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A FEW UNSOLVED PROBLEMS OF APPLIED GEOPHYSICS

Gábor KORVIN*

The paper describes eight unsolved problems, stemming from statistical geophysics or rock 
physics: computation of effective physical properties in fluid-filled sedimentary rock (Problems 
1,2); dependence of the absorption coefficient of sound waves in heterogeneous rocks on the 
randomness of the rock (Problems 3,4); fluctuation of the signal characteristics propagating 
through random media (Problem 5); computation of the reflected energy from an infinite, randomly 
dissipative half-space (Problem 6) ; and the statistical properties of the seismic signals, backscattered 
from randomly uneven boundaries (Problems 7,8). In all cases basic references are provided and 
applications pointed out.
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Introduction

I shall briefly describe -  somewhat in the vein of R u e l l e ’s “Five Turbulent 
Problems” [1983]- eight loosely connected puzzles, all stemming from statistical 
geophysics or rock physics. In all cases I provide the basic references for further 
work, including the history, motivation and possible applications of the pro­
blem. This paper is an outgrowth of a lecture held in 1982 at the Geology 
Department of the University of Houston; I dedicate it to the memory of Milton 
B. Dobrin, (1915-1980), late Professor of that Department, Man, Teacher, 
Geophysicist.

1. Hierarchy of velocity equations: generalized mixture rules

The first problem is frequently encountered in geophysics, rock physics and 
solid state physics.

Suppose we are given a composite material of volume V consisting of two 
phases of the respective volume fractions P, Q; P + Q = V, and suppose these 
constituents are uniformly distributed within the total volume. Suppose g is 
some physically measurable property that assumes the values gx and g2, respec­
tively, for the two constituents, and a value g for the composite. Suppose, 
further, that the value of g is unambiguously determined by the volume fractions 
P, Q and the specific properties gx, g2:

g = M(gu g2,P,Q)  (1)
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In Korvin [1982a] it is shown that, if a set of physically plausible conditions 
is met, the only possible functional form of M(gt, g2, P, Q) is the “general 
mixture rule”

M(gi, g2, P, Q) = {Фд\ + (1 -  Ф)д‘2У ‘ (2)

for some real t, 1Ф 0, or

M(gi,g 2,P,Q) = д*д'2-ф (3)

which follows from Eq. (2) by l’Hospital’s rule for t = 0. In Eqs. (2), (3), Ф is 
porosity, defined as Ф — P/(P+Q). The general mean values have the very 
important property [cf. Beckenbach and Bellman 1961 § 1.16] that for 
Ê/oé,2> 0, ФФ 0, Фф\  and дг фд2 the expression {Фд\ + (1 -Ф)д'2}111 is 
a strictly monotonously increasing function of t in ( — oo, oo).

In case of sound speeds, e.g., in fluid-filled sedimentary rocks the general 
rules (2), (3), contain, in particular, the following widely used “velocity for­
mulae”:

-  for t= —2 the “approximate Wood equation” [Waterman and Truell 
1961, K orvin 1977a, 1978 b];

-  for t= — 1 the “time-average” equation [Wyllie et al. 1956];
-  for г = 0 the “vugular carbonate” formula [of M eese and Walther 1967];
-  for t  = 1 the average velocity formula [Berry 1959].

Tegland’s [1970] method of sand-shale ratio determination also assumes a 
t= -  1 time average equation; M ateker’s [1971] effective attenuation factor in 
an alternating sequence of thick sand-shale layers is a linear weighted (i.e. t= 1) 
combination of the specific attenuations, further examples from different fields 
of geophysics are to be found in Korvin [1978b, 1982 a].
The functional forms (2), (3) are derived in Korvin [1982a] from the following 
set of physically plausible conditions. (The derivation is based on the theory of 
functional equations, particularly on the results of A c z é l  [1961].)

Condition 1. reflexivity

M(gi, g l,P,Q) = gl for all P, Q (P+ Q > 0) (4)

Condition 2. idempotency

M(g1,g2,P,0)  = g1 for all P > 0  (5)

M(0u 9i, 0, Q) = g2 for all Q> 0 (6)

Condition 3. homogeneity (of 0-th order) with respect to the volume fractions 

Щ до 02, P, Q) = Щди  ЛЛ XQ) (7)

for all P, Q, X suchthat P + Q >  0, Я>0
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Condition 4. internity. The property g measured on the composite lies between 
the specific values gu g2 of the constituents; if g t < g2, say, then for P + Q > 0:

M(gi, g2, 1,0) < (gu g2, P, Q) < M(gt, g2, 0,1) (8)

Condition 5. bi-symmetry (this concept is due to Aczél [1946]). Given two 
composites, the first consisting of P1 and Qx parts of materials of gr and g2 
properties; the second of P2 and Q2 parts of materials of Gy and G2 properties, 
the following two expressions for the measured property g of the four- 
component aggregate must be equal:

g2, Pu ß j); M{GU G2, P2, 0 2); P, + Q f  P2 + Q2] =
= M[M(gu Gu Pu P2); M(g2, G2, Qlt Q2); P l + P f  Qx + Q2) (9)

Condition 6. monotonicity with respect to the volume fractions.

I f0 i<02. say- P + Qi >  0, ß2>ßi

then M(g1,g 2, P , Q 1) < M ( g l,g 2,P ,Q  2) (10)

Condition 7. monotonicity with respect to the physical properties.

U P  + Q >  0, g2< g2 then M(gl,g 2, P , Q ) < M ( g l, g 3,P ,Q ) (11)

Condition 8. homogeneity (of first order) with respect to the physical properties

M{lgx, lg2, P, Q) = Ш {ди g2, P, Q) 
for all P, Q, À suchthat 7J+ ß > 0 ,  Я>0 (12)

In K o r v in  [1982a] it is proved that if the function M(gu g2, P, Q) defining the 
effective physical property g of a two-component material satisfies Conditions 
1-8 (Eqs. 4-12) then

0 = Щди 02, л  Q) = {Ф д\+^-Ф )д‘2}и‘

for some real 1СФ 0, Ф =
P + Q

or ф 1 — Фg = 0 i 0 2

In case of sound speeds, e.g. in sandstone, Fig. 1 shows porosity-velocity 
curves for different values of the param étert (gt = и = 1545 m/s; 
g 2 =  vmatrix = 5542 m/s, after M eese and W a l t h e r  1967; the"" Berea, Boise, 
Miocene, Page sandstone data are taken from M eese and W a l t h e r  [1967], the 
Texas data from H ic k s  and Ber r y  [1956]). It is seen from Fig. 1 that'the 
sandstone data are best fitted by a t = -0 .6  curve, i.e. by the formula

v { Ф - ^ + ( 1 - Ф « х } ' 1/06
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Fig. 1. Porosity-velocity master curves for sandstone [From Korvin 1978b]

1. ábra. Porozitás-sebesség görbesereg homokkövekre [Korvin 1978b-ből]

Puc. 1. Кривые зависимости скорости от пористости для песчаниках [По Korvin 1978b]

Thus, we are led to Problem 1\ What is the physical meaning (if any) of the 
parameter t in Eq. 2? Does t = -0 .6  have any particular meaning for sand­
stone?
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There is also another, variationa. approach, for the determination of the 
effective properties of composite materials, culminating in the celebrated HS 
[H a s h in -s h t r ik m a n , 1963] bounds on the effective properties in terms of the 
specific ones. A very recent summary of the topic, with many references, is 
H u g h es  and P r a g e r  [1983], see also Ste l l  [1983]; the standard reference for 
earlier work is H a s h in  [1964].

It would be nice to see somebody solve Problem 2, that is, to reconcile the 
functional equation approach [of K o r v in  1978b, 1982a] with the HS variational 
approach, or at least to use HS bounds to derive non-trivial bounds for t.

In 1978 Be l t z e r  studied elastic wave propagation in randomly porous 
materials. He concluded that “for low frequency regimes the randomness of 
porosity leads to an increase in the attenuation and dispersion of the elastic 
wave”.

Be l t z e r ’s result is highly plausible and in agreement with the general 
understanding that the heterogeneity of a medium causes additional dissipation 
of the propagating elastic wave. (It is well known, for example, that the sound 
attenuation in crystalline materials is less for a single crystal than for an 
aggregate; [B r a d l e y  and F o r t  1966].) Prior to Be l t z e r ' s work similar con­
clusions had already been reported by the present author, in connection with 
elastic waves propagating in a random stack of layers (the hypothesis was 
published in 1976, its heuristic proof in 1978c). K o r v in  [1980] applies stochastic 
perturbation methods of random wave propagation theory [K eller  1964, 
K a r a l  and K eller  1964] in order to generalize Be l t z e r ’s results for rocks of 
random structure. In K o r v in  [1980] it is shown that in multicomponent rocks 
the low-frequency attenuation coefficient is proportional to (more exactly, 
positively correlated with) the quantity

where/?, (/ = 1, ..., n) is the relative volume ratio of the /-th phase, Ip , = l.The 
quantity E, however, measures the randomness of the constitution of the rock 
and, in Russian literature, is termed “rock entropy” [cf. By r y a k o v sk iy  1968]. 
Recalling that in the statistical theory of phase transitions of disordered systems 
the entropy of a random aggregate of several components always consists of two 
parts

2. Sound absorption and rock entropy

П
E  = -  Z  Pi ,08 Pi (13)

Í = 1

mixture (14)
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where Smixlure has the same form as the entropy E in Eq. (13). Eq. 14 is the 
so-called Flory-Huggins formula, [see Z im a n  1979, §. 7.2.], we immediately see 
(Problem 3) that either the concept of rock entropy should carefully be re­
defined, or the random wave equation solved more precisely in order to decide 
whether or not the attenuation depends on the configurational part of rock 
entropy.

The hypothetical connection between attenuation and randomness (en­
tropy) of the rock presents us with a further, much more delicate problem.

It is well known that frequency-dependent attenuation and velocity disper­
sion lead to a distortion of propagating acoustic pulses; Ba r k h a t o v  [1982, §. 
3.6.4.] and Ba r k h a t o v  and S hm elev  [1969] even speak about the changes of 
signal entropy during hydroacoustic propagation. K u z n e t so v  et al. [1973] and 
H o l l in  and J ones [1977] propose that the correlation between the propagating 
pulses for the determination of the attenuation characteristics be measured. 
Theoretically, the propagation of the two-point correlation function (as of any 
other quadratic quantities) can be described by the Bethe-Salpeter equation 
[Bo u r r e t  1962] or by appropriate transport equations [see e.g. Bu g n o l o  1960]. 
In connection with the latter approach F r is c h  [1968 p. 145] comments: “.. .there 
are some physical difficulties in the interpretation of the solution, which have 
not been settled yet. It appears, for example, that in contradistinction to the 
homogeneous nonrandom case, there is an energy loss, even when the medium 
is not dissipative.”

It seems to us that this problem, together with that concerning the intercon­
nection of attenuation and randomness, can be solved by following up the 
pioneering ideas of C asti and T se; these authors showed in 1972 that the 
Kalman-Bucy optimal filtering theory and radiative transfer theory “which 
from a physical point of view seem to have very little in common, may be 
brought together by careful examination of their respective initial value for­
mulations” [op. cit. p. 42].

In their concluding remarks C asti and T se [1972 p. 53] state: “In conjun­
ction with the active filtering problem, let us mention a radiative transfer 
function ...this is the absorption function which is defined by means of con­
servation law, i.e. it corresponds to the radiative energy which is input to the 
atmosphere, but which is neither transmitted through nor reflected back out... 
In the active filtering case there is reason to suspect that this function may 
correspond to a loss of inherent information in the known control input due to 
interaction with the noisy system. If this correspondence can be made precise, 
it would seem to be possible to establish a conservation of information law for 
stochastic systems”.

That is, we can state our Problem 4 as: Derive attenuation in random media 
from “conservation of information” principles!
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3. Ignorance versus depth: the turbidity factor paradox

One of the basic results of seismic wave propagation in randomly inho­
mogeneous media is that velocity- and density inhomogeneities cause scattering 
of waves, the scattered waves are superimposed on the primaries and lead to 
amplitude and phase fluctuations in the observed wave pattern. We shall neglect 
density fluctuations and assume that an acoustic wave of frequency/ propagates 
along a distance AB = L in a random medium where sound-speed randomly 
fluctuates around some constant C0 as

C =
C0_  

1 +£
(14)

where

<£> = o, <e2)  «  1, RJr) = <£(x)£(x + r)> =
= <£2)  exp [~\r/r0\] (r = IrI),

r0 is the correlation distance of the inhomogeneities. Denoting mean transit time 
L/C0 by T, its fluctuation by AT  and mean wavelength by A, it can be shown 
that, if r0»A:

((AT)2)  = -~2 ( е2Уг0]/п (15)

(see C hernov [1960], or Korvin [1973] for a more general case). The gist of Eq.
(15) is that the square of the fluctuation of transit times linearly increases with 
the distance travelled. To show a practical example of Eq. (15), let us recall the 
classical paper of G retener [1961] who analysed the deviations between the 
integrated travel times computed from conventional and continuous velocity 
loggings in wells. The deviations found by him consisted of a systematic and a 
random part. The systematic deviations were ascribed, in a much-discussed 
paper of Strick 1971, to velocity dispersion while the random scattering was 
found to increase with the square root of the distance travelled by the seismic 
wave (in accordance with Eq. (15), see Fig. 2).

Fig. 2. Scattering of arrival times. [After 
G retener 1961]

2. ábra. A beérkezési idők szórása [Gretener 
1961 után]

Рис. 2. Отклонения времен вступления [По 
G retener 1961]
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The companion formula to Eq. (15) refers to the logarithmic amplitude 
fluctuation of the propagating waves and states that

where A0 is wave-amplitude in the homogeneous medium and g is a function, 
which possibly also depends on frequency, correlation distance, etc.

The factor g is termed “inhomogeneity factor”, or “turbidity factor” ([G a l ­
k in  and N ik o la ev  1968, N ik o la ev  and T r e g u b  1970]; the definitive mono­
graph on the subject is [N ik o la ev  1973]).

A great number of studies have been carried out in seismology to determine 
the inhomogeneity of the crust and upper mantle using time- or logarithmic 
amplitude fluctuation, or both [A ki 1973, C a p o n  1974, Ber teu ssen  et al. 1975, 
etc]; most recently by P o w e l l  and M e l t z e r  [1984]; a similar study in reflection 
seismics was carried out by K o r v in  [1977b]. For exploration geophysicists, the 
message of Eqs. (15), (16) is that the error of the seismic measurements linearly 
increases with the depth studied (as was observed by P osg a y  as early as 1954)
i.e. our ignorance about the Earth linearly increases with depth! This trium­
phant feeling of ignorabimus has recently been shattered by the fascinating 
model experiments reported by Gertrude N e u m a n n  and K . S c h ie l  in 1977. 
N eu m a n n  and S c h ie l  prepared more than 20 two-dimensional models (some­
what in the vein of Lev in  and R o b in so n  [1969]) consisting of 2000 x 800 mm 
macrolon and 2000 x 1200 mm perspex plates with inhomogeneities quasi- 
randomly arranged in rows (Fig. 3). They estimated the logarithmic amplitude 
fluctuation and computed the turbidity factor assuming the validity of Eq. (16) 
(where L should be substituted by the number of “rows” of inhomogeneities in 
the model). Their results are reproduced in Fig. 4, for one family of the macrolon 
models. The estimated g factor first increases with the number of rows N, then 
begins to decrease, i.e. instead of (16), they found a

law, for greater distances with an exponent a less than 1. This, of course, 
reminded N eu m a n n  and S c h ie l  of Brownian motion or diffuse multiscattering 
(op. cit. p. 225).

Since these model experiments are extremely well-documented, it is worth 
while to call the reader’s attention to this paper and to pose Problem 5 as: 
Explain quantitatively the findings of N e u m a n n  and S c h ie l  [1977] in terms of 
diffuse multiscattering! The problem becomes even more important since a very 
recent paper of P o w e l l  and M e l t z e r  [1984] has cast renewed doubts on the 
overall applicability of the C h e r n o v - (i.e. N ik o l a e v -, i.e. R y to v -) method.

(16)

(17)
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L-2?0mm 
Ab-300mm

Fig. 3. Structure and model parameters used in the experiments of N eumann and Schiel [1977]

3. ábra. Felépítési- és modell-paraméterek Neumann és Schiel [1977] kísérleteiben 

Puc. 3. Параметры строения и модели в экспериментах N eumann-э и ScHiEL-a [1977]

lem1]

Fig. 4. Dependence of the turbidity factor G on the number of rows N  in one of the 
N eumann-S chiel macrolon models. [After Neumann and Schiel 1977]

4. ábra. G turbiditás-faktor függése N  sorszámtól, N eumann és Schiel egyik makraion 
modelljében. [Neumann és Schiel 1977 után]

Puc. 4. Зависимость фактора мутности G от номера N, на макролонной модели 
N eum anns и ScHiEL-a. (По N eumann и Schiel 1977)
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4 .  Energy return from a dissipative half-space

There is an interesting theorem of R o b in so n  and T r eit e l  [1965, 1966] 
which states that any series of parallel layers, characterized by an arbitrary 
sequence of reflection coefficients, which is bounded by a totally reflecting 
“wall'’ (r = ± 1), completely reflects the incident energy in an infinite observation 
time. In [1977 a] K o r v in , in an attempt to generalize the Robinson-Treitel 
theorem, restated the problem in terms of a one-dimensional random walk of 
acoustic energy quanta, applied the invariant embedding technique of Bellm a n  
et al. [1958], and derived a partial integro-differential equation for the descrip­
tion of the total energy U(t) reflected from a random infinite half-space in the 
time interval (0, t). It was proved that for one-dimensional inhomogeneities, 
assuming a stationary sequence of random reflection coefficients and that the 
reflecting interfaces obey a Poisson distribution, the total incident energy is 
reflected from the inhomogeneous half-space during an infinitely long observa­
tion time. The asymptotic form of U(t) is also given, in E q. (79) of K o r v in  
[1977 a].

It turned out later that various formulations of this problem can be encoun­
tered in the most different branches of physics (in solid state physics, for 
example, the phenomenon is closely connected to the “localization theorems”, 
see Z im a n  [1979, Chapter 8], or the recent summary of S t e p h e n  [1983].

The most ingenious proof of the total reflection by a semi-infinite random 
medium was given by S ulem  and F r is c h  [1972] [see also S u lem  1973] who used 
the Ricatti transformation to reduce the Helmholtz equation to a single-point 
boundary problem, observed that the complex impedance ZN of a random stack 
of N layers constitutes a kind of “random walk” on the half-plane C+ (1m z > 0) 
as the number N of layers is gradually increased, and used the ergodic theory 
of dynamic systems [A r n o l d  and A v ez  1967, H alm os  1956] to prove total 
reflection.

Of course, ergodic theory gives no indication as to the rate of development 
of a system towards its equilibrium. The Monte Carlo computer simulations in 
S ulem  and F r is c h  [1972], however, suggest that the mean reflection coefficient 
exponentially converges to one, rather similarly to the asymptotic Eq. (79) in 
K o r v in  1977a.

In S ulem  and F r isc h  [op. cit., p. 225] there is posed the important problem 
connected with the more realistic case of a slightly dissipative medium which, 
obviously, cannot be totally reflecting. Computer simulations (Fig. 5) indicate 
that the Césaro means of the reflection coefficients

still converge, but more slowly than for a non-dissipative half-space, and to a 
finite limit less than one. Unfortunately, the ergodic theory, used by S u lem  and 
F r is c h  for the nondissipative case, does not apply if we assign complex values
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to the refractive index since the measure corresponding to the random walk of 
the complex impedance ZN will not be invariant any more.

At the same time, in the dissipative case, the integro-differential equation 
in K o r v in  [1977] will also yield divergent solutions. Thus, it seems justifiable 
to invite the reader to solve Problem 6, i.e. to generalize the theorem of R o b in ­
so n  and T r eitel  and compute the energy returned from a, finite or infinite, stack 
of random dissipative layers!

Fig. 5. Césaro mean of the reflection coefficient in a randomly alternating stack of two slightly 
dissipative layers with the refractive indices nx = 2 + 5/• 1 0 '3 and n2 = 5 + 5/- 10~3, 

respectively, and with a mean layer thickness of unity. [After Sulem and Frisch 1972]

5. ábra. Két, enyhén disszipatív réteg véletlenszerűen váltakozó sorának reflexiós koefficienseiből 
képezett Césaro átlag. A törésmutatók: n , = 2 + 5/- 10“ \  ill. n2 = 5 + 5/'• 10“ 3, az átlagos 

rétegvastagságok egységnyiek. [Sulem és F risch 1972 után]

Puc. 5. Среднее Césaro полученное из коэффициентов отражений случайно изменяющегося 
множества двух слабодиссипативных слоев. Коэффициенты преломления:

«1 = 2 + 5/- 1 0 '3;н 2 = 5 + 5/- 10~3, средняя мощность слоев составляет единицу.
[По Sulem и Frisch 1972]

5. Langleben’s phenomenon and the diffuse reflection shadow

It has long been a basic problem of Hungarian reflection seismics that in 
many cases we can get only intricate diffuse reflections from the uneven surface 
of the basement [Sz é n á s  and Á dá m  1953]. Due to these diffuse reflections it is 
rather difficult at some places to map the basin floor accurately: diffraction 
arrivals coming from the surface unevennesses follow the basement reflection 
as a “diffuse shadow” of a few hundred ms length so that it tends to be very 
difficult to detect eventual deeper reflections. In marine seismic profiling, similar 
difficulties were reported by C la y  and R o n a  [1964]. The existence of the diffuse 
reflection shadow following rough boundaries has also been demonstrated by 
model experiments [Vo sk r esen sk y  1962, L eo n g  et al. 1971]. For a special
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non-differentiable random surface model the time-behaviour of the diffuse 
reflection shadow was theoretically investigated in the low-frequency limit by 
B io t  [1957]; for Gaussian differentiable random surfaces, and in the high- 
frequency limit, by K o r v in  [1982b]. Recent interest in the topic is indicated by 
T sai [1984] who proposes special CDP stack and velocity filtering techniques 
to reduce coherent scattered noise.

In 1970 L a n g l e b e n  reported a very strange series of experiments, carried 
out under the ice cover in Tanquary Fiord, Ellesmere Island, NW Territories, 
Canada. He measured the specular reflection of water-borne sound at the 
water-sea-ice interface as a function of the angle of incidence and of frequency. 
The geometrical configuration of his measurement is reproduced in Fig. 6 (the 
frequency varied from 20 kHz to 450 kHz). His results (Table I) do not show 
any systematic change of the specular reflection coefficient with frequency. The 
“striking insensitivity of back-scattering to frequency”, in cases when the scales 
of irregularities range from many times smaller to many times greater than the 
radiation wavelength, had also been observed by M a r sh  [1961, p. 332]. Note 
that the dendritic growth of ice very likely also results in such an ill-defined 
phase-boundary of fractal geometry [cf. Br a d y  and Ba l l  1984], containing 
irregularities at all scales. (The possible fractal nature of the underside of sea 
ice was first observed by R o t h r o c k  and T h o r n d ik e  [1980]; see also their more 
recent paper [1984].)

Fig. 6. Geometrical configuration of Langleben's experiment. Source and detector move along 
the semicircle indicated. [After Langleben 1970].

6. ábra. Langleben kísérletének geometriai elrendezése. Adó és vevő egy félkörön mozog.
[Langleben 1970 után]

Puc. 6. Геометрия эксперимента Langleben-з . Датчик и приемник движутся на одном 
полукруге. [По Langleben 1970]
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Table I. Amplitude of reflection coefficients at the water-sea-ice interface 
[after Langleben 1970]

Frequency

kHz

Angle of incidence [degree]

15 30 45 60 75

17.9 0.24 0.20 0.48 0.36 0.88
23.1 0.091 0.034 0.18 0.41 0.51
24.8 0.13 0.070 0.29 0.63 0.38
47.0 0.056 0.17 0.89 0.89 1.22
56.5 0.083 0.25 0.42 0.75 0.75
89.9 0.039 0.053 0.41 0.63 0.96

118 0.13 0.16 0.72 0.88 1.06
126 0.055 0.036 0.32 0.69 0.81
184 0.056 0.11 0.56 0.75 0.97
227 0.021 0.005 0.43 0.44 0.91
332 0.17 0.22 0.019 0.50 0.45
387 0.083 0.091 0.36 0.16 1.00
435 0.066 0.088 0.016 0.11 0.94

The surprising feature of L a n g l e b e n ’s data is that, when averaged over 
frequency, the mean reflection coefficients become a reasonably smooth func­
tion of the angle of incidence ( Fig. 7). Since, using the jargon of data processing, 
averaging over frequencies is equivalent to a deconvolution operation in the 
time domain, L a n g l e b e n ’s results suggest the hypothesis (Problem 7), that a 
suitable generalization of the single- or multichannel deconvolution procedure 
could be profitable in the elimination of the diffuse reflection shadow.

Fig. 7. Amplitude reflection coefficient of water borne sound waves reflected at the underside of 
the sea ice cover, as a function of angle of incidence. [After Langleben 1970]

7. ábra. A tengert borító jég alsó határfelületéről visszavert hanghullámok reflexiós koefficiense 
a beesési szög függvényében. [Langleben 1970 után]

Puc. 7. Коэффициент отражения звуковых волн, отражающихся от нижней поверхности 
границы льда, покрывающего море, в зависимости от угла падения. [По Langleben 1970]



386 G. Korvin

In the single-channel solution it should be recalled that the diffuse “rever­
berated” signal is very likely not minimum-phase [see K o r v in  1982b], i.e. the 
deconvolution filter must be specially designed (as, for example, in R is t o w  and 
J u r c z y k  [1975]). The design of the multi-channel filter for the removal of the 
diffuse reflection shadow could very likely be made along the general lines 
described in Ba c k u s  et al. [1964]. For the estimation of the horizontal and 
temporal correlations of the diffuse noise, that is necessary for the design of the 
optimum multichannel filter, use should be made of the results in L ev in  and 
R o b in so n  [1969], D u n k in  [1969], K o r v in  [1978а]. It goes without saying that 
a physical explanation of L a n g l e b e n ’s phenomenon (i.e. why is the frequency- 
averaged backscattering coefficient equal to the backscattering coefficient of an 
effective smooth surface, at least for a certain kind of random surfaces?) is still 
badly needed and it is posed here as Problem 8.

* * *

The main ordering principle behind this set of problems has been my 
continuous interest in the last 15 years in applying random wave propagation 
concepts and statistical ideas to the physics of sedimentary rocks. I do hope my 
readers will find some of these problems sufficiently interesting so as to solve 
them -  as I called for in the original title of this lecture: “ A few problems I'd like 
to see solved".
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AZ ALKALMAZOTT GEOFIZIKA NÉHÁNY MEGOLDATLAN PROBLÉMÁJA

KORVIN Gábor

A cikkben nyolc megoldatlan problémát tárgyal a szerző, amelyek a statisztikus geofizikából, 
vagy a kőzetfizikából származnak. A problémák a következők: folyadékkal telített üledékes kőzetek 
effektiv fizikai paramétereinek számítása ( l.é s  2. probléma); hanghullámok abszorpciós koefficien­
sének függősége a heterogén kőzetek véletlenszerűségétől (3. és 4. probléma) ; véletlenszerű közegen 
áthaladó jel jellemzőinek ingadozása (5. probléma); véletlenszerűen disszipatív féltérről visszaverő­
dő energia számítása (6. probléma); és a véletlenszerűen egyenetlen határfelületekről visszaszórt 
szeizmikus jelek statisztikai tulajdonságai (7. és 8. probléma). Minden esetben közli a leglényege­
sebb irodalmi hivatkozásokat és rámutat az alkalmazási területre.

НЕКОТОРЫЕ НЕРЕШЕННЫЕ ПРОБЛЕМЫ ПРИКЛАДНОЙ ГЕОФИЗИКИ

Габор КОРВИН

В статье автор обсуждает восемь нерешенных проблем, которые вытекают из статисти­
ческой геофизики или из физики пород. Это следующие проблемы: вычисление эффективных 
физических параметров осадочных пород насыщенных жидкостью (проблемы 1 и 2); зависи­
мость коэффициента абсорбции звуковых волн от случайности гетерогенных пород (пробле­
мы 3 и 4); изменение параметров сигнала, проходящего через случайную среду (проблема 5); 
вычисление отраженной энергии от случайно диссипативного полупространства (проблема 
6); статистические свойства отраженных сейсмических сигналов от случайно негладких 
поверхностей раздела (проблемы 7 и 8). Автор в всех случаях дает самые важные ссылки на 
литературу и указывает области применения.




