathered gneiss.
It is also obvious that the ground-water well situated in this zone has five times
higher specific yield than the other well localized outside this zone.
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Fig. 5. Approximate estimation of gneiss weathering on the basis of resistivities and velocities
1 - decomposed gneiss (sand-clay eluvium); 2 weathered gneiss; 3 — slightly weathered,
strongly jointed gneiss; 4  slightly jointed gneiss; 5  compact gneiss

5. abra. A gneisz mallottsaganak becslése, fajlagos ellenallasok és sebességek alapjan:
1— teljesen bontott gneisz (homokos-agyagos eluvium); 2 mallott gneisz; 3  gyengén
mallott. er6sen repedezett gneisz; 4  gyengén repedezett gneisz; 5 — tomor gneisz

Puc. 5. Mpn6nusnTenbHas OLEHKa BbIBETPUBAHUSA THECOB HA OCHOBAHUW COMPOTUB/EHWUIA
1 cKopocTei
| COBEepLIEeHHO pa3foXeHHble THeNChbl (MecHaHO-rNHUCTbLIN 3MH0BUIA); 2 — BbIBETPESbIE
rHelicbl: 3 - cnabo BbIBETpeNble, CUMNLHO TPELLUHOBATbIE THelicbl; 4 cnabo TpewymHoBaThble
FHeNCbl; 5  MacCUBHble THENCbI

5. Conclusions

A simple recursive formula for computing the resistivity transform function
has been developed for transitional layers with exponential increase in resistivity
with depth. A graphical-numerical method for interpreting resistivity soundig
curves has been suggested. The method is based on interpreting the resistivity
transform domain which opens the way to reducing the resistivity transform
curve towards the surface of weathered rock. As has been demonstrated by
practical examples, the assumption that the weathered rock may be approxi-
mated by a transitional layer corresponds better to reality.
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Fig. 6. Results of resistivity sounding (lower part) and VLF measurements (upper part) at
Pojbuky locality. North is at the top of the map

6. abra. Az ellenallas-szondazasok (alul) és VLF mérések (felil) eredménye Pojbuky kdzelében.
A térkép E-felé van tajolva

Puc. 6. Pe3ynbTaTbl 30HAMPOBAHUIA METOLOM COMNPOTUBAEHUS (BHW3Y) U U3MEPEHWIA METOA0M
C[BP (BBepxy) — yu4acTok [lMoibykun. CeBep — BBepX M0 KapTe
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MALLOIT KOZETEKEN VEGZETT ELLENALLAS-SZONDAZAS KIERTEKELESE
L. ZIMA

A mélységgel exponencialisan névekvd ellenallasrél feltételezziik, hogy az malloit k6zeteken
allo (atmeneti) réteget jelez. Erre az esetre egy egyszer( rekurziv képletet vezettiink le. a fajlagos
ellendllas transzformacios fiiggvényének kiszamitasahoz. Ez a fuiggvény kdnnyen kiszamithato
valtozo es allandé ellenallasu rétegeket tartalmazo szelvényre, a targyalt képlet és az allando fajlagos
ellenallasu rétegekre kidolgozott, ismert rekurziv képlet 6sszekapcsolasa Gtjan. Az ellenallas-szon-
dazasi gorbe megkaphaté az ellenallas transzformacids fliggvény és sziir6egyitthatok digitalis
konvoluciodjaval. A terepi gorbék kiértékelése nehéz és egy feltételezett fajlagos ellenallas-modellen
kell alapulnia. A kiértékeléshez numerikus és grafikus modszerek kombinacidjat javasoljuk, a
fajlagos ellendllas transzformacids tartomanyaban. Kiértékelési példat mutatunk be metamorf
kézetek teriiletérél. Ismertetjik az eredményeket és dsszehasonlitjuk ezeket a farasi és szeizmikus
adatokkal.

MHTEPMPETAUNA KPMBbIX 30HANPOBAHVA METOAOM COMPOTUBAEHNA
B BbIBETPE/IbIX NMOPOAAX

N. 3NMA

ConpoTuBneHne, Bo3pacTatoLLee ¢ rMy6GUHOA No 3KENOHEHLMANIbLHOMY 3aKOHY, NPeAnonoXu-
TeNbHO ABNSETCA MPU3HAKOM Hannums (NepexofHOii) 30HbI BbIBETPENbIX NOPOA. [ns aToro ciyyas
6blna paspaboTaHa NpocTas peKypcuBHas opMyna C Le/bto BbluncieHUs yHKUMK npeobpa3oBa-
HUA CONPOTUBNEHUs. DYHKLMSA Npeobpa3oBaHMA CONPOTUBNEHWUS MOXET 6blTb NIErKo BblYMCEHA
[N pa3pe3oB, COCTOALLMX WX NEPexXofHbiX CMOEB W CNOEB MOCTOSHHOIO YAeNbHOro COnpoTMBIe-
HKS. MyTeM couveTaHus 0b6cyXaaeMor (opMynbl C M3BECTHOM PEKYPCUBHON (hOpMY/OiA AN CNoes
NMOCTOSIHHOTO YfieNbHOro CconpoTuBieHus. Kpueas 30HAMPOBaHWA MO MeTOAY COMPOTMBAEHUS
MOXeT GbITb MOMyYeHa My reM LhpoBOiA KOHBONOLMM (DYHKLMU Npeo6pa3oBaHMsi CONPOTUBEHUS
N UNBTPOBBLIX KO3(PMULMEHTOB. VIHTepnpeTaLns NoneBbix KPUBbLIX TPyA0eMKa 1 JO/MKHa 6a3unpo-
BaTbCS Ha NpejnonaraeMoli Mogenn paspesa yfenbHbIX CONPOTUBNEHNIA. PekoMeHayeTcss KOMGK-
Hauus LMcpoBbIX U rpadMyeckmx MeToAoB B 06/1acT Npeobpa3oBaHWsi CONPOTUBNEHUIA ANS WH-
repnpeTtauumn. MpuBOAATCS NMPUMepPbl MHTepMNpeTaLmMn U3 paiioHa pacnpocTpaHeHus MeTamopdu-
yeckux nopog. MonyyeHHble pe3ynbTaTbl 06CYXAAKTCSA W CONOCTABAATCA C faHHbIMU BypeHus
1 celicMOpa3sBeKM.
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AUTOMATIC RELATIVE DEPTH MATCHING OF BOREHOLE
INFORMATION
. THEORETICAL REVIEW

Dénes SZENDRO*

One of the prerequisites for interpreting borehole information is that data of the given well
should be correct according to depth. In order to obtain a common depth point it is assumed that
the J(A") relative depth deviations changing from point to point can be approximated by a polyno-
mial. Developing in a series the T(A") log or logs to be matched according to depth, the .4(30 depth
deviations in the Taylor's series agree with the substitution values of the polynomial. Minimizing
the error function which can be formed from the data to be matched, the coefficients of the
polynomial can be calculated and the corrected data obtained. If the process is repeated several
times the calculated values converge. The method is suitable not only for correcting linear slips but,
depending on the degree of the polynomial, also for eliminating dev iations of varying sign. If the
order of the polynomial describing the depth deviation is zero. i.e. it is a constant slip, the result
obtained by the method is as good as that of the conventional cross correlation method. It is,
however, substantially faster than the conventional one because of calculating the slip. The method
is suitable for correcting depth deviations between well logs, between core data and well logs, and
between the lithological column and well logs.

Keywords: well logging, depth deviation, borehole information, computer programs, algorithm, match-
ing

1 Introduction

Similarly to every measurement, borehole information has its uncertainties
characterizing the method, viz. the conditions, the instrument and the physical
parameters of measurement. Both the method and the measured quantities may
considerably differ from each other, but when determining their characteristics
common features can be found as well. In the case of borehole information this
common feature is their being recorded as a function of depth. Since measure-
ments generally follow each other, measured values of geophysical and geologi-
cal parameters corresponding to the same depth will not appear at the same
place on the records, depth differences may occur. The causes of depth devia-
tions will be discussed later.

In order to decrease the depth differences either the methodology should
be modified or the logs should be corrected afterwards. In the first case the
application of sonde trains would be necessary but even then there would not

* EOtvos Lorand Geophysical Institute of Hungary, POB 35, Budapest. H-1440
Manuscript received: 4 November, 1986
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be any possibility to perform all the measurements simultaneously because of
the great number of geophysical parameters. In the second case, in the conven-
tional manual evaluation, the characteristic points of the curves (maximum,
minimum, inflexion point, etc.) are taken into consideration when fitting the
logs, i.e. matching relative depth. Using this method the experience of the expert
and visual examination of the curves yield good results, but in the field of
computer aided processing there is limited reference in the literature to depth
matching.

In recent years attempts have been made to shift the curves to an extent
determined by the operator, after reproducing the logs on a graphic display
connected to a computer. It seems that this interactive method is suitable only
for correcting very great deviations. The method mostly applied automatically
corrects the constant slip of ihe logs. A reference log is selected, it is recorded
for each run together with the geophysical parameters to be measured. The
repeatedly measured log is considered as the base log. For depth matching cross
correlation is computed between the base logs. Maxima of the correlation
coefficient mark out the corresponding values. If this method is employed for
the complete log, it only eliminates the constant deviation, although not only
the extent but even the direction of the depth differences may vary from point
to point. If cross correlation is performed for short intervals, then the problem
arises in smoothing the differences at the boundaries of the intervals.

In this paper the mathematical phrasing of the possibilities of depth match-
ing is presented, and a computer aided method is described which eliminates the
above mentioned difficulty. A further advantage of the method to be described
is that it is not necessary to measure the base log for each run.2

2. Mathematical phrasing of depth differences

In order to describe mathematically the relative depth differences of well
logs one has to start by examining the measurements. For well logging the sonde
is lowered into the borehole by a cable. The signals emitted by the sonde are
transmitted to galvanometers or to the magnetic tape recorder through cable-
conductors. The camera is controlled by the movement of the cable through a
transmission system whereas when using magnetic tape recording two indepen-
dent depth determinations are used, viz. magnetic depth marks on the cable and
the sampling interval controlled by the logging speed. Deviations from the
correct depth values may originate from the following causes: differences in the
reference points of the sondes; stretching of the cable caused by the interaction
of the cable, the sonde and the borhole; inaccuracy of the transmission system
between the camera and the cable; deviations from the set logging speed when
recording on magnetic tape.

Dealing with the causes of the A(X) depth discrepancies in increasing order
of the powers of the recorded X depth of the sonde, leads to the following

grouping:
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a) The constant term (of zero order) comes from the difference between the
reference points of the sondes:

A(X)o=C 2.1)

b) The linear term is obtained from cable stretching caused by:
— cable stretching due to sonde weight. This can be calculated on the basis
of Hooke's and Archimedes' laws supposing elastic deformation and
including the buoyant force of the mud:

AN = k-Q71- Vij'X 2.2)

where K is the elastic module of the cable.
Q is the weight of the sonde in air,
ys is the specific weight of the sonde,
ym is the specific weight of the mud;
- cable stretching due to the friction of the sonde on the wall of the
borehole and/or to the pressing of it against the wall:

A(X)2 = kpN-X (2.3)

where p is the friction coefficient between the sonde and the sidewall,
N is the pressure force against the sidewall;

the changing of the actual size of the film or paper, when digitizing analog

logs:

A(X)b=KxX (24)

c) The second order term is obtained by means of the following:
the weight of the cable lowered in the borehole is in linear ratio with the
length of the cable thus if cable stretching obtained by Hooke's and
Archimedes’ laws is integrated according to depth, a relation is obtained
which is a depth function of second order:

ALI04 = 2kq ( X2 (2.5)

where q is the weight of the cable for unit length,
yc is the specific weight of the cable;

- the hydrostatic compression on the surface of the cable in the mud is
proportional to its length. Thus the relation obtained by integrating the
frictional force proportional to the hydrostatic compression -is also a
depth function of second order:

A(X)S = "'kyIT(W'FJ)XZ (2.6

where W is the friction of rest between cable and mud,
j=j(v) is a quantity depending on logging speed;
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the force due to the friction of the cable on the wall of deviated boreholes
is proportional to the component, perpendicular to the wall of the
borehole, of the weight proportional to the length of the cable. Integrat-
ing this effect according to depth gives a quadratic relationship:

A(X)b = ~kgfi]! 1- ~j sin (mX2 @.7)

where fi, is the friction coefficient between cable and sidewall.
tp is the angle between the axis of the borehole and the vertical:
- integrating the effect of the temperature increasing quasi-linearly in
depth, again a quadratic relation is obtained:

A(X)7 = 2*3,X2 (2.8)

where a is the linear thermal expansion coefficient of the cable,
g, is the geothermic gradient.

d) Added to the former terms, the following can be approximated with those
of higher order:
the effect of sticking and restarting of the sonde,
the effect of harmonic vibration of the sonde during the run,
the "depth correction” of the operator or, with digital recording, that of
the special electronic unit.

If logs of different runs are matched then the relative depth deviations are
obtained as the difference of the two polynomials — which is also a polynomial
The coefficients of the terms describing the relative depth difference are obtained
from the changing of the parameters in relations (2.1)—(2.8) between two runs.

In the case of sidewall coring the same reasoning can be applied since the
depth difference is caused by cable stretching here too. For conventional coring,
deformation of the drill pipe should be taken into consideration instead of that
of the cable. During well logging, tensile load affects the cable whereas in coring
compressive forces are acting on the drill pipe, thus the depth differences owing
to elastic strain are supposed to sum up.

3. Relative depth matching of well logs

For the mathematical phrasing let us consider Fig. I. As a first approach
let us suppose that curves Y2(X). Y3(X), .... YNXX) are—related to each other
correct in depth and we should like to match function Y{(X) to them. At depth
point Xh (i = 1,2......L), to function values Y2(Xj), T3(Al), ..., YN(Xt) belongs
the value YT, + A(X()] of the function to be matched. For the sake of clarity
the function values belonging to each other are marked in the figure and the
deviation function A(X) is plotted at the bottom.
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Fig. I. Ilustration of depth deviations of well logging curves
Y{(X) curve, to be matched; Y2X). Y3(X). YY)  curves considered to be correct in
depth; A(X)  function of depth deviation

/. dora. Karotazsgorbék mélységeltéréscinek szemléltetése
Y,(X)  egyeztetni kivant gorbe; Y2(X). Y3(¥)....... yay)  mélységileg helyesnek tekintett
gorbék; A(X)  a mélységeltérést leiro fliggvény
Puc. 1 [leMOHCTpaumMs PacXoXAeHUiA Mexay KapoTaXHbIMU KPUBLIMW MO FNy6uHe
YY)  KpuBas, NOANexXalias cornacoBaHuto no rayéuHe; YAY). Y,(A)..... YY)  KpuBble.

cuMTaroLMecs npaBuabHbIMU MO rNy6uHe; A(X) - (yHKUMS, OMMCbIBAOLLAsA PACXOXAEHUS MO
rny6uHe

Our aim is to determine A(X) since in the knowledge of this, depth correc-
tion means substituting the respective Y,[JT',+zf(A))] function value into Y fXt)
at the i = 1,2......L sampling points.

To perform the calculation we assume that the values belonging to each
other are related; this relationship can be defined by an operator F since each
log provides certain geophysical information about the same place:
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(3.1)

If the operator were precisely known, then the system of equations (3.1) would
theoretically be solvable because it contains L unknowns in the values at the
i — 1,2......L sampling points of the d(2Q function of depth deviation and it
consists of altogether L equations. Knowing the F operator, however, would
give the impression of a contradiction since it would mean that the ¥,(30 curve
could be obtained from the other curves and so it would not be necessary to
measure it. Naturally from geophysical aspects it cannot be true since the
individual logging methods «yield additional characteristic information related
to the other measurements. Since our aim is, besides keeping the characteristic
features of the curve Y,(AQ to match its characteristic places with those of the
other curves—and not produce it from the other curves—exact knowledge of
operator F is not required. Between certain logs there is evident correlation, e.g.
the resistivity logs correlate with each other and with the SP log. In practice,
in the course of processing, the SP and the gamma-ray logs are replaced by each
other many times because of their similar characteristics. The porosity indicator
logs, the neutron-gamma, the neutron-neutron and the acoustic logs are necess-
arily correlated with each other.

With regard to quasi symmetrical logs it can be assumed that operator F
can be approximated by their linear combination. The more curves there are in
it, mathematically the more probable it is that with one of them the correlation
is close. If the theoretical function-connection is not linear, it results in a
decrease of the correlation coefficient; this, however, does not considerably
influence the result of the subsequent calculations. (If a gradient curve is
correlated then in the F operator the derivatives of the symmetrical curves
should be used.)

From the above it can be assumed that operator Fean be approximated
by the linear combination of the Y2(X), T3T), YNX) logs:

i=12 L (3.2)

Here parameters bY,  bNare further unknowns characterizing the correlation

of the functions.

To determine the depth deviation varying from point to point, let us
develop in a series the left side of relation (3.1) and to preserve the linearity in
d(Af;), i.e. approximating it up to the first term, the following can be written:

B +XT)] * Y,(Xd+ A{Xd mY m iz k2, L (3.3
Here the following notation was used:

(3.4)
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The derivative (3.4) exists for all analog logs since, due to the continuous
recording of a finite speed, the curve is continuous and always has a definite
tangent not perpendicular to the abscissa. Thereby it satisfies the criterion
concerning the existence of the derivative.

If the YOA) curve is known from sampling points, then using the function
values in the two-two neighbouring digitization points, the derivative (3.4) can
be approximated by the formula [Obadovics 1977]:

1K) YA ANY AL +BYAANL-BA 2] (35)

i—3,4,...,L=2

where h is the sampling interval. There are other approximations using fewer
or more neighbouring function values than Eg. (3.5), but this was chosen
because with fewer points, statistical noise would be increased whereas relations
with more sampling points result in an increase in machine time. Naturally at
both ends of the curves where there are no neighbouring points one has to be
content with an approximation with the left or right derivatives [Obadovics
1977]:

YN *|r[BA+)-BA)] i—1,2
(3.6)

BM) « X[YLAL- O i=(L—1,L

As we have seen in Section 2 relative depth deviations can be approximated by
a polynomial:

A(Xf Kk a0+aXXi+aXf+..+aPXf i=1,2,...,L (3.7

It should be noted that relation (3.7)—disregarding the physical meaning—is
mathematically according to Weierstrass’ theorem [Obadovics 1977] in the case
of a continuous function, since—choosing a suitably great number of power P
any accuracy of the approximation can be achieved.

Substituting approximation (3.3)—using relation (3.7)—into the left side
and, approximation (3.2) into the right side of equation system (3.1) the follow-
ing is obtained:

YOA) + YOA) ma0+ a, Al a2xXf + ... + aPX ] «
*  + b2YOAL+b3YYXi)+... +bNWNXY) i=12 ..., L (3.8)

One can see that instead of the JYAD), i = 1 2, ..., L unknowns of equation
system (3.1), in relation (3.8) considerably fewer, only the ap,p = 0, 1, .... P
coefficients in the polynomial of the depth deviation and the bn,.n = 1,2, N
parameters in the linear combinations of the functions, should be determined.

Since in this way the number of unknowns in (3.1) could be made much
smaller than the number of equations, relation (3.8) becomes overdetermined
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and the unknowns can be determined, e.g. by the method of least squares
[Janossy 1965]. Forming the difference of the left and right side of relation (3.8)
and then the quadratic sum the following can be written:

0= iZ(l{B,u,.)+ rm 1fa0+«l**+-+M T]-

b1-b 2Y2(Xi) - .. .- b NYN(XD)}2 (3.9)

The unknowns are determined so that 0 should be minimal, i.e. the derivatives
according to the wanted parameters should be zero:

Cap - O, p - 1 yrrey

(3.10)
4B _
=0 =12 N

The normal equation system obtained after performing the derivations (3.10)
includes (N+ P+ 1) linear equations and as many unknowns. It should be noted
that coefficients b, n = 1,2, ..., N will not be necessary further on: these are
the so called surplus parameters needed only to establish the system of equa-
tions.

By introducing matrices the solution of (3.8) will be clearer using the
method of least squares. Let:

rlor2(*i) n(xl) - NXY ~yi(x)  ~Y((XDXI -Ba)*T
M= 1 YAXD YIAXD) . W(X) ~yi(x -y;(x29x2 -y;(x 9=
— o y3*L) -mB [1 -B 4o ~Y[{XdXL YIXx{_
and
b{
I b2
|
« |y _bN
l_ao (3.12)
YI(XI)_ al

Clp

In matrix form (3.8) is:
M e « Yj (3.12)
The mat!rix equation obtained from (3.9) and (3.10) using the method of least
squares is:
(MT =M) = = MT «\\ (3.13)
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where MT is the transposed matrix of M. The solution of (3.13) is:
I = (MTeM)-1 «(MTeY)) (3.14)

One can see that the overdetermined linear system of equations (3.8) can be
solved relatively easily in a suitably ordered form by means of transposition,
multiplication and inversion of the matrix.

Knowing the polynomial coefficients a0, ax, .... apdetermined by (3.14) the
depth deviation curve A(XY varying from point to point can numerically be
given forevery i = 1,2, L sampling point by relation (3.7). After calculating
deviations A(Xt) the corrected curve values are determined as follows: knowing
the values of A(X{) and the sampling interval h. sampling point Xk nearest to
the corrected depth value can be determined. The distance d(Xk) from this can
be written as follows:

d{XK) = A{Xp-{XK- X} (3.15)
where:
\d(XK)\<h
Knowing Xkand d(Xk) the interpolated value of the corrected function value is:
YrrXt)= B4 +A(Xf\ * Y(XK)+d(Xk) mV;(XK) (3.16)
i= 12, ...L

where T/(Xk) can be calculated from (3.5).

Since in order to preserve the linearity in A(XX the series development of
(3.3) went up to the first derivative only, (3.16) can be regarded as a first
approximation only. Considering the corrected curve always as an initial value
the iteration can be continued until the value of the quadratic deviation (3.9)
no longer decreases to any great extent, i.e. the form of the corrected curve does
not vary any more. It should be noted that because of assumption (3.2) the value
of Qgiven by (3.9) will not compulsorily approach zero with increasing number
of iterations. This does not matter since, according to what was said at the
beginning of the section, operator Fin (3.1) cannot accurately be given. More-
over parameters b0, bx, .... bNin the linear combination of Eq. (3.2) are not
directly included in the values of the polynomial calculated from Eq. (3.7); thus,
presumably the polynomial is not too sensitive to these parameters. As the
results discussed later will also prove, the stipulation that from the good or less
good O values the parameters belonging to the lowest possible 0 should be
chosen seems acceptable even if this O is relatively still too high. (We do not
intend to determine the function YfX) from the other curves, we only want to
match it to them and, at the same time, retain its characteristic features.)

If there are K logs to be corrected and (N-K) logs considered to be correct
in depth, where K can be one of the 1,2. ..., N values, then every iteration phase
consists of K cyclically inverted iterations. Taking one of the logs to be corrected
for Y), it is corrected in the way described above using the other (A-I) curves.
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Then the second, third, Ath log will be taken for Y1so that the (TV-1) curves
to be used will include those corrected before. For depth matching, apart from
giving the number of iterations, only the order number of the polynomial
describing the relative depth deviation in (3.7) should be prescribed.

4. Relative depth matching of well logs and the quantities derived from coring

In the course of geological exploration, for the integrated interpretation of
all information depth matching of data of different origin is required. Depth
errors may lead to apparent contradiction between well logging and core data.
Since the latter represent a small volume of rock, a small depth shift may cause
great difference. The depth correction method described in Section 3 cannot
directly be applied to this case since cores are not known at equidistant intervals,
and —as generally the yield is not complete - the missing neighbouring points
make derivation impossible even by approximation.

For phrasing the problem let us consider Fig. 2. The computed porosity
logs ¥YOT,), YZAXi).....\NXj). i= 1 , 2 areassumed to be correct in depth
in relation to each other. (This can be obtained by the method described in
Section 3.) Our aim is to match the quantities derived from the ®(XT),
in = 1.2......M core samples known at not equidistant sites to these logs. At
depth point Xm(in = 1,2,..., M). the Y Xm+J(Xm)], ..., YNNXm+ A(Xnj] curve
values, taken at the real depth point (Xm+A(Xn)), belong to the ®(XT) quantity
to be matched. The function describing the depth deviation is also illustrated
in the figure. The task is to define the function A(X) since in the knowledge of
this, depth correction means the transfer of the corresponding ®(XT) quantity
from the Xmdepth point to the [Xm+ A(Xm] point.

One can see that as opposed to the depth correction of the well logs, here
not a new function value will be calculated in every sampling point but the
corresponding quantity will be transferred to a new depth. The steps of the
solution are similar to those in Section 3. We assume that the values belonging
to each other are related; this relationship can be described by an operator F:

D(XT) = FLY,(Xm+A(XJI\ Y2Xm+ A(XN)). ... YN(Xm+ A{Xm)\
m=12 ..M 4.1)
Operator F is approximated by a linear combination of the curves:
FLYXXm+A{XJ] ...... W Xm+A(Xm)]\ =
= b0+ bl YI[Xm+A{Xm)] + ... + bBNYN[Xm+ A{Xn] (4.2)
m=12 .., M

Developing in a series the right side of Eq. (4.1), and — for the linearity in
A(Xm) — approximating it up to the first term, we can write:
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Fig. 2 Matching of core data to porosity-depth functions derived from well logging curves
Yt(X). Y2(X)....... Yn(X) porosity logs considered to be correct in depth: ®(X)  porosity
values of core samples: J1(X) function of depth deviation

2. dbra. Magadatok mélységének illesztése karolazs mérésekb6l szarmaztatott porozitas
gorbékhez
YX), Y2(X), .... Yn(X) — mélységileg helyesnek tekintett porozitas szelvények:
@& a magadatokbol szamitott, nem azonos kdzokként ismert porozitas értékek:
/1(X) — a mélységellérést leird fliggvény

Puc. 2. cornacosanmne rny6uHbl KepHa ¢ KpUBOW MOPUCTOCTM, BbIBEAEHHON MO CKBaXUHHDIM
n3MepeHnaMm

Y'\X), YZ(X), ey Yn(x)—AMarpaMMbl NOpMCTOCTM, CYUTA LW MECH NPaBUNbHBIMU No [Ay6uHe;

@D - suiuMcneHHbie NO KepHY 3HAYEHMA NOPUCTOCTM, NONYUYEHHbIE 3a HEpPABHbIE WHTEPBANbl;

d(X) — QYyHKUMA, ONUCbIBAlO W as PAacXOXAeHUA no rnybuHe
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YXm+A(XIN * (X)) + A(XJ mYH(Xn) 4.3)
n=112 ,N m=12 M

In Eq. (4.3) the notations of Eq. (3.4) were used and the derivative can numeric-
ally be approximated by formulae (3.5) and (3.6).

The A(Xn) depth deviation is approximated by a polynomial the same way
as in Eq. (3.7):

A(Xm Kk a0+alXT+a2X1l+..+aPX? m= 1,2 , M 4.9

Substituting the approximations (4.2), (4.3) and (4.4) into the system of equa-
tions (4.1) one gets:

O(T) - b0+ yj XM YA(Xn)- X afll
= p-0

m=1,2,... M

This system of equations consists of M equations corresponding to the
number of core samples and includes (N+ P+2) unknowns from which (P+ 1)
are the coefficients of the polynomial describing the depth deviation and (jV+ 1)
are the parameters in the linear combination of the well logs. Since Eq. (4.5)
contains the products of the parameters b, n=01 .., N and ap
p = 0,1, P, the system of equations is not linear. IfM > N+ P +2 then the
overdetermined system of equations of this type can be solved by iteration using
the method of least squares. Because of series expansion (4.3) even the result
obtained by the iteration can be considered only as a first approximation; thus,
in order to avoid double iteration it is expedient to look for a perhaps less
accurate but clearer and faster method for the solution of Eq. (4.5).

Let us write Eqg. (4.5) in the form:

W~ ROFXBY G H XIX(xj e,

4.5)

m=12,..., M

For the two terms in braces in equation system (4.6) let us introduce the
notations

A(XJ = b0+ X bn¥r(XJ 4.7)

B(xJ= XbY,xJ | m=12 M (4.8)

=0
Using (4.7) and (4.8), (4.6) can be written as follows:

O(XT) * AXM+B(Xn) m=12 .., M (4.9)
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Relation (4.9) expresses in an illustrative way that the quantity ®(XT) from the
core sample can be composed of two terms. The first is a linear combination
of the quantities obtained from the well log measurements and the second is the
perturbation due to the depth deviation.

Since the B(Xn) part describing the perturbation is probably much smaller
than the A(Xn) term, the system of equations (4.6) can be solved in two steps.
First let us take the following quadratic sum:

M

0L = 1_ [®{xD-AXR (4.10)

As one can see from (4.7), in (4.10) only the parameters bn n =0, 12, ..., N
are included. Their determination can be carried out by minimizing

80,
- =0. n=012, ....N (4.11)

The normal equation system obtained by derivation is linear thus the determina-

tion of the unknowns presents no problem.
After calculating the parameters bnn = 0, 1, ..., N the following difference
can be formed:

AP{XT) = d(XT)-A(XJ m= 1.2,..,. M (4.12)
This can be approximated by the perturbation term of Eq. (4.9):
AdM)xB(XJ m=12 ., M (4.13)

In the expression of B(XJ the polynomial coefficients ap,p = 0, 1.....P are the

only unknowns (see Eq. 4.8) since coefficients 6,, n = 0, 1, ..., N were calculated

before. For the computation of ap, let us produce the following quadratic sum:
M

02= 1 Ne(XJ-B(XJY (4.14)

The value of 0 2is required to be minimal i.e. the derivatives according to ap,
p=0 1.2, .., Pshould become zero:

d&2
-N =
dap

The normal equation system which is obtained after performing the derivation
is also linear in the variables, thus the unknowns can easily be determined.
By introducing matrices, the algorithm of the solution is the following. Let:

BA) YAXX .. YIX)
Yi(X2  yAX2 .+ (X2 (4.16a)

YIXM)  Y2(XM) ..o Yn(Xm)

0 p=01,.,P (4.15)
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rapgr Vv
o= PXA - bi (4.16b)
_P(Xwm)_ v
The solution obtained by minimizing the quadratic sum (4.10) is
I = (M1IT M 1)1 (M1t @) @.17)
The difference (4.12) in vector form is
Ad = ©-M1 U (4.18)

Knowing the coefficients b,,sn = 1, 2, TVIiet us take

N

CXd =1 bX(xj mM=12 w M
=1

~C{Xt) X&Xy) .. XpC(XI) " Q"

M2 = C(X2 X2C(X2 .. X\C{X2 = 3

C(XM XMC(XM) ... XmC(Xm) R
The solution obtained from the minimization of the quadratic sum (4.14) is:
12 = (M2T =M2)-1 «(M2T =Ad) (4.20)

The non-linear, overdetermined equation system of (4.5) has been reduced to
two linear systems of equations, to be solved one after the other, by the matrix
algorithm of (4.16)—4.20).

By means of solution (4.20) obtained for the coefficients of the polynomial
describing the depth deviation the numerical value of the depth deviation AXm
can be computed for every core sample from relation (4.4). Depth correction
means the transferring of the quantities ®(X1), m = 1 2, ..., M consecutively
from depth Xmto depth [Xm+A(Xn]. Since the series expansion (4.3) was
performed only up to the first derivative, the depth correction can be considered
only as a first approximation. Considering the new depth values always as initial
data, the method can be repeated till the values of the quadratic differences,
(4.10) and (4.14), begin to decrease substantially. Note that core sampling point
Xmshould not necessarily coincide with one of the sampling points of well log
curveflsince interpolated curves can be obtained, for example, by formula (4.3)
as well.

In the algorithm it was assumed that the accuracy of the depth data of the
well log measurements is much greater than that of coring because of the
continuous measurement, thus the depth correction was performed only for the
depth values of the core samples. The point of interest in the method is that the
correlation coefficients often needed in practice are obtained together with the
depth correction.
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5. Relative depth matching of well logs and geological columns

In the course of industrial application it is often the case that the geological
column obtained from coring or approximately known from neighboui ing wells
should be made accurate by means of the well logs of the given borehole. The
YXj), Y2(Xj), WXj),j = 12 L well logs sampled and already correc-
ted according to depth by the method described in Section 3 are illustrated in
Fg. 3. The approximate knowledge of the geological column means that the
lithological code representing the rock type cannot unconditionally be given
even in a first approximation at every sampling point. (This may, for instance,
be due to the insufficient core yield.) Moreover, where it is known, at that
sampling point the indices k = 1, 2, ..., K are introduced in order to differen-
tiate the rock types. Thus YRK(Xj) means that the Xj sampling value of the uth
well log can be assigned to the rock type denoted by the index k. Let the number
of sampling points belonging to the rock types denoted by the indices
K =12, .., Kconsecutively be Jk = ¥,, ¥2, _ fK As in the previous Section,
we consider that the well logs are correct in depth, thus the Xj place of the /th
lithological code will be corrected at the sampling points for every /. We can
assume that on the well logging curves some [Xj+A(Xj)] real depth value
belongs to the Xj place to be corrected.

Approximating the function values taken at the real depth points the same
way as was done for (3.3), we can write:

YAAXJI+AIXF] * YA(X))+A(X))- (X))
J=12,..,L n=12...N
The depth deviation function A(XR is approximated by a polynomial, as in (3.7):

P

A(Xj) * a0+alXj+... +aPXp = X aPXj
- 0 (5.2

(5.1)

j =12, ..L
Substituting approximation (5.2) into relation (5.1) we get:

Y'RDG+AOG] « YA\Xj)+~ £ ap§d YEKX)) (5.3)

The average of the function values corrected by Eqg. (5.3) can be calculated by
rock types for every well logging curve:

(5.4)
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Flg 3 Matching of geological column to well logging curves
YAOAOQ. YZ(X) ....... Yn(X) well logs considered to be correct in depth; L lithological column;
A(X) - function of depth deviation

! . Geoldgiai rétegsor karotdzs gorbé ez torténdé igazitasa

3. dbra I k békh

Y,UA), sz) ....... Yn(X) - mélységileg helyesnek tekintett karotazs szelvények; L litologiai
rétegsor; A(X) a mélységeltérést leiré fuggvény

Pac. 3. cornacosanue nuTonorMueckoi KONOHKM C KapoTaXHbI MW KPUBLI MU
YOAO. Y2(A0. ¢--- Yn(X) — KapoTaXHble AmMarpamMMmbl, cHMTaAa W MNECA NPaBUNbHBLIMU NO rNy6uHe;

L — nuntTonormyeckKasas KONOHKa; A(X) q)yHKLU/Iﬂ, onucblBaw W asa pacxoxageHuna no I'ﬂy6VIHE‘

where C,(Xj) is the Kronecker-delta:
) if 1=k
wij) = if 1k
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In formula (5.4) the summation should be performed log by log at places of the
same Alithological code and the sum should be divided by the number of points
in the sum. If there are //curves and K different lithological codes then a total
of N m different values of Ark will be obtained.

Let us introduce the following quantities that can numerically be calculated
from the well logging curves:

Ark = J WK(Xj)) n=12.,N k=12 K (55

JKj:l

=t L xp r;aXXj) sH(Xj)
1

Jkij=

(5.6)
n= 12, N p=0%42 ,P, k=\,2,K
Expression (5.5) means the average function value of the «th curve belonging
to the Ath lithological code. Expression (5.6) represents the mean of the deriva-

tive of the «th curve weighted by the corresponding power of the depth value

belonging to the Ath rock type.
Using expressions (5.5) and (5.6) the corrected mean value defined by

relation (5.4) can be written — after some rearrangement — as follows:

Ark = Ank+ » ap-AW n=12,..., N «k=1,2,...,K (5.7
P=o0
The quadratic sum of the deviations from the average can be produced for every
rock type and for every type of well logging:

Ork= £ m X j +AiXJI-A'J}2+0K(Xj)
i= 1 (5.0)

n=12 .,N k=12

where the summation forj relates to places of the same rock type.
Substituting approximation (5.3) and relation (5.7) into the quadratic sum

of (5.8), we get:

Ok=£ (B A +(£ W )- T*XX)-AMl- £ a~A mSK(X)
i= 1 ( / J (

\'p =o p=o

5.Y)
n=12,...7v A= 1.2,.. 2

After rearranging expression (5.9) and summing by curves and by rock types
we can write:

0= £ £ ¢ X afXf YfIKX)- AfK w )

e ] -
(5.10)
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The meaning of the terms in the first square brackets of the quadratic sum
(5.10) is clear: the mean value belonging to the given rock and to the given curve
and calculable by (5.5) should be subtracted from the respective curve value for
every curve and every sampling point. The second square brackets contain the
coefficients ap,p = 0, 1, ..., P of the polynomial describing the deviation which
is to be determined. Furthermore, the derivatives of the logs weighted with the
powers of the depth value and the respective mean derivatives weighted with the
powers of the depth as defined by formula (5.6) can also be calculated numeric-
ally.

The coefficients of the polynomial describing depth deviations are deter-
mined so that (5.10) should be minimal, i.e. the derivatives according to the
variables should be zero:

° _ 0 =01,2,P 5.11

cap= 0 P0L.2, (5.11)
By performing the derivations of (5.11), a linear system of equations is obtained
for the coefficient of the polynomial consisting of (P+ 1) equations and includ-
ing (F+1) unknowns. The solution ensures that the quadratic sum of the
deviations from the means characterizing the rock types will be minimal for each
log. The solution using matrix formalism is the following. Let:

I (CKJU')-/0 | (T.YATT-TU) ..
n-1 not =1

M= X (YNT2-/0 X (T2r{exd-All) m X (xar:kx9-AE) oo

X WIY?\x6-a\2) .. X {Xpr:RXD-A%)
Matrix M consists of as many lines in as many sampling points the lithological
code is known. The A$ weighted mean values of the derivatives previously
calculated by formula (5.6) for the Ath lithological code should be subtracted
from the derivatives of each log multiplied by the powers of the depth. Further
notations are:

X (Ak- YTW)

a0
Y = X (Ank- y*\x2) (5.13)

N ap
X (Ank- YEXXJ)
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The number of the lines of vector Y corresponds to the number of the columns
of matrix M. Here, the curve values taken at the sampling points should be
subtracted from the mean function value defined by formula (5.5) for the Ath
lithological code. The solution obtainable by minimizing (5.10) using matrices
(5.12) and (5.13) is:

= (MTeM T 1+(IVT +Y) (5.14)

Knowing the polynomial coefficients a0, al,  apdetermined by solution (5.14)
the zf(Y,) curve defining the depth deviation can be obtained by means of
relation (5.2) for the sampling points i = 1,2, ..., L.

The correction of the lithological column consists of transferring the places
of lithological code jumps i.e. those of the layer boundaries from place X} to
the [Xj+A(Xj)] point by correction (5.2), and thus a new, corrected lithological
column is obtained. Since the series expansion (5.1) was performed only up to
the first term in order to preserve the linearity in A(X), the corrected geological
column can be regarded as a first approximation. If averages (5.5), (5.6) and
matrices (5.12), (5.13) are determined according to the new lithology, the
iteration can be continued by solution (5.14) till the value of Qdefined by (5.10)
substantially decreases.

To sum up, lithological columns are corrected by the above mathematical
statistical method using the constraint describing depth deviations by a polyno-
mial so that the quadratic sum of the differences between the measured values
and the respective means should be minimal for the entirety of rock types with
different mean values on different logs.

6. Conclusions

Relative depth matching of the information obtained from boreholes is an
essential condition for interpretation purposes. The elaborated mathematical
statistical method makes it possible for a computer to be used for the inter-
mediate step between measurement and interpretation, i.e. for relative depth
matching. It was illustrated that the measuring features enable the value of the
depth deviation varying from point to point to be approximated by a polyno-
mial. In this way the accordion-like depth correction is given a mathematical
phrasing.

The method enables the simultaneous correction of all the given logs but
it is possible that supposing certain curves to be correct in depth the others may
be matched to them. It follows from the mathematics of the method that at the
boundaries there are no missing values left thus the number of depth points will
not change during correction. The method is suitable for dealing with the
problems of matching core data and lithological columns to well logs as well.
Depth deviations are determined by calculation — instead of trials — thus being
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substantially faster even than the cross correlation method in spite of the fact
that — depending on the order of the polynomial — higher order deviations
are also considered.

The method induces hope that in production drillings the parameters of
reservoir geology may be determined with sufficient accuracy without coring,
merely from well logging, using the correlation coefficients from certain explora-
tion drillings. To apply the method in practice a computer program was written
[Szendrs 1978, 1980]. Its description and the experience gained with its applica-
tion as well as the results are due to be dealt with in a further paper.
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A MELYFURASBOL SZARMAZO INFORMACIOK AUTOMATIKUS RELATIV
MELYSEGEGYEZTETESE
. ELMELETI ATTEKINTES

SZENDRO Dénes

A mélyfarashol szarmazo informacidk alapjan térténd értelmezés el6feltétele, hogy az adott
katban lev6 adatok mélységhelyesek legyenek. A kdzds mélységpontra hozas céljabdl feltesszilk,
hogy a pontrél pontra valtozdé nagysagu A(X) relativ mélységeltérések polinommal kozelithet6k.
Sorba fejtve a mélységegyeztetésben részt vevd Y(X) szelvényt a mélység szerint, a Taylor-sorban
levé A(X) mélységeltérés éppen a polinom helyettesitési értékével egyezik meg. Minimalizalva az
egyeztetésben részt vevd adatokbol képezhet6 hibafliggvényt, a polinom egyitthatoi kiszamithatok,
s a korrigalt adatok a sorfejtés alapjan megkaphatok. Az eljarast néhanyszor az ésszes mennyiségre
megismeételve, a szamitott értékek a mélységkorrigalt adatokhoz konvergalnak. A médszer nem csak
a linearis elcstszasok korrigalasara alkalmas, hanem a polinom fokszamatdl fligg6en ,,harmonika-
z0” eltolédasok kikiiszébolésére is. Ha a mélységeltérést leir6 polinom fokszama nulla, azaz
konstans elcstszasrdl van sz6. akkor a mddszer a hagyomanyos keresztkorrelacios eljarassal meg-
egyez6 eredményt szolgaltat. Mivel azonban az elcslszast kiszdmolja, a hagyomanyos eljarasnal
lényegesen gyorsabb. Az eljaras alkalmas a karotazs szelvények kozotti, a magadatok és a karotazs
szelvények kdzotti, s a geoldgiai rétegsor és a karotazs szelvények kdzotti mélységeltérések korriga-
laséra.
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ABTOMATUYECKOE COINTIACOBAHWE AAHHbIX CKBAXWHHOW FEO®U3NKU
Mo OTHOCUTEJ/IbHbIM TNMYBNHAM
. TEOPETUYECKOE OBOCHOBAHUVE

[JeHew CEHAPE

MpefnocbINKoi MHTEPNpeTaLuun AaHHbIX CKBaXKWHHON reom3nKnN SBNSETCS NpaBWIbHOE
onpegeneHne rny6uHbl, K KOTOPO OTHOCATCA T€ WAW WHble faHHble. [N npuBedeHWUs LaHHbIX
K 06LLein rNyOMHHOW TOYKe NpeanonaraeTcs, YTO OTHOCMTENbHbIE PaCcX0oXAeHNsa Mo raybuHe J(X).
BE/IMYMHA KOTOPbIX MEHSIETCA OT TOUKM K TOUKe, anmnpoKCUMUPYHOTCS MONMHOMOM. locne pasno-
)KEHWs1 MOABEPrHYTOM cornacoBaHuto Mo ray6uHe kpueoi Y(X) B psg, OTKIOHEHWe Mo rny6uHe
N(X) B pagy Tailinopa TOYHO COBNafaeT coO 3HaYeHWeM MOACTAHOBKM MofAuHOMa. locne npuBege-
HUA K MUHUMYMY (YHKLMM OLIMGOK, 06pasyemMoil M3 y4yacTBYHOLIMX B COFNacoBaHUM AaHHbIX,
MOXHO BbIYMCAUTL KOIPMULMEHTLI NOAMHOMA W MOMYYUTb WUCMpPaBfieHHble AaHHbIe Ha OCHOBE
pasnoxeHus B paf. Ecnu Takas npouedypa MOBTOPSIETCA HECKONMbKO pa3 ANsi BCEX BeMUMH,
BbIYMC/IEHHbIE 3HAYEHUS NPUOAN3ATCA K MCMPABMEHHbIM 32 PacxXoXieHue no rny6uHe AaHHbIM.
MeTog NpurofeH He TONMbKO ANt UCMIPABNEHNS TMHEHbIX CMELLEHWIA, HO TaKXXe U1 AN YCTPaHeHUs
OTK/IOHEHUS C MEPeMEHHbIMM 3HaKaMy B 3aBMCMMOCTM OT CTeneHW nonuvHoma. Ecnu cTeneHb
MOIMHOMA, ONUCHIBAOLLErO OTK/IOHEHWe MO FNy6uHe, paBHa HY/O, T.e. MMeeT MeCTO NOCTOSHHOe
CMeLLeHMe, MeTO/ AaeT pe3ynbTaT, COBNafalLLnii ¢ TPAAMLMOHHBIM METOLOM B3aUMHOM Koppens-
ummn. MocKonbKy, 0fHaKO, MPU 3TOM BbIYMC/SETCA CMELLEHUe, JaHHbIA MeTof 3HaunTenbHO Gbl-
CTpee TPaAWLMOHHOIO, OH TaKXXe NO3BOJISIET BBECTM MOMPABKM 32 PACXOXAEHUS MO TNy6UHe MeXLY
KapoTaXHbIMW fuarpaMmamMu, Mexay KepHOM W KapOTaXHbIMU JuarpaMMamu, a TakKe Mexay
NIUTONOTNYECKOW KOMOHKOW M KapOTaXKHbIMW AnarpaMmMamu.
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