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A FEW UNSOLVED PROBLEMS OF APPLIED GEOPHYSICS
Gabor KORVIN*

The paper describes eight unsolved problems, stemming from statistical geophysics or rock
physics: computation of effective physical properties in fluid-filled sedimentary rock (Problems
1,2); dependence of the absorption coefficient of sound waves in heterogeneous rocks on the
randomness of the rock (Problems 3,4); fluctuation of the signal characteristics propagating
through random media (Problem 5); computation of the reflected energy from an infinite, randomly
dissipative half-space (Problem 6) ;and the statistical properties of the seismic signals, backscattered
from randomly uneven boundaries (Problems 7,8). In all cases basic references are provided and
applications pointed out.
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Introduction

I shall briefly describe - somewnhat in the vein of Ruerie’s “Five Turbulent
Problems” [1983]- eight loosely connected puzzles, all stemming from statistical
geophysics or rock physics. In all cases | provide the basic references for further
work, including the history, motivation and possible applications of the pro-
blem. This paper is an outgrowth of a lecture held in 1982 at the Geology
Department of the University of Houston; | dedicate it to the memory of Milton
B. Dobrin, (1915-1980), late Professor of that Department, Man, Teacher,
Geophysicist.

1 Hierarchy of velocity equations: generalized mixture rules

The first problem is frequently encountered in geophysics, rock physics and
solid state physics.

Suppose we are given a composite material of volume V consisting of two
phases of the respective volume fractions P, Q; P+Q = V, and suppose these
constituents are uniformly distributed within the total volume. Suppose g is
some physically measurable property that assumes the values gxand g2, respec-
tively, for the two constituents, and a value g for the composite. Suppose,
further, that the value of g is unambiguously determined by the volume fractions
P, Q and the specific properties gx, g2:

g = M(gu g2,P,Q) @)
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In Korvin [19823] it is shown that, if a set of physically plausible conditions
is met, the only possible functional form of M(gt, g2, P, Q) is the *“general

mixture rule”
M(gi, 92, P, Q) = {®Pa\ +(1- P)p2Y )

for some real t, 190, or
M(gi,g2P,Q) = gn2-¢ ®)

which follows from Eq. (2) by I’Hospital’s rule for t=0. In Egs. (2), (3), ®is
porosity, defined as ® —P/(P+Q). The general mean values have the very
important property [cf. Beckenbach and Bellman 1961 § 1.16] that for
E/0é2>0, ®d0, dP\ and arga2the expression {da\ + (1 -d)a' 2} Mis
a strictly monotonously increasing function of tin (—oo, 00).

In case of sound speeds, e.g., in fluid-filled sedimentary rocks the general
rules (2), (3), contain, in particular, the following widely used “velocity for-
mulae”:

- for t= —2 the “approximate Wood equation” [Waterman and Truell

1961, Korvin 1977a, 1978 bj;

- for t= —1 the “time-average” equation [Wyllie et al. 1956];

- for r= 0 the “vugular carbonate” formula [of Meese and Walther 1967];

- for « = 1the average velocity formula [Berry 1959].

Tegland’s [1970] method of sand-shale ratio determination also assumes a
= - 1time average equation; Mateker’s [1971] effective attenuation factor in
an alternating sequence of thick sand-shale layers is a linear weighted (i.e. t= 1)
combination of the specific attenuations, further examples from different fields
of geophysics are to be found in Korvin [1978b, 1982 a].

The functional forms (2), (3) are derived in Korvin [1982a] from the following
set of physically plausible conditions. (The derivation is based on the theory of
functional equations, particularly on the results of Aczer [1961].)

Condition 1 reflexivity

M(gi,gl,P,Q) =gl foral P,Q (P+Q > 0) @

Condition 2. idempotency
M(gLg2P,0) = g1 forall P>0 5)
M(Ou 9i,0,Q) = g2 forall Q>0 (6)

Condition 3. homogeneity (of 0-th order) with respect to the volume fractions

Wao02,P, Q) = Wan NI XQ) ()
forall P, Q X suchthat P+Q> 0, #>0
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Condition 4. internity. The property g measured on the composite lies between
the specific values gu g2 of the constituents; ifgt< g2, say, then for P+Q > 0

M(gi, g2, 1,0) < (gu g2, P, Q) < M(gt, g2 0,1) 8

Condition 5. bi-symmetry (this concept is due to Aczél [1946]). Given two
composites, the first consisting of P1and Qx parts of materials of gr and g2
properties; the second of P2and Q2parts of materials of Gy and G2 properties,
the following two expressions for the measured property g of the four-
component aggregate must be equal:

g2 Pu Rj); M{GUG2 P2, 02); P, +Qf P2+ Q7 =
= M[M(gu Gu Pu P2); M(g2, G2, Qlt Q2: P1+Pf Qx+ Q2 )

Condition 6. monotonicity with respect to the volume fractions.
IfO0i<02. sa+ P+Qi> 0 RB2>Ri
then M(gLg2P,Q)<M(gl,g2,P,Q2 (10)
Condition 7. monotonicity with respect to the physical properties.
UP+Q> 0, g2<g2 then M(gl,g2P,Q)<M(gl,g3P,Q) (11)

Condition 8 homogeneity (of first order) with respect to the physical properties

M{lgx 1g2, P, Q) = W{an g2 P, Q
forall P, Q A suchthat 7+R>0, 9>0 (12)

In Korvin [19824] it is proved that if the function M(gu g2, P, Q) defining the
effective physical property g of a two-component material satisfies Conditions
1-8 (Egs. 4-12) then

0= Wm@ n Q) = {®a\+"-d)a2jn’
for some real  1C®0, &= P+Q or g= ofor®

In case of sound speeds, e.g. in sandstone, Fig. 1 shows porosity-velocity
curves for different values of the paramétert (gt=wun = 1545 m/s;
g2 = vmatrix = 5542 m/s, after Meese and Wairther 1967; the™ Berea, Boise,
Miocene, Page sandstone data are taken from M eese and W atther [1967], the
Texas data from Hicks and Berry [1956]). It is seen from Fig. 1 that'the
sandstone data are best fitted by a t = -0.6 curve, i.e. by the formula

Vo[ -2+ (1-D «x}U06
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Fig. 1 Porosity-velocity master curves for sandstone [From Korvin 1978b]
1 abra. Porozitas-sebesség gorbesereg homokkdvekre [Korvin 1978b-b6l]

Puc. 1 KpuBble 3aBUCMOCTM CKOPOCTM OT MOPUCTOCTK N8 necyaHukax [Mo Korvin 1978b]

Thus, we are led to Problem 1\ What is the physical meaning (if any) of the
parameter t in Eg. 2? Does t = -0.6 have any particular meaning for sand-
stone?
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There is also another, variationa. approach, for the determination of the
effective properties of composite materials, culminating in the celebrated HS
[Hashin-shtrikman, 1963] bounds on the effective properties in terms of the
specific ones. A very recent summary of the topic, with many references, is
Hughes and Prager [1983], see also sterr [1983]; the standard reference for
earlier work is Hasnhin [1964].

It would be nice to see somebody solve Problem 2, that is, to reconcile the
functional equation approach [of K orvin 1978b, 1982a] with the HS variational
approach, or at least to use HS bounds to derive non-trivial bounds for t.

2. Sound absorption and rock entropy

In 1978 Bertzer Studied elastic wave propagation in randomly porous
materials. He concluded that “for low frequency regimes the randomness of
porosity leads to an increase in the attenuation and dispersion of the elastic
wave”.

Bettzer’s result is highly plausible and in agreement with the general
understanding that the heterogeneity of a medium causes additional dissipation
of the propagating elastic wave. (It is well known, for example, that the sound
attenuation in crystalline materials is less for a single crystal than for an
aggregate; [Bradiey and Fort 1966].) Prior to Beitzer's work similar con-
clusions had already been reported by the present author, in connection with
elastic waves propagating in a random stack of layers (the hypothesis was
published in 1976, its heuristic proof in 1978c). K orvin [1980] applies stochastic
perturbation methods of random wave propagation theory [Ketiter 1964,
Karatl and Kerter 1964] in order to generalize Beitzer’s results for rocks of
random structure. In Korvin [1980] it is shown that in multicomponent rocks
the low-frequency attenuation coefficient is proportional to (more exactly,
positively correlated with) the quantity

M

P : 13
- = Pi 08P (13)

E =

where/?, (/ = 1, ..., n) is the relative volume ratio of the /-th phase, Ip, = 1.The
quantity E, however, measures the randomness of the constitution of the rock
and, in Russian literature, is termed “rock entropy” [cf. Byryakovskiy 1968].
Recalling that in the statistical theory of phase transitions of disordered systems
the entropy of a random aggregate of several components always consists of two
parts

mixture (14)
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where Snidue has the same form as the entropy E in Eq. (13). Eq. 14 is the
so-called Flory-Huggins formula, [see ziman 1979, 8 7.2.], we immediately see
(Problem 3) that either the concept of rock entropy should carefully be re-
defined, or the random wave equation solved more precisely in order to decide
whether or not the attenuation depends on the configurational part of rock
entropy.

The hypothetical connection between attenuation and randomness (en-
tropy) of the rock presents us with a further, much more delicate problem.

It is well known that frequency-dependent attenuation and velocity disper-
sion lead to a distortion of propagating acoustic pulses; Barknhatov [1982, §
3.6.4] and Barkhatov and Shmetev [1969] even speak about the changes of
signal entropy during hydroacoustic propagation. Kuznetsov et al. [1973] and
Hottin and Jones [1977] propose that the correlation between the propagating
pulses for the determination of the attenuation characteristics be measured.
Theoretically, the propagation of the two-point correlation function (as of any
other quadratic quantities) can be described by the Bethe-Salpeter equation
[Bourret 1962] or by appropriate transport equations [see e.g. Bugnoto 1960].
In connection with the latter approach Frisch [1968 p. 145] comments: *.. .there
are some physical difficulties in the interpretation of the solution, which have
not been settled yet. It appears, for example, that in contradistinction to the
homogeneous nonrandom case, there is an energy loss, even when the medium
is not dissipative.”

It seems to us that this problem, together with that concerning the intercon-
nection of attenuation and randomness, can be solved by following up the
pioneering ideas of Casti and Tse; these authors showed in 1972 that the
Kalman-Bucy optimal filtering theory and radiative transfer theory “which
from a physical point of view seem to have very little in common, may be
brought together by careful examination of their respective initial value for-
mulations” [op. cit. p. 42].

In their concluding remarks Casti and Tse [1972 p. 53] state: “In conjun-
ction with the active filtering problem, let us mention a radiative transfer
function ...this is the absorption function which is defined by means of con-
servation law, i.e. it corresponds to the radiative energy which is input to the
atmosphere, but which is neither transmitted through nor reflected back out...
In the active filtering case there is reason to suspect that this function may
correspond to a loss of inherent information in the known control input due to
interaction with the noisy system. If this correspondence can be made precise,
it would seem to be possible to establish a conservation of information law for
stochastic systems”.

That is, we can state our Problem 4 as: Derive attenuation in random media
from “conservation of information” principles!
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3. Ignorance versus depth: the turbidity factor paradox

One of the basic results of seismic wave propagation in randomly inho-
mogeneous media is that velocity- and density inhomogeneities cause scattering
of waves, the scattered waves are superimposed on the primaries and lead to
amplitude and phase fluctuations in the observed wave pattern. We shall neglect
density fluctuations and assume that an acoustic wave of frequency/ propagates
along a distance AB = L in a random medium where sound-speed randomly
fluctuates around some constant CO as

Co
= = 14
¢ 1+£ (14)
where

<£>

0,<€2) « 1L RJIr) = <EXEX+r)> =
<€2) exp [~\r/rOY (r = Irl),

rOis the correlation distance of the inhomogeneities. Denoting mean transit time
L/CO by T, its fluctuation by AT and mean wavelength by A it can be shown
that, if rO»A:

((AT)Z) = ~2(e2Yr0)n (15)

(see Chernov [1960], or Korvin [1973] for a more general case). The gist of Eq.
(15) is that the square of the fluctuation of transit times linearly increases with
the distance travelled. To show a practical example of Eq. (15), let us recall the
classical paper of Gretener [1961] who analysed the deviations between the
integrated travel times computed from conventional and continuous velocity
loggings in wells. The deviations found by him consisted of a systematic and a
random part. The systematic deviations were ascribed, in a much-discussed
paper of Strick 1971, to velocity dispersion while the random scattering was
found to increase with the square root of the distance travelled by the seismic
wave (in accordance with Eq. (15), see Fig. 2).

Fig. 2. Scattering of arrival times. [After
G retener 1961]

2. dbra. A beérkezési id6k szdrasa [Gretener
1961 utan]

Puc. 2. OTKNOHEHWs BpeMeH BCTymaeHus [Mo
Gretener 1961]
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The companion formula to Eq. (15) refers to the logarithmic amplitude
fluctuation of the propagating waves and states that

(16)

where A0 is wave-amplitude in the homogeneous medium and g is a function,
which possibly also depends on frequency, correlation distance, etc.

The factor g is termed “inhomogeneity factor”, or “turbidity factor” ([Ga1-
kin and Nikolaev 1968, Nikolaev and Tregub 1970], the definitive mono-
graph on the subject is [Nikotaev 1973]).

A great number of studies have been carried out in seismology to determine
the inhomogeneity of the crust and upper mantle using time- or logarithmic
amplitude fluctuation, or both [Aki 1973, Capon 1974, Berteussen et al. 1975,
etc]; most recently by Powerr and Mertzer [1984]; a similar study in reflection
seismics was carried out by Korvin [1977b]. For exploration geophysicists, the
message of Egs. (15), (16) is that the error of the seismic measurements linearly
increases with the depth studied (as was observed by Posgay as early as 1954)
i.e. our ignorance about the Earth linearly increases with depth! This trium-
phant feeling of ignorabimus has recently been shattered by the fascinating
model experiments reported by Gertrude Neumann and K. Schier in 1977.
Neumann and Schietr prepared more than 20 two-dimensional models (some-
what in the vein of Levin and Robinson [1969]) consisting of 2000 x 800 mm
macrolon and 2000 x 1200 mm perspex plates with inhomogeneities quasi-
randomly arranged in rows (Fig. 3). They estimated the logarithmic amplitude
fluctuation and computed the turbidity factor assuming the validity of Eq. (16)
(where L should be substituted by the number of “rows” of inhomogeneities in
the model). Their results are reproduced in Fig. 4, for one family of the macrolon
models. The estimated g factor first increases with the number of rows N, then
begins to decrease, i.e. instead of (16), they found a

(17)

law, for greater distances with an exponent a less than 1 This, of course,
reminded N eumann and Schier 0f Brownian motion or diffuse multiscattering
(op. cit. p. 225).

Since these model experiments are extremely well-documented, it is worth
while to call the reader’s attention to this paper and to pose Problem 5 as:
Explain quantitatively the findings of Neumann and Schier [1977] in terms of
diffuse multiscattering! The problem becomes even more important since a very
recent paper of Powert and Mertzer [1984] has cast renewed doubts on the
overall applicability of the Chernov- (i.e. Nikolaev-, i.e. Rytov-) method.
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L-2?20mm
Ab-300mm

Fig. 3. Structure and model parameters used in the experiments of Neumann and Schiel [1977]
3. abra. Felépitési- és modell-paraméterek Neumann és Schiel [1977] kisérleteiben

Puc. 3. MapameTpbl CTPOeHNsA U MOAenu B akcnepumeHTax Neumann-a u ScHIiEL-a [1977]

Fig. 4. Dependence of the turbidity factor G on the number of rows N in one of the
Neumann-Schiel macrolon models. [After Neumann and Schiel 1977]

4. abra. G turbiditas-faktor fliggése N sorszamt6l, Neumann és Schiel egyik makraion
modelljében. [Neumann és Schiel 1977 utan]

Puc. 4. 3aBucumocTb (hakTopa MyTHOCTM G OT HOMepa N, Ha MaKpOSIOHHOW MoAenu
Neumanns 1 ScHIiEL-a. (Mo Neumann u Schiel 1977)
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4. Energy return from a dissipative half-space

There is an interesting theorem of Robinson and Treiter [1965, 1966]
which states that any series of parallel layers, characterized by an arbitrary
sequence of reflection coefficients, which is bounded by a totally reflecting
“wall” (r= + 1), completely reflects the incident energy in an infinite observation
time. In [1977 a] Korvin, In an attempt to generalize the Robinson-Treitel
theorem, restated the problem in terms of a one-dimensional random walk of
acoustic energy quanta, applied the invariant embedding technique of Betiman
et al. [1958], and derived a partial integro-differential equation for the descrip-
tion of the total energy U(t) reflected from a random infinite half-space in the
time interval (0, t). It was proved that for one-dimensional inhomogeneities,
assuming a stationary sequence of random reflection coefficients and that the
reflecting interfaces obey a Poisson distribution, the total incident energy is
reflected from the inhomogeneous half-space during an infinitely long observa-
tion time. The asymptotic form of U(t) is also given, in Eq. (79) of Korvin
[1977 a].

It turned out later that various formulations of this problem can be encoun-
tered in the most different branches of physics (in solid state physics, for
example, the phenomenon is closely connected to the “localization theorems”,
see ziman [1979, Chapter 8], or the recent summary of Stephen [1983].

The most ingenious proof of the total reflection by a semi-infinite random
medium was given by Sutem and F risch [1972] [see alsO Sutem 1973] who used
the Ricatti transformation to reduce the Helmholtz equation to a single-point
boundary problem, observed that the complex impedance ZNof a random stack
of N layers constitutes a kind of “random walk” on the half-plane C+(1mz >0)
as the number N of layers is gradually increased, and used the ergodic theory
of dynamic systems [Arnotd and Avez 1967, Haimos 1956] to prove total
reflection.

Of course, ergodic theory gives no indication as to the rate of development
of a system towards its equilibrium. The Monte Carlo computer simulations in
Sutem and Frisch [1972], however, suggest that the mean reflection coefficient
exponentially converges to one, rather similarly to the asymptotic Eqg. (79) in
Korvin 1977a.

In Sutem and Frisch [Op. cit., p. 225] there is posed the important problem
connected with the more realistic case of a slightly dissipative medium which,
obviously, cannot be totally reflecting. Computer simulations (Fig. 5) indicate
that the Césaro means of the reflection coefficients

still converge, but more slowly than for a non-dissipative half-space, and to a
finite limit less than one. Unfortunately, the ergodic theory, used by sutem and
Frisch for the nondissipative case, does not apply if we assign complex values
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to the refractive index since the measure corresponding to the random walk of
the complex impedance ZNwill not be invariant any more.

At the same time, in the dissipative case, the integro-differential equation
in Korvin [1977] will also yield divergent solutions. Thus, it seems justifiable
to invite the reader to solve Problem 6, i.e. to generalize the theorem of Robin-
son and T reite1 and compute the energy returned from a, finite or infinite, stack
of random dissipative layers!

Fig. 5. Césaro mean of the reflection coefficient in a randomly alternating stack of two slightly
dissipative layers with the refractive indices nx = 2+ 5/« 10'3and n2 = 5+ 5/- 10~3,
respectively, and with a mean layer thickness of unity. [After Sulem and Frisch 1972]

5. &bra. Két, enyhén disszipativ réteg véletlenszer(ien valtakozé soranak reflexios koefficienseibdl
képezett Césaro atlag. A torésmutaték: n, = 2+ 5/- 10“\ ill. n2 = 5+ 5/« 10“3, az atlagos
rétegvastagsagok egységnyiek. [Sulem és Frisch 1972 utan]

Puc. 5. CpefiHee Césaro nony4yeHHOe 13 KOIPMULNEHTOB OTPaXKEHWUI CNy4aiHO U3MEHAOLLErocs
MHOXECTBa ABYX CnabofmccunatusHbIX cnoes. KoaguumeHTbl npenomMneHns:
«l = 2+5/- 10'3;H2 = 5+ 5/- 10~3, cpegHas MOLHOCTb CNOEB COCTaBAAET eANHULY.
[Mo Sulem n Frisch 1972]

5. Langleben’s phenomenon and the diffuse reflection shadow

It has long been a basic problem of Hungarian reflection seismics that in
many cases we can get only intricate diffuse reflections from the uneven surface
of the basement [Szénas and Adam 1953]. Due to these diffuse reflections it is
rather difficult at some places to map the basin floor accurately: diffraction
arrivals coming from the surface unevennesses follow the basement reflection
as a “diffuse shadow” of a few hundred ms length so that it tends to be very
difficult to detect eventual deeper reflections. In marine seismic profiling, similar
difficulties were reported by C 1ay and Rona [1964]. The existence of the diffuse
reflection shadow following rough boundaries has also been demonstrated by
model experiments [Voskresensky 1962, Leong et al. 1971]. For a special
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non-differentiable random surface model the time-behaviour of the diffuse
reflection shadow was theoretically investigated in the low-frequency limit by
Biot [1957]; for Gaussian differentiable random surfaces, and in the high-
frequency limit, by Korvin [1982b]. Recent interest in the topic is indicated by
Tsai [1984] who proposes special CDP stack and velocity filtering techniques
to reduce coherent scattered noise.

In 1970 Langieben reported a very strange series of experiments, carried
out under the ice cover in Tanquary Fiord, Ellesmere Island, NW Territories,
Canada. He measured the specular reflection of water-borne sound at the
water-sea-ice interface as a function of the angle of incidence and of frequency.
The geometrical configuration of his measurement is reproduced in Fig. 6 (the
frequency varied from 20 kHz to 450 kHz). His results (Table 1) do not show
any systematic change of the specular reflection coefficient with frequency. The
“striking insensitivity of back-scattering to frequency”, in cases when the scales
of irregularities range from many times smaller to many times greater than the
radiation wavelength, had also been observed by M arsn [1961, p. 332]. Note
that the dendritic growth of ice very likely also results in such an ill-defined
phase-boundary of fractal geometry [cf. Brady and Bai1 1984], containing
irregularities at all scales. (The possible fractal nature of the underside of sea
ice was first observed by Rothrock and Thorndike [1980]; see also their more
recent paper [1984].)

Fig. 6. Geometrical configuration of Langleben's experiment. Source and detector move along
the semicircle indicated. [After Langleben 1970].

6. dabra. Langleben kisérletének geometriai elrendezése. Ado és vevd egy félkoron mozog.
[Langleben 1970 utan]

Puc. 6. CeomeTpus 3KcnepuMeHTa Langleben-3. [aTunmK U NPUEMHUK ABMXKYTCS Ha OLHOM
nonykpyre. [[o Langleben 1970]



Table I. Amplitude of reflection coefficients at the water-sea-ice interface

Frequency
kHz

17.9
23.1
24.8
47.0
56.5
89.9
118
126
184
227
332
387
435
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15

0.24
0.091
0.13
0.056
0.083
0.039
0.13
0.055
0.056
0.021
0.17
0.083
0.066

[after Langleben 1970]

0

0.20
0.034
0.070
0.17
0.25
0.053
0.16
0.036
0.11
0.005
0.22
0.091
0.088

Angle of incidence [degree]
45

0.48
0.18
0.29
0.89
0.42
0.41
0.72
0.32
0.56
0.43
0.019
0.36
0.016

60

0.36
0.41
0.63
0.89
0.75
0.63
0.88
0.69
0.75
0.44
0.50
0.16
0.11

5

0.88
0.51
0.38
1.22
0.75
0.96
1.06
0.81
0.97
0.91
0.45
1.00
0.94
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The surprising feature of Langieben’s data is that, when averaged over
frequency, the mean reflection coefficients become a reasonably smooth func-
tion of the angle of incidence (Fig. 7). Since, using the jargon of data processing,
averaging over frequencies is equivalent to a deconvolution operation in the
time domain, Langteben’s results suggest the hypothesis (Problem 7), that a
suitable generalization of the single- or multichannel deconvolution procedure
could be profitable in the elimination of the diffuse reflection shadow.

Fig. 7. Amplitude reflection coefficient of water borne sound waves reflected at the underside of
the sea ice cover, as a function of angle of incidence. [After Langleben 1970]

7. abra. A tengert borito jég alsé hatarfeluletérdl visszavert hanghullamok reflexios koefficiense

a beesési szog fliggvényében. [Langleben 1970 utan]

Puc. 7. KoaththmuMeHT OTpaXKeHNs 3BYKOBbIX BOJH, OTPXAOLWMNXCA OT HVDKHENA MOBEPXHOCTU
rpaHMUbl Nbfa, MOKPbLIBAKOLWEro Mope, B 3aBUCMMOCTM OT yrna nageHus. [Mo Langleben 1970]
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In the single-channel solution it should be recalled that the diffuse “rever-
berated” signal is very likely not minimum-phase [see Korvin 1982D], i.e. the
deconvolution filter must be specially designed (as, for example, in Ristow and
Jurczyk [1975]). The design of the multi-channel filter for the removal of the
diffuse reflection shadow could very likely be made along the general lines
described in Backus et al. [1964]. For the estimation of the horizontal and
temporal correlations of the diffuse noise, that is necessary for the design of the
optimum multichannel filter, use should be made of the results in Levin and
Robinson [1969], D unkin [1969], Korvin [19786.] It goes without Saying that
a physical explanation of Langieben’s phenomenon (i.e. why is the frequency-
averaged backscattering coefficient equal to the backscattering coefficient of an
effective smooth surface, at least for a certain kind of random surfaces?) is still
badly needed and it is posed here as Problem 8.

* * %

The main ordering principle behind this set of problems has been my
continuous interest in the last 15 years in applying random wave propagation
concepts and statistical ideas to the physics of sedimentary rocks. | do hope my
readers will find some of these problems sufficiently interesting so as to solve
them - as | called for in the original title of this lecture: “Afew problems I'd like
to see solved".
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AZ ALKALMAZOTT GEOFIZIKA NEHANY MEGOLDATLAN PROBLEMAJA
KORVIN Gabor

A cikkben nyolc megoldatlan problémat targyal a szerz6, amelyek a statisztikus geofizikabol,
vagy a k6zetfizikabol szarmaznak. A problémak a kovetkez6k: folyadékkal telitett Gledékes kdzetek
effektiv fizikai paramétereinek szamitasa (1.és 2. probléma); hanghullamok abszorpcids koefficien-
sének fliggésége a heterogén kézetek véletlenszer(iségétdl (3. és 4. probléma) ; véletlenszerl kdzegen
athalado jel jellemz@inek ingadozasa (5. probléma); véletlenszer(ien disszipativ féltérrél visszaverd-
d6 energia szamitasa (6. probléma); és a véletlenszerlien egyenetlen hatarfelliletekrél visszaszort
szeizmikus jelek statisztikai tulajdonsagai (7. és 8. probléma). Minden esetben kézli a leglényege-
sebb irodalmi hivatkozasokat és ramutat az alkalmazési teriletre.

HEKOTOPbLIE HEPELUEHHBLIE MPOB/IEMbI MPUKAALHOW FTEO®U3NKUN

Fa6op KOPBUH

BcTaTbe aBTOP 06CYX/aeT BOCEMb HEPELLEHHbIX MPOGIEM, KOTOPbIe BbITEKAIOT U3 CTaTUCTU-
YecKoW reomankn unm 13 usrnkn nopof. ATo Cnefytouine Npo6aemMbl: BblunCaeHNE 3PHEKTUBHBIX
(h13MYeCKMX NapaMeTPOB 0CALOUHbIX MOPOJ HACBILLEHHbIX XUAKOCTbIO (Npobnembl 11 2); 3aBUCU-
MOCTb KO3(hduLmeHTa abcopbLMmM 3BYKOBbLIX BOMH OT CNY4YaNnHOCTW reTeporeHHbIX nopog (npobne-
Mbl 3 14); U3MEHEHWEe NapaMeTPOB CUrHana, MPOXOASLLEro Yepes caydaliHyto cpefly (npobnema 5);
BbIYMC/IEHNE OTPAXKEHHON 3HEPTUM OT CMyYaiiHO AMCCUMATUBHOIO MOAYNPOCTPaHCTBa (Npobaema
6); CTaTUCTMYECKMe CBOWCTBA OTPaXKEHHbIX CEMCMWUYECKMX CUTHAMOB OT CMy4aliHO Hernagkmx
noBepxHocCTeli pasaena (Npobnembl 7 1 8). ABTOP B BCEX CMy4Yasx [aeT CamMble BaXHbIe CChbIKM Ha
NUTepaTypy Y yKasblBaeT 061acTU NPUMEHEHNS.






