magyar Allami
Eotvos lorAnd
GEOFIZIKAI INTEZET

GEOFIZIKAI

KOZLEMENYEK

BEHIEPCKUIA
FEO®U3NYECKNIA
NHCTUTYT

M /1 3TBELLA

FTEOOU3UNYECKIUI
BKONNINNIETEHDb

EOTVOS LORAND
GEOPHYSICAL INSTITUTE
OF HUNGARY

CONTENTS

Fast evaluation of radial and W. L. Anderson
vertical magnetic field near

a rectangular loop source on

a layered earth

Calculating galvanic H. Soininen
anomalies for an inclined

prism in atwo-layered

half-space

A few unsolved problems of G. Korvin
applied geophysics

Frequency content of seismic H. Rische
waves as a function of
charge

Computation and reliability /. Szulyovszky

of pseudo-porosity sections
from seismic data

VOL. 31. NO. 4. DEC. 1985 (ISSN 0016-7177)

BUDAPEST

339

359

373

391

405



TARTALOM

A radialis és fligg6leges magneses tér gyors szamitasa

rétegzett foldon fekvd, téglalap alaku hurokforrds kozelében

Kétréteges féltérben levé d6lt prizma galvanikus
anomaliainak szamitasa

Az alkalmazott geofizika néhany megoldatlan probléméja

Szeizmikus hulldamok frekvencia-tartalmanak fiiggése
a toltetnagysagtol

Pszeudo-porozitds szelvények szamitasa szeizmikus
adatokbdl és ezek megbizhatésaga

COLAEPXAHWNE

BbICTpOE BblYMC/IEHNE pafnanbHOTO UM BepTUKanbHOIo
MarHuTHOro nons B6/M3n Bo3byxAaawolei netam
NpsMOYronHoi hopMbl, HaxoAsLlelics Ha NOBEPXHOCTU
cnoucToii cpefpl

BbluncneHne aHoManuii ConpoTUBIEHNS U BbI3BAHHOW
nonsipusalnm Haf Hak/IOHHOW NMPU3MOlA, BMellatoLlei
B [IBYXC/IO/iHOl cpefe

HekoTopble HepelueHHble Npo6aembl NPUKNagHow
reou3nkn

3aBUCUMOCTb YacTOThbl CEICMUYECKUX BOSIH OT BE/IMYMHBI
3apsiga

BbluncneHne paspesos no ceiicMuyeckum AaHHbIM
nceBao-NOPUCTOCTU N UX HAAEXHOCTb

W. L. Anderson

H. Soininen

Korvin G.

H. Rische

Szulyovszky /.

B. /1. AHgepcoH

X. CONHNHEH

. KopBuH

I. Pnwe

. Cyéscku

357

371

389

403

417

357

371

389

403

417



GEOPHYSICAL TRANSACTIONS 1985
Vol. 31. No. 4. pp. 339-357

FAST EVALUATION OF RADIAL AND VERTICAL MAGNETIC
FIELDS NEAR A RECTANGULAR LOOP SOURCE ON A LAYERED
EARTH

Walter L. ANDERSON*

A fast Hankel transform (FHT) algorithm is used to compute simultaneously parametric (or
geometric) soundings for radial and vertical magnetic fields inside or outside a rectangular loop
source on the surface of a layered earth. The FHT uses concepts of related and lagged convolutions
(linear digital filtering), and, when applied to the rectangular loop problem, reduces each field
calculation to four elementary spline integrations. For parametric soundings, the FHT is called once
for each frequency; for geometric soundings, only a single execution of the FHT is required to obtain
both field components. Numerical comparisons of the FHT method with existing dipole, circular,
and other rectangular loop forward solutions show that at least three-figure accuracy is achieved
with greatly reduced computation time. Consequently, future inverse solutions in both frequency-
and time-domains would become as practical for a rectangular loop as for a dipole source.

Keywords: electromagnetic methods, numerical modeling, frequency domain, layered model, Hankel
transform

1. Introduction

Well known methods exist for calculating the electromagnetic (EM) fields
at any distance from an oscillating vertical magnetic dipole or horizontal dipole
source [e.g., Frischknecht 1967; Wait 1958; Wait 1966]. Linear digital filter-
ing algorithms [e.g., Anderson 1979] provide rapid and accurate calculations
for dipole sources. Kauahikaua [1978] presented a method for computing the
electric and magnetic field components about a straight horizontal finite-length
grounded wire source over a layered earth. Recently, Poddar [1983] developed
the solution for the vertical magnetic field about a rectangular loop source of
current on a multilayered earth. Poddar’s solution used four separate double
numerical integrations, and by superposition, obtained the total magnetic field
inside or outside the rectangular loop at arbitrary positions. K ristensson [1983]
also presented a method of computing the EM field components in a layered
earth for a general current distribution, including a horizontal rectangular loop
source; his method, however, required direct evaluation of integrals and series
involving Bessel functions.

The question of why a rectangular loop is specified here over a more general
or arbitrary line segment loop naturally arises. Boerner and West [1984]

* U.S. Geological Survey, Box 25046 M. S. 964, Denver Federal Center, Denver, Colorado 80225
Manuscript received; 10 June, 1985



340 W. L. Anderson

presented an interesting method to compute efficiently the EM fields of an
extended wire source. They suggested using the FHT algorithm (as proposed
in the present paper, and published by Anderson, [1982]) to compute all Hankel
transforms for a given field component by lagged convolution, and as required
over all spatial distances for a given wire configuration. The total field is then
computed by a weighted summation using weights derived from a precomputed
quintic spline. However, the technique is often applied in practice to simple
geometric sources that are easy to set up, such as a square or rectangular loop.
This simplifies recording end-point coordinates in the measurement environ-
ment. Boerner and West’s method is quite similar to my method, except they
apparently proposed using it to compute only a single field component for each
FHT execution.

This paper presents a new method to compute in one pass the radial (Hr)
and vertical (//,) magnetic fields about a rectangular loop source on a layered
earth. The basic formulations for each field component reduce to four adaptive
finite spline integrations, after first computing all related and lagged Hankel
transforms using a single call to the FHT algorithm. Parametric (frequency) or
geometric (distance) soundings for Hr and Hz can be computed at arbitrary
points inside or outside the rectangular loop source of finite dimensions. The
rectangular loop is assumed to be placed on the earth’s surface and the layers
are parallel to the surface. Displacement currents are neglected (quasi-static
case) for all computations.

Recent advances in evaluating Hankel transforms by the FHT algorithm
[Anderson 1982] lead naturally to this new approach, which extends Poddar’s
[1983] solution for Hz to include Hr (or simultaneously Hx and Hy) field com-
ponents. This method is intended to provide a practical tool for studying the
frequency response near the loop where a dipole source cannot be assumed. In
most physical situations, it is easier to lay out a square or rectangular wire loop
than a circular loop; consequently, this method should be more appropriate
(and efficient) than an exclusively circular loop computation [e.g., Ryu et al.
1970].

Some tests were made with small loop sizes and large spacings to simulate
a dipole-dipole case. Both Hrand Hz results agreed to about 3-place accuracy
with existing dipole source results [Frischknecht 1967]. Tests were also made
using the same rectangular loop source and models as given by Poddar [1983],
which included Hras well as # z components; these results are discussed and
illustrated in a following section.

A natural extension of the rectangular loop frequency-domain response to
the time-domain can be made using a suitable Fourier transformation; e.g., see
Anderson [1985], where only the H, transient response is treated.
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2. Theory and computations

Fig. 1. Loop geometry at z=0 (earth’s surface),
where (A, Y) is the observation point, and (X',
Y) is any point on the rectangular loop source
/. &xa. A hurok geometriaja z=0-nal (a fold
felszinén), ahol (X. Y) a mérési pont és (x', y")
a téglalap alaku hurokforras tetszéleges pontja

Pue. 1 leomeTpuyeckune gaHHble KOHTypa. z=0
(noBepxHocTb 3emnn), (X, Y) - Touka
namepeHus, (X', y') - ntobas Touka
NpsMOYroNHOro KOHTypa

Figure 1 shows the coordinate system and geometry of a rectangular loop.

Line segments [ (-a, b\ (a, b)], [ - b); {& 6)], [(-a, -b); (a - b)], and
[(-a, -b); (—a, &) are denoted respectively as lines LI, L2, L3, and L4. The
length of lines LI and L3 is 2a, and of lines L2 and L4 is 2b.

The magnetic field inside or outside a rectangular loop can be formally
obtained by a suitable summation of the results from four separate finite
grounded wires as defined in Kauahikaua [1978]. However, the rectangular
loop problem is simpler, because there are no currents injected into the earth
at the ends of each wire segment. The formulas in Kauahikaua [1978] are
written in a form such that the contribution from currents at the wire ends may
be readily neglected; this fact will be used below in the Hr loop development.
Poddar [1983] derived his solution for a rectangular loop by starting with the
electric field due to a magnetic dipole and then applying reciprocity. From
Poddar [1983], the vertical magnetic field Hz at any point (X, Y) for a loop
source with current / exp(iwt) is

Hz = I(HLL+ HL2+ HL3+ H1)/2n, D

where

HL = -(b-Y) j (dx/r) JkX)Jt(I)dA 1 Ry
HL2= ~(a-X) Ea(dy'lr)\] kQOh (N dA 2= R;

His  mb+Y) § (@) Ik IXE) dA  r2= R ©
HL* = ~(a +X) _?b(dy'/r) ng(ADJi (A)dA 2 - Rj
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R\ = (x"-X)2+ (b- Y)2,
R2 = {a-X2+ (y"-Y)2,
R\ = {x"-X)2+(b+Y)2 Y}
R2= (@t X)2+ (y"~Y)2,

and k(X) is a recursive complex kernel function [Poddar 1983] containing the
factor exp( - Xz), z> 0. The Hankel transforms in equations (2) do not converge
if the observation point is on the surface (z=0). To overcome this problem,
Poddar setz = 10”3meters in k(X, z). This approach was not used in this paper,
because some advantage is gained using z= 0 and the fast converging formulas
derived by K auahikaua [1978]. Here the half-space response was removed from
k(X) and a closed-form expression added outside the integrals. This modification
to equations (2) becomes

HL = -(b-Y) j (dx/r) {hi (W} r2 R\in (@)

H12= ~(a-X) J @M {* () r2 R2in @

@)
HLi = ~(b+Y) ] (dx'/r) {hz(nN}, r2 R2in(3)
HL = ~{a+X) jk; (dy'/r) {hi ()}, r2 Rl in (3),
where
K'S(r) - (™) dA-i O[h°z(B)V/(2r% ®)

h° (B) = 3—{3+ 35(1+/)+ 2iR2} exp[- (1+ i)B], =(-1)12
B=1r/6, 0=[2<tV/0d)]V2 o= 2nf, > 0 frequency (Hertz),
<, = conductivity of layer 1 (Siemens/m),
/10 = 4n10"7 permeability of free space (Weber/Am),

and
/4 (X0) is defined in Kauahikaua [1978] as/ 4 (g).

(The complex recursive expressions used in/4(g) and all associated formulas
and notations are explicitly listed in K auahikaua [1978, p. 1019-1021], and will
not be repeated here; note thatf A(g) contains all the parameters defining the

layered earth model.)
Equation (5) is a continuous complex function defined for all r in [rin, rmal,

where rminand rmex are the respective minimum and maximum values of distan-
ces from (X, ¥) to all points on the rectangular loop. The Hankel transform and
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other expressions in equation (5) are in general required over different subinter-
vals of r for each definite integral in equations (4). If equation (5) is sufficiently
discretized over all r in [mi,, rmax], then a single predetermined spline interpolat-
ing function (denoted by superscript 5) can be used instead of equation (5)
directly for each definite integral. Thus the four double integrations in equations
(2) are essentially replaced by four single spline integrations in equations (4).
The Hankel transform evaluations in equation (5), coupled with a lagged
convolution (or discretation) over all r in [rm,, rma], is greatly facilitated by
using the FHT algorithm, which is the principal reason for the fast computation
times possible using equation (5). Once equation (5) is precomputed by lagged
convolution and saved for all rin [rmin rmex], then equations (4) can be evaluated
by elementary spline integration [A1berg et al., 1967, p. 44], or by adaptive
Gaussian quadrature [Patterson 1973] using a spline-defined integrand. Note
that the above procedure must be repeated for each new frequency for parame-
tric soundings, but only a single execution of the FHT is needed for geometric
soundings.

The Hrradial field component is derived by analogy with Hz above, using
the formula for HYinin K auahikaua [1978], but neglecting the term due to the

wire ends. The Hr field at any point (X, Y) becomes,

Hr = Hx(J/No) + Hy(Y/R0), R@= X2+Y2, (6)
where
Hx 1 ( hL2+hL4/27i, Hy 1{ hn+hL3)/2n,
hi = - J (dx'/r) {hs ()}, r2=Rj in (3
Ki :'_'!:W/r){hs(% r2= R2in (3)
kv = = L wir) [hs (), r2= R2in (3) ()
hn =~ _\b]wn) {hs (I)}, r2= R2in (3),
hs(r) = -{B 1 (M) o (Jr)d2+-1[r3(I0{B)K, (O
(8)

- Lm om -2il B)K{A,
B = A(1+0/2, /= (-1)12 B = 1/6,

and /0, /j, KO, Kt are modified Bessel functions of orders 0 and 1

Equation (8) is replaced by a precomputed spline function analogous to
equation (5). Modified Bessel functions are needed initially in equation (8) to
compute the spline coefficients, but they are not required while performing the
four spline integrations in equations (7).
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Computation of all Hzand Hr Hankel transforms required in equations (5)
and (8) are obtained rapidly by the FHT algorithm using related and lagged
convolutions [Anderson 1982]. Observe that both Hankel transforms in equa-
tions (5) and (8) have the same kernel function/4 (AO), but have different order
Bessel functions. The FHT algorithm was developed to integrate in parallel both
orders 0 and 1 for any arbitrary transform argument range by lagged con-
volution, and to simultaneously provide for algebraically related kernels (in this
case, the kernels are identical). Thus, with one execution of the FHT algorithm,
a complete 2-column matrix of Hankel transforms (orders 0 and 1) is computed
over a small digitized interval in r equivalent to the digital filter sampling
interval (specifically, 0.2 in log-space). Therefore, both Hr and Hz field com-
ponents are obtained in nearly the same time as would be required to evaluate
a single component. Optionally, the Hx and Hy orthogonal components at (X,
T) can be computed instead of Hr. Observe from equation (6) that H. = Hx if
Y=0, and Hr = Hy if AT=0.

The Hankel transforms in equations (5) and (8) are zero for a half-space
model, which is one benefit of using the z=0 formulas from Kauahikaua
[1978], instead of the z>0 case of Poddar [1983]. The general expressions in
equations (5) and (8) apply to either parametric or geometric soundings, thus
providing a unified mathematical treatment.

3. Computer program

A computer program (HRZRECT) that implements the algorithm presen-
ted in this paper is documented in Anderson [1984]. The code was written in
FORTRAN-77 for a VAX-11/780 VMS system, and is listed in Anderson
[1984].

4. Examples and discussion

Examples of soundings for various models computed using program
HRZRECT are summarized graphically in this section. Numerical results and
VAX execution times corresponding to these plots are tabulated in Anderson
[1984]. Typically, complete geometric soundings for both Hrand Hz take about
2 to 5 CPU-seconds on the VAX computer. As would be expected, execution
times are slightly larger for points very near the source. In general, it is recom-
mended that (X, Y) should be chosen such that r>min(u, b)/10 for all r.
Usually, points very close to the source loop are of little practical interest, and
should be avoided. Furthermore, a small saving is achieved in summing equa-
tions (1) and (6) whenever (X, Y) ischosen symmetrical with respect to the loop
sides (e.g., 3f>0, Y=0).
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The Hz results plotted in Figures 2 and 3 duplicate respectively the para-
metric and geometric soundings illustrated in Poddar [1983]. The same models
were used to compute Hrin parallel with Hz, and are also plotted in Figures 2
and 3.

Poddar [1983] compared his results with Ryu et al. [1970], where the latter
authors used a circular loop source. As shown in Figure 2, the FHT method
agrees quite well with the results from Poddar [1983, Fig. 2] and Ryu et al.
[1970]. The amplitude scale in Figure 2 is unnormalized (Amps/m.) as in
Poddar’s Figure 2; however, a normalized mutual coupling ratio F3jZ0was used
in Figure 3, instead of amplitude given in dB as in Poddar’s Figure 3. The
normalization factor Z0is defined as the free space field from a rectangular loop
source of current and is given by Poddar [1982, p. 104]. The //,/Z0 mutual
coupling ratio amplitude in Figure 3 approaches unity for all soundings near
the loop for X> 200; and as expected, the # r/Z0amplitude approaches zero near
the loop center for all Hr soundings.

The behavior of the Hr and Hz fields outside the rectangular loop for the
same model as in Figure 3is depicted in Figure 4. Figure 4 shows the normalized
Hr and Hz field geometric soundings for Y=0 and Z>300. Note that the
amplitude of HJZO0 approaches unity near the source (as in Figure 3), but
depending on the layer thicknesses, it can either increase or decrease from unity
as X increases. The behavior of //r/Z0 similarly approaches zero on either side
of the nearest rectangle leg. The field components are continuous as the source
is approached by (X, Y), but nevertheless, they cannot be evaluated accurately
at extremely small r values.

The field components in the first quadrant outside the loop, near the corner
point (250, 250), are illustrated in Figure 5, where Y =275 and X>0 were used
in the geometric soundings. The flat responses for 0< Z< 250 in both amplitude
and phase spectra are due almost entirely to the nearest rectangular leg. For
Z>250, all four legs begin to contribute more to the total field at larger r
distances.

As a final example of parametric soundings, the model in Figure 2 was used
with two different layer thicknesses, and computed at the observation point
(2,3), wich was specifically offset from (0,0) so that Hrwas non-zero. The results
are given in Figure 6.

The unnormalized amplitude shapes for Hrand H, in Figures 2 and 6 are
somewhat similar; however, a noticeable phase jump from -180 to +180
degrees occurs for Hrinside but not outside the loop (compare Figures 2d and
6d). This is an artifact of representing phase angles in the range (-180, 180)
degrees instead of (0, 360) degrees. A choice was made so that the phase angles
of Hzand HJZ0were in the same quadrants inside or outside the loop, whereas
the phase angles of Hror HJZ Qdiffered by 180 degrees inside and outside. Thus
the phase angles of the unnormalized fields and normalized fields are identical
and in the same quadrants for points outside the loop, but are 180 degrees
out-of-phase for points inside the loop. Regardless of how phase angles are



346 W. L. Anderson

defined for normalized or unnormalized fields, this could lead to difficulty, for
example, in joint inversion of phase data taken both inside and outside a
rectangular loop. Of course, the use of real and quadrature soundings (instead
of amplitude and phase) would alleviate this cumbersome situation.

Fig. 2. Parametric soundings outside a square loop {a=b~ 10m) at a distance of Y= 100 m
from the loop center, and computed over a given induction number (B= R0/5) range. The
2-layer model form Poddar [1983, Fig. 2] was used, where 0,=0.01 S/m, c2=0.3 S/m, and
h was varied as indicated in the legends
a) Unnormalized amplitude H, versus B.
b) phase Hz versus B.
¢) unnormalized amplitude Hrversus B. and
d) phase Hr versus B

2. abra. Paraméter szondazasok a négyzetalak( hurkon kivil (a=b= 10 m), a hurok
kozéppontjatol Y= 100 m tavolsagra, egy adott indukcié szam (B= RQjb) tartomanyon
szamitva. Poddar [1983, 2. abra] 2-réteges modelljét hasznaltuk, ahol 02=0,01 S/m, a2=0,3 S/m
és h Ugy valtozott, ahogy azt a jelmagyarazat feltlinteti
a) A normalatlan H_amplitad6 B fliggvényében,
b) a H: fazis B figgvényében,
¢) anormalatlan Hr amplitid6 B fliggvényében és
d) a Hrfazis B fiiggvényében

Puc. 2 MapameTpuueckne 30HAMPOBaHUA BHE MPAMOYrOAHOr0 KoHTypa (a=b= 10 m)

B pacctosHun Y—100 M OT UeHTpa KOHTYpa; 418 AaHHOTO WHTepBana uncen MHAYKLUW
(B=R,,/8). Ncnonb3oBaH ABYXCNONHbIA Mofens Mopaapa [1983, puc. 2], npu kotopbim: 0!= QQL
cumeHc/m, a2=0,3 cuMeHc/M. VIn3MeHsieTca COrnacHO PUCYHKY
a) HeHopMMpOBaHHaa amnaAuTyga H, B 3aBMCMMOCTM OT B.
b) ¢asa H, B 3aBucumocTn ot B,

C) HeHOpPMMpOBaHHasa amnAuTyga H, B 3aBUCUMOCTU OT B.
d) d¢asa Hr B 3aBucumocTu oT B
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Fig. 3. Geometric soundings inside a square loop (a=b= 250 m) at Y=0 where X was varied
from 25 to 225 m in increments of 25 m. The 3-layer model from Poddar [1983, Fig. 3] was
used, where crj =0.01 S/m, cr2=0.03 S/m, ¢r3=0.001 S/m, /1, =3 m,/ = 1344 Hertz, and h2 was
varied as indicated in the legends
a) Normalized amplitude HJZO0 versus X,
b) phase HJZO0 versus X,
¢) normalized amplitude # r/Z0 versus X, and
d) phase FIjZ0 versus X

3. abra. Geometriai szondazas a négyzet alak( hurkon belil (a=b=250 m) T=0-nal, X pedig
25-t61 225 m-ig novekedett, 25 m-es lépésekben. Poddar [1983, 3. dbra] 3-réteges modelljét
hasznaltuk, ahol a, =0,01 S/m, cr2=0,03 S/m, cr3=0,001 S/m, h1=3 m,/=1344 Hz és h2 gy
valtozott, ahogy azt a jelmagyarazat feltlinteti
a) A HJZO0 normalt amplitadé X fliggvényében,
b) a HJZO fazis X fliggvényében,
¢) a HJZO0normalt amplitadé X fliggvényében és
d) a HJZO0 fazis X fliggvényében

Puc. 3. AucTaHUMOHHOE 30HANPOBaHME BHYTPKU KOHTYypa (4= 6= 250 m), T=0; X n3meHseTcs
no 25 m ot 25 m fo 225 M. Micnonb3oBaH TpexcnoiHblii mogenb Mopaaapa [1983, puc. 3], npu
KoTopom e, = 0,01 cumeHc/m, a2=0,03 cumeHc/m, c13= 0,001 cumeHc/m, J1=3 m,/= 1344 Ty,
J1, N3MeHSAETCA COrNacHo PUCYHKY
a) HopmupoBaHHas amnautyga H2Z0 B 3aBucMMOCTM OT X,
b) ¢asa HzjZa B 3aBucumoctu ot X,
C) HopmMupoBaHHasa amnnuTyga HrjZ0 B 3aBUCMMOCTU OT X,
d) dasa HJIZO0 B 3aBcMmocTn oT X
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Fig. 4. Geometric soundings outside a square loop (a=b=250 m) at Y=0 where X was varied
from 300 to 1000 m in increments of 100 m. The 3-layer model from Poddar [1983, Fig. 3] was
used, where cti=0.01 S/m, cr2=0.03 S/m, 03=0.001 S/m, h, =3 m, f= 1344 Hertz, and h2 was

varied as indicated in the legends

a) Normalized amplitude HJZ0 versus X,
b) phase HJZO versus X,
¢) normalized amplitude HrlZ0 versus X, and
d) phase HfZO0 versus X

4. dabra. Geometriai szondazasok a négyzet alak( hurkon (a=b=250 m) kivil Y= 0-nal,
X pedig 300 m-t6l 1000 m-ig valtozott 100 m-es lépésekben. Poddar [983, 3. abra] 3-réteges
modelljét hasznaltuk, ahol cr*O.0l S/m, c2=0,03 S/m, a3=0,001 S/m, h1=3m,/=1344 Hz
és h2 ugy valtozik, ahogy azt a jelmagyarazat feltiinteti
a) A HJZO0normalt amplitad6 X fiiggvényében,
b) a HJZO0 fazis X fliggvényében és
¢) a HrZ0normalt amplitidé X fuggvényében
d) a HJZO0 fazis X fliggvényében

Puc. 4. AncTaHUMOHHbIE 30HANPOBaHNA BHE KOHTYpa (@a=b =250 m), T=0; X usmeHsierca no
100 m oT 300 m go 1000 m. Mcnonb3oBaH TPEXCNOWHbIA Moaent Moapapa [1983, puc. 3], npu
KoTopom a,=0,01 cumeHc/m, ar= 0,03 cumeHc/m, a3= 0,001 cumeHc/m, I,=3 m,/=1344 T,
h2un3meHseTcaNo No ycnoBHbIM 0603Ha4YEHNAM
a) HopmupoBaHHasa amnautyga HJZO0 B 3aBucMMOCTM OT X,
b) ¢asa HJZO0 B 3aBucumocTn oT X
C) HopmwupoBaHHas amnautypa Hr/Z0 B 3aBUuCUMOCTM OT X,
d) ¢asa HFZ0 B 3aBUCMMOCTM OT X
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Fig. 5. Geometric soundings in quadrant 1near the corner point (250,250) for a square loop
{a=b =250 m) at Y= 275 where X was varied from 0 to 500 m in increments of 50 m. The
3-layer model from Poddar [1983, Fig. 3] was used, where a*O .01 S/m, a2=0.03 S/m,
a3=0.001 S/m, h!=3 m,/= 1344 Hertz, and h2 was varied as indicated in the legends
a) Normalized amplitude HJZO0 versus X,
b) phase //ZZ0 versus X,
¢) normalized amplitude //r/Z0 versus X, and
d) phase Ar/20 versus X

5. &bra. Geometriai szondazasok az I. siknegyedben, a négyzet alaki hurok (a=b=250 m)
(250,250) sarokpontjanak kozelében, T=275-nél, X pedig 0-t6] 500 m-ig valtozott 50 m-es
lépésekben. Poddar [1983, 3. abra] 3-réteges modelljét hasznaltuk, ahol 0q=0,01 S/m.
a2=0,03 S/m, a3=0,001 S/m, A =3 m,/ = 1344 Hz és h2 Ggy valtozott, ahogy azt
a jelmagyarazat feltlinteti
a) A HJZO0normalt amplitadé X fiiggvényében,
b) a HJZO0 fazis X fliggvényében,
¢) a Hr/Z0 normalt amplitidd X fliggvényében,
d) a HrZO0 fazis X fliggvényében

Puc. 5. McTaHUMNOHHbIE 30HAMPOBaHUA B NEpPBOI YeTBEPTU MAOCKOCTU, BOAM3N YrNOBOA TOUKM
KOHTYpa KBafpaTHoi (a=b= 250 m) dhopmbl. Y= 275; X nameHsetca no 50 m ot 0 go 500 m.
Vicnonb3oBaH TpexcnoiHblii MoAent Mogaapa [1983, puc. 3] npu kotopom 0,= 0,01 cumeHc/m,
0,= OC3 cumeHc/m, 0, =0.001 cumeHc/m, A=3 m,/= 1344 Ty, h? n3meHseTca cornacHo
YCNOBHbIM 0603HaYeHNAM
a) HopmMMpoBaHHasa amnauTyga # zZ/Z0 B 3aBMCUMOCTH OT X,
b) dasa tf,/Z0 B 3aBUCMMOCTM OT X,

C) HopmupoBaHHas amnnuTyga HZO0 B 3aBMCUMOCTY OT X,
d) asa Hr/Z0 B 3aBucMmocTnt oT X
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Fig. 6. Parametric soundings near the loop center for a square loop (a=b =10 m) at the point
(X=2, Y=3), and computed over a given induction number (B=R0/8) range. The 2-layer
model from Poddar [1983, Fig. 2] was used, where cr, =0.01 S/m, a2=0.3 S/m, and h was

varied as indicated in the legends
a) Unnormalized amplitude H, versus B,
b) phase Hz versus B,
¢) unnormalized amplitude Hr versus B, and
d) phase Hr versus B.

6. abra. Paraméter szondazasok egy négyzet alak( hurok (a=b= 10 m) kdzéppontjanak
kozelében, az (X=2, Y =3) pontban, egy adott indukcié szdm (B= R0/5) tartomanyon szamitva.
Poddar [1983, 2. abra] 2-réteges modelljét hasznaltuk, ahol cr*O.0Ol S/m, 02=0,3 S/m és /; Ugy

valtozott, ahogy a jelmagyarazat feltlinteti
a) A normalatlan H. amplitad6 B fliggvényében,
b) a //. fazis B fuggvényében,
¢) a normalatlan Hramplitidd B fliggvényében és
d) a Hr fazis B fliggvényében
Puc. 6. MNapameTpnyeckue 30HAMPOBaAHMA BONNU3W LEHTPa KOHTYpa KBafpaTHON (opMbl,
(a=b= 10 m), B Touke (X=2, Y=3), 4ns [aHHOro MHTepBana uncen uHaykumm (B =R,/S).
Vicnonb3oBaH ABYXCNOMHbIA Mogenb Moagapa [1983, puc. 2], npu KOTOPOM a, = 0,01 cuMeHc/M,
a, = 0,3 cuMeHc/M, h n3MeHsAeTCs COrnacHo YC0BHbIM 0603Ha4YeHNAM
a) HeHOpMMpOBaHHaa amnauTyfa H. B 3aBMCUMOCTM OT B.
b) ¢asa H,, B 3aBUCMMOCTU OT B,
C) HEeHOpMWpOBaHHas amnauTyda Hr B 3aBucumoctun ot B.
d) asa Hr B 3aBucMmoctn ot B

5. Conclusions

A new algorithm was discussed that evaluates simultaneously the radial Hr
and vertical Hz magnetic fields inside or outside a rectangular loop source of
current on a multilayered earth. A fast Hankel transform algorithm [Anderson
1982] is the basis for the new solution, which in turn, reduces the overall
computation of either Hror #, to four elementary spline-function integrations.
Accuracy of this method is at least comparable to that obtained with dipole or
circular loop source methods. Because of the improved speed of the calcula-
tions, future uses of this technique during inverse solutions in either frequency-
or time-domains would be nearly as practical for rectangular loops as for dipole
sources. The general idea presented can be readily extended to additionally
compute the electric field components about a rectangular loop source. Further
extensions and savings could be realized by storing intermediate FHT results
for repetitive calculations using the same earth model while varying the loop size
and/or position.
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A RADIALIS ES FUGGOLEGES MAGNESES TER GYORS SZAMITASA RETEGZETT
FOLDON FEKVO, TEGLALAP ALAKU HUROKFORRAS KOZELEBEN

Walter L. ANDERSON

Gyors Hankel-transzformacids (FHT) algoritmust alkalmaz a rétegzett fold felszinén fekvd,
téglalap alaku hurokforrason belili vagy azon kivili, radialis vagy fiigg6leges magneses tér felhasz-
nalasaval végzett paraméter (vagy geometriai) szondazasok gorbéinek egyidejii szamitasara. Az
FHT a linearis digitalis sz(rés elvét hasznalja fel és ha a téglalap alaki hurok problémajara
alkalmazzuk, minden egyes térszamitas négy elemi spline integralasra egyszer(isodik. Paraméter
szondazas esetén az FHT-re csak egyszer van sziikség minden egyes frekvencian; geometriai szon-
dazas esetén az FHT-t csak egyszer kell végrehajtani ahhoz, hogy megkapjuk mindkét térosszetevot.
Az FHT modszernek a meglévd, dipblra, koralakl és téglalap alak( hurokra vonatkoz6 egyenes
feladat megoldasokkal valé dsszehasonlitdsa azt mutatja, hogy legalabb harom szamjegyes pon-
tossag érhet6 el jelent6sen csokkentett szamitasi id6 mellett is. Ennek kovetkeztében az inverz
feladat megoldasa mind a frekvencia-, mind az id6tartomanyban gyakorlatilag is lehetséges lesz
téglalap alaki hurokforrasa éppagy, mint dipdlforrasra.

BbICTPOE BbIYNCNEHWE PAONA/IBHOIO N BEPTUKA/IbHOITO MAITHUNTHOIO
nonAa BBEAN3U BO3E‘}’)K,EI,AI-OLLI,EVI MNET/IN I'IPFIMO)’FOJ'IHOVI ®OPMbI, HA-
XOAAWENCA HA NMOBEPXHOCTW C/TIOUCTOWM CPEADbI

Banbtep /1. AHOEPCOH

MpumeHseTcs anropuTMm 6bICTpoid XeHKen-TpaHcdopmaymm (FHT) Ans BbIYUCNEHNSA KPUBbIX
30HAMPOBaHMIA (MapaMeTpPUUECKNX WU AUCTAHLMOHHBIX), MPOBEAEHHbIX C MPUMEHEHUEM pajuab-
HbIX UM BEPTUKaNIbHbIX KOMMOHEHTOB MarHUTHOFO NONS NPSIMOYTO/IHOr0 KOHTYpPa, HaX0AsLLEero-
€S Ha MOBEPXHOCTM cnouctoit cpefpl. Mpn FHT ucnonb3yeTrca NpMHUMN NMHERHON LWthpoBoOi
unbTpauum. Bcnydae NnpsiMOYrofHOro KOHTYpa BblUMC/IEHUs MONeli NpeBpaLLaeTcs B MHTErpaLmio
YeTbIpex 3NeMeHTapHbIX «CnnakHoB». Mpu NapameTpUUECKOM 30HAUPOBaHUM HyxeH FHT Tonbko
pas Ha KaXayto yacToTy. [1py reoMeTpMYeCcKOM 30HANPOBAHWU ANS BbIYUCIEHNSI 060X KOMMOHEH-
TOB Hy)XXeH FHT Tonbko oauH pa3. ConocTaBneHue pe3ynbTaToB, MOMYYeHHbIX C MPUMEHEHWEM
FHT c pesynbTaTaMu CyLUECTBYHOLLMX PELUEHW A MpsMbIX 3afjady Ans AUMONS U NeTNeil Kpyrnoi
1 NpAMOYronHoW (OpM YyKasblBaeT Ha TO, YTO AOCTMraeTcsi TOYHOCTb MOpsifKa TPeX Ludpos.,
CYLLEeCTBEHHO COKpallas W BpeMsi BblUMCNEHWIA. Bnarogaps 3TOro NpakTUYeCKM MOXHO pellaTb
1 06paTHble 3ajaun Ans NPSIMOYTroHOr0 KOHTYpa W ANs AUMNONS TaK B YaCTOTHbIX, KaK U BPEMEH-
HbIX AManasoHax.
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CALCULATING GALVANIC ANOMALIES FOR AN INCLINED
PRISM IN A TWO-LAYERED HALF-SPACE

Heikki SOININEN*

The current paper presents a computation program applicable to the numerical modelling of
apparent resistivity and induced polarization anomalies. The field problem is solved using the
integral equation technique. The elementary model in the program package is an inclined prism in
a two-layered half-space. All the resistivities describing media can be complex and dispersive, and
hence modelling of the wide-band induced polarization method is possible. The values of dispersive
resistivity can either be inserted in the program from petrophysical measurements directly or the
frequency behaviour can be described with the aid of a mathematical dispersion model.

The behaviour of anomalies obtained with the gradient array and the dipole-dipole array are
compared using various geological structural models. The dipole-dipole array is better than the
gradient one for locating a thin, vertical body because the anomaly to be measured thereby is
greater, but then again, the dip is considerably easier to interpret with the gradient array than with
the dipole-dipole one.

In the case of a large target, the induced polarization anomaly measured with the gradient
array is attenuated very slowly with increasing depth to the upper surface of the conductive body
(in short: depth to the upper surface). Hence, the gradient array is more effective than the di-
pole-dipole array in the search for large bodies but the dipole-dipole array is more suitable than
the gradient array in determination of the depth to the upper surface.

A conductive overburden substantially attenuates the response of galvanic methods measured
on the surface of the earth because a large part of the current is channelled to pass through the
overburden.

Keywords: numerical modelling, galvanic methods, apparent resistivity, induced polarization, integral
equations

1. Introduction

In the numerical modelling of galvanic methods the integral equation
technique has been used in the case of a 2T-dimensional model, arbitrary in
cross-section, located in a homogeneous half-space [Eskola and Hongisto
1981] and in the case of a three-dimensional rectangular prism model [Eskola
1979]. In these, the problem was formulated as a Fredholm integral equation
of the second kind for the electric field. E1oranta [1984] has presented a method
for calculating the apparent resistivity and mise-a-la-masse anomalies of good
conductors located in a homogeneous half-space. The conductive bodies are
considered as equipotential domains. The problem has been formulated as a
Fredholm integral equation of the first kind.

* Geological Survey of Finland, SF-02150 Espoo 15, Finland
Manuscript received (revised form): 22 February, 1985
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The present work describes a method of calculating galvanic anomalies in
which the solution of the field problem is formulated as by Eskola [1979] with
a Fredholm integral equation of the second kind. The applicability of the
method presented by Eskola has been expanded so that the elementary model
in the program is an inclined prism in a two-layered half-space. All the resis-
tivities of the model can be complex and dispersive, so that it is possible with
the program to compute wide-band induced polarization (IP) model anomalies
of phase-angle and amplitude spectra [Soininen 1984, 1985]. The dispersive
resistivities required as input data can be taken from petrophysical laboratory
or in-situ determinations directly. It is also possible to use dispersion models
[Perton et al. 1983], such as the Cole-Cole model, which describe the frequency

behaviour of the resistivity.
The program can be applied not only to the IP method but also to the

three-dimensional modelling of resistivity profiling and sounding.

2. The integral equation

Let us examine media that are homogeneous, linear and isotropic in electric
conductivity. Let S be the boundary surface between two domains containing
different media. The conductivities of the domains are ae and ab. The field
problem of the static current system can be presented on boundary surface S
by means of the Fredholm integral equation of the second kind written for the

normal component of the electric field as follows [Eskola 1979]:
BA = EJf) +\QGnr\rg En(rgidso, (@)
S

where Enis the normal component of the electric field on the discontinuity
surface S of conductivity on side e of material; Emis the normal component of
the primary field; Gnis Green’s function of the normal component of the electric
field for the basic structure used; r is the calculation point; rois the source point;
and

_ 9> 96~1
Q= (/499 |/i-ja)/ab’

where @ is the angular frequency, eois the dielectric permittivity of free space,
and j2 = —1 Because, usually, I/eo> > \co/ab\we can approximate, thus:

Q = (V4sa)(«t>b-1).

The integration area S contains all the boundary surfaces of domains differing
in conductivity contrast.
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Equation (1) can be solved numerically by dividing boundary surface S into
elements stand postulating that equation (1) holds at the centre of each element
(i) and by presuming further that the normal component of the electric field
is constant in each element. Thus we obtain the linear set of equations:

EJi) = Eon(0 +IKQG,,(i\k) E,,(k) for each element (/), @

where Gnis the Green function of the normal component of the electric field
of the source element, i refers to the computation element and k to the source
element. The case in which the computation point is located in the source
element (i=k) need not be treated separately because integrated Green’s func-
tions Gnare not singular.

In the program presented, the linear set of equations (2) is solved using
Gaussian elimination. As a result we obtain the normal components of the
electric field at the centres of the elements. Finally the potential ® or required
component Ep of the electric field can be calculated for the computation point
from the equations:

() = M)+ X QG(rK)En(k)  and 3)
Ep(f) = Eq(r) + }( QGp(r\K)E,,(K), @)

where ®ois the primary potential; Eqis the p component of the primary field;

and G is Green’s function of the potential of the source element; and Gpis the
corresponding Green’s function of the p component of the electric field.

2.1 Green'sfunctions of the source elements

In the program implemented, the elementary model is an inclined prism
whose upper and lower faces are perpendicular to the z-axis. The basic structure
is a two-layered half-space (Figure 1). In the numerical solution the faces are
divided into elements with segments parallel to the edges of the face. Green’s
functions Glj of the potential of the source element and corresponding Green’s
functions GI of the p component of the electric field can be obtained by
integrating over the surface of the element (calculation point in layer /, source
point in layer /):

GHrlk) = JFudso and ®)
&

d re
[ Fudsd (6)

Gp(r 1k) = do
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The integrand Ftj depends on the layer in which the calculation point and the
source point are located. For example, when both the calculation point and the
source point are in layer 2 then with the symbols in Figure 1[Van Nostrand
and Cook 1966 pp. 134-135]:

. (-KT
PR Lojebin- D+:0+2)2+s2
" QAN @
»=0j/(2nb + z0+ 2)2+52

where

s2 = (x-x0)2+(y-y0)2
R2= (x-x0)2+(y-y02+(z-z02 and

A Q@ _
givqi + Q= Vor

We can obtain the other functions Fij in a similar fashion. Green’s functions Gli
(integrals (5), except faces perpendicular to the y-axis) and G (integrals (6)) are
integrated analytically using standard integrals [Gradshteyn and Ryzhik
1965]. Green's functions Glj of the potential of faces perpendicular to y-axis are
integrated numerically.

Fig. 1 Inclined prism in a two-layered half-space. The symbols used
1 abra. DGIt prizma kétréteges féltérben

Puc. 1. HaknoHHas npusma B [BYXCNOWHOW cpefe
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2.2 Primary potential and primary field intensity

When the current electrode is in layer j and the calculation point is in layer
/ the primary potential and the p component of the primary electric field of a

point-like current electrode are:

_ d
A= gnsjrg " ®©)
. I 0
Elj = .
> 4noj Tp i )

where / stands for the intensity of the primary current. The primary potential
or the primary field required for the other current electrode configurations are
obtained by summing (or integrating) the potential or the field of the point
electrode.

3. Applications

The numerical solution was tested by comparing it with the results cal-
culated using other methods. The resistivity profile was calculated for the
three-dimensional prism model in Figure 2 for a gradient array in which the
distance between current electrodes is AB = 2000 m. The ratio (conductivity
contrast) of the resistivity of the environment to that of the prism is 1000.
Because of the large conductivity contrast it was possible to compare the result
with that calculated with a program presented by Et1oranta [1984] that assumes
equipotentiality. The solid line in Figure 3/a depicts the anomaly profile com-
puted with the program described in the present study; the crosses depict the
profile calculated with Eroranta’s [1984] program. We see that within the limits
of drawing accuracy the results are identical.

EARTH SURFACE



364 M. Soininen

bl

Fig. 3. a) Comparison of apparent resistivity profile computed with the present program (solid
line) with the apparent resistivity profile computed with Eloranta's program (crosses)
b) Magnitude of the apparent resistivity anomaly minimum with an increase in the conductivity
of the prism

3. abra. a) Az itt bemutatott programmal szamitott (folytonos vonal) és Eloranta programjaval
szamitott (keresztek) latszdlagos ellenallasszelvény ésszehasonlitasa
b) A latszolagos ellenallas anomalia minimumanak valtozasa a prizma vezet6képességének
ndvekedésével.

Puc. 3. a) ConocTaBneHve KpuBbIX KaXYLLErocs yfenbHOro cConpoTUBAEHNS, BbIYMCNIEHHOMO
npeAcTaBNeHHON NporpamMmmoli (CNAOLWHas IMHNUA) C rpaiMkoMm, BbIYMCAEHHBIM NPOrpaMMoi
3nopaHTa (KpecTmku)

b) M3MeHeHMe MUHUMYMa KaXYLLerocs YAenbHOro COMpOTMBAEHUS C YBE/IMUYEHNEM
NpPOBOAVMOCTM MPU3Mbl

To examine the development of the saturation state, the anomaly profiles
were calculated for the same model with different values of conductivity contrast
by increasing the conductivity of the prism. The resistivity minimum has been
drawn in Figure 3/b as a function of conductivity contrast. We see that, for the
gradient array, there is barely any change in the value of anomaly minimum
when the conductivity contrast exceeds 100. This saturation effect manifests
itself in equation (1) in such a way that as the conductivity contrast increases
the coefficient Q -» —1/4n. Physically, saturation means that the distribution
of the surface charge forming on the surface of the body changes but little as
the conductivity contrast increases. The conductivity contrast at which the
saturation point is reached depends on the structural model and measuring
configuration used. The model calculations performed indicate that with the
dipole-dipole array using various dipole separations (different values of N) we
attain a somewhat wider range of conductivity contrast and that, thanks to the
slower saturation, we obtain IP anomalies in a broader range of conductivity
contrast than when using the gradient array.

Figure 4 shows the apparent resistivity profile and the phase-angle anomaly
profile calculated for the prism model of Figure 2 and the gradient array at
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frequencies / = 0.001 Hz, 001 Hz, 1.0 Hz and 10 Hz. The resistivity of the
prism has been described by means of the Cole-Cole dispersion model [Petton
et al. 1983]:

Z(to) = RO —-— @)
Vo 1+ue>t)o)

where  Z(co) = the complex impedance,

Ro the value of Z(co) at zero frequency,
m = the chargeability,

c = the frequency dependence.

T = the time constant.

® = the angular frequency and

J2

Fig. 4. Apparent resistivity profile and phase-angle anomaly profile for gradient array.
/(B =2000 m. The resistivity of the prism is described with the Cole-Cole dispersion model.
RO = 500 fim, m=0.63, ¢c=0.32 and r= 6.4 s. Conductivity contrast at direct current is 20

4. &bra. A gradiens elrendezéssel kapott latszélagos ellenallas- és fazis szelvény. AB= 2000 m.
A prizma ellenallasat a Cole-Cole diszperziés modell irja le. Rg=500 fim, m=0,63, c= 0,32 és
r=6,4s. Az egyenaramra vonatkoz6 vezet6képesség kontraszt 20

Puc. 4. T'padmkn KaxyLierocs conpoTMBAEHNS U (Pasbl, NONYYEHHbIX FPaANEHTHON YCTaHOBKOWA.
.45=2000 m. ConpoTMB/IEHME MPU3MbI OMUCLIBAETCA AMCNEPCUOHHBIM Mofenem Kon-Kon.
A0=500 MNm, w=0,63, c=0,32 1 T=6.4 cek. KOHTpacT Nno conpoTUBNEHNIO AJIA MOCTOAHHOI0
ToKa fBnseTca 20-TUKPATHLIM

The parameters are RO = 500 i2m, m = 063,c = 0.32and r = 6.45s. The
resistivity of the environment is (real) g2 = 10,000 Qm, and hence the conduc-
tivity contrast at direct current is 20. Figure 5 depicts corresponding profiles for
the dipole-dipole array (a = 50m, N = 4, Na is the distance between the
centres of the respective electrode pairs). We see that for a thin, vertical slab-like
body the IP anomaly is substantially stronger with the dipole-dipole array than
with the gradient array. In field surveys the anomaly given by the gradient array
would easily escape detection because of the noise. The reason for the weak
response to a thin, vertical slab by the gradient array is that, because of the
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homogeneous horizontal primary field, surface charge distributions with equal
absolute values but opposite in sign form on the large faces of the slab. The
horizontal component of the electric field produced by these adjacent surface
charges of opposite sign is small on the surface of the earth.

Fig. 5. Apparent resistivity profile and phase-angle anomaly profile for dipole-dipole array.
A=4, a=50 m. The resitivity of the prism is described with the Cole-Cole dispersion model.
No=1500 NMT, m=0.63, c=0.32 and T=6.4 s. Conductivity contrast at direct current is 20

5. abra. A dip6l-dipdl elrendezéssel kapott latszélagos ellenallas- es fazis szelvény. A=4,
a=50 m. A prizma ellenallasat a Cole-Cole diszperzids modell Irja le. JTo=500 M1, m=0,63,
¢=0,32 és r=16,4 s. Az egyenaramra vonatkozd vezet6képesség kontraszt 20

Puc. 5. 'padmkn KaxyLerocs conpotmeieHns v dasbl, NOAYYEHHbIX AUNONb-AMN0Sb
ycTtaHoBkoil. N =4, a=50 m. ConpoTuBneHne Npu3mbl OMUCLIBAETCA AUCNEPCUOHHBIM MOAENEM
Kon-Kon. =500 MNMm; T =0,63; ¢c=0,32; r=6,4 cek. KOHTpacT no conpoTuBieHN0 AN1s
NOCTOAHHOTO TOKa ABnsieTca 20-TUKpPaTHbIM

Next the feasibilty of interpreting the dip of a slab-like body with different
arrays was studied. The prism in Figure 2 dips at a = 45°, 75° and 90°. The
resistivity of the half-space is g2 = 5000 fim and the resistivity of the prism is
g3 = 25 fim. Figure 6ja shows the calculated anomaly profiles of the apparent
resistivity for gradient array at various dip angles. Figure 6/b depicts the corres-
ponding profiles for the dipole-dipole array. We see that the dip has a clear
effect on the gradient array anomaly and that it would be easy to interpret it
qualitatively from measuring results. In contrast, the dipole-dipole array is very
insensitive to dip and it is doubtful if it could be interpreted from the measuring
results.
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ol b]

Fig. 6. Effect of dip on apparent resistivity anomaly. (1) a=90° (2) a= 75° and (3) a=45°.
g2="5000 fim, and g3=25 fim
a) gradient array
b) dipole-dipole array
6. abra. A d6lés hatdsa a latszélagos ellenallas anomaliara. (1) a=90° (2) a= 75° és (3) a= 45°.
q2=5000 fim és £8=25 fim
a) gradiens elrendezés
b) dipdl-dipol elrendezés
Puc. 6. BnnsHue nageHns Ha aHOManuio Kaxyuerocs conpotmsnerus. (1) a=90° (2) a= 75°,
(3) sa=45°, £2= 5000 fiM n g, =25 fiM
a)rpagueHTHas ycTaHOBKa
b) AnnNonb-AMNoNb ycTaHOBKA

Figure 7/a shows the anomaly profiles of the apparent resistivity of the
prism model of Figure 2 for gradient array. Curve 1with conductive overburden
included and curve 2 without overburden. The thickness of the overburden (b)
is 25 m and its resistivity is p, = 500 Qm. The resistivity of the environment is
¢2 = 5000 Qm and the resistivity of the prism is g3=25 Qm. Figure 7/b shows
the same profiles with dipole-dipole array (N=4, a=50 m). We see that the
conductive overburden causes a marked reduction in the anomalies for both
configurations. The conductive overburden tends to short-circuit the current,
with the consequence that the bulk of the current passes through it.

Let us finally examine the attenuation of the IP anomaly caused by a large
body at increasing depth to the upper surface. The IP phase-angle anomalies
were calculated for the model in Figure 8 (cube, 800 m x 800 m x 800 m) for the
gradient array and for the dipole-dipole array with different values of N (a= 20 m).
The values of resistivity for the model were taken from laboratory determina-
tions performed on drill core samples of a polarizable gabbro massif. The
magnitude of the IP phase anomaly is shown in Figure 8 as a function of the
depth to the upper surface. We see that, with the dipole-dipole array, anomalies
calculated with different values of N are attenuated rapidly with increasing depth
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to the upper surface whereas with the gradient array the anomalies attenuated
slowly. This means in practice that a deep body, no matter how big, is hard to
detect with dipole-dipole measurements because it is difficult to use sufficiently
large dipole separations owing to the high transmitter output required. With the
gradient array it is possible to localize a target, even at depth, but it is difficult
to interpret the depth to the upper surface from the survey data.

a) bl

Fig. 7. Apparent resistivity profiles (1) with conductive overburden and (2) without overburden.
b=25m. @ =500 fim, q2=5000 Am, and @= 25 Am
a) gradient array
b) dipole-dipole array

7. dabra. Latszo6lagos ellenallas szelvény (1) jol vezetd fedd esetén és (2) fed6 nélkil. b=25 m,
Qi =500 Am, g2= 5000 Am és @= 25 flm
a) gradiens elrendezés
b) dip6l-dipdl elrendezés

Puc. 7. padmkn KaxyLleroca conpoTusnieHus, (1) npum nokpbiBatoLlem cnoe ¢ 60/bLLUOWA
NPOBOANMOCTbLHO, (2) 6e3 NoKpbiBatowWero cnos. b=25 M, @= 500 Am, @= 5000 Am, @= 25 Am
a) rpagMeHTHas ycTaHoBKa
b) AUNonb-AMNONbL ycTaHOBKa

4. Summary

The present work describes an implemented computational program pack-
age intended for the three-dimensional modelling of galvanic anomalies. The
program package is in Fortran and it has been programmed for the VAX 11/780
computer at the Geological Survey of Finland. The model can be either one or
more inclined prisms in a two-layered half-space. The dispersive resistivities
required in IP computation can either be inserted in the program as such from
the petrophysical measurements or the frequency behaviour of the resistivity
can be described in the program with the aid of a dispersion model.
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d [m]

Fig. 8. Magnitude of phase anomaly as a function of depth to the upper surface for gradient
array (x) and dipole-dipole array for different values of dipole separations Na (0)

8. abra. A fazis-anomalia nagysaga a hatd fels6 hatarfellilete mélységének fliggvényében,
gradiens elrendezés (x) és kiillénb6z6 dipdl tavolsagl (Na) dipol-dipol elrendezések (o) esetén

Pite. 8. 3HaueHnsi aHOManunin asbl B 3aBUCMMOCTU OT FNyOUHbI BEPXHEA KPOMKW Tena.
[pafMeHTHaa ycTaHOBKa (X) U AUMONb-AUNONb YCTAHOBKM C pasHbIMU paccTosiHuaMuK (Na)
mexay aunonamu (o)

The numerical calculations presented indicate that the properties of the
electrode arrays used to study the geological structures in the field are very
different from one another. It is important that the responses to different
electrode arrays be computed for different models; only this ensures that the
optimal configuration is used when prospecting for any expected ore type.

The gradient array is preferred when searching for a large body because
of its good depth penetration in that case. Since, however, an anomaly is
attenuated very gradually with increasing depth to the upper surface, it is
difficult to interpret the depth to the upper surface from the measuring data.
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The response of the dipole- dipole array on the other hand is attenuated rapidly
with increasing depth to the upper surface, which makes it highly appropriate
for establishing the depth to the upper surface as long as the dipoles can be
sufficiently far apart. In practice, however, with large values of N the primary
held of the dipole-dipole array is weak and so its use in surveying is hindered
by the high transmitter output required.

In the case of a thin, vertical slab the IP anomaly is considerably smaller
when measured with the gradient array than with the dipole-dipole array,
especially at the high conductivity contrast values. On the other hand, the
gradient array is very suitable for interpreting the dip whereas the dipole-dipole
array is rather insensitive to the variation in dip.

Conductive overburden substantially attenuates the response of galvanic
methods measured on the surface because a large part of the current passes
through the overburden.

We can conclude that each particular geological problem can be solved best
with one particular electrode system. Hence the program package described can
be used not only in the interpretation of measuring data but also when planning
the survey to find out the measuring system most appropriate for the problem.
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KETRETEGES FELTERBEN LEVO DOLT PRIZMA GALVANIKUS ANOMALIAINAK
SZAMITASA

Heikki SOININEN

A cikk a latsz6lagos ellenallds- és gerjesztett polarizaciés anomélia numerikus modellezésére
hasznalhat6 szdmitégépes programot ismertet. A tér szdmit4sat integralegyenlet médszerrel oldja
meg. Az alapvet6 modell a kétreteges féltérben 1év6 d6It prizma. Valamennyi szerepl6 ellenallas
lehet komplex és frekvenciafiigg6, igy lehetséges a szélessavl gerjesztett polarizaciés maédszer
modellezése. Az ellenéllas frekvenciafiigg6é értékeit vagy kozvetlentl kézetfizikai mérések alapjan
adhatjuk meg a programban, vagy egy matematikai diszperziés modellel adjuk meg a frekvenciafig-
geést.

A gradiens- és dip6l-dip6l elrendezéssel kapott anomalidkat hasonlitja 6ssze kilénbdz6
foldtani szerkezetek esetén. A dip6l-dipdl elrendezéssel jobban ki lehet mutatni egy vékony, fiigg6le-
ges testet, mint a gradiens elrendezéssel, mert nagyobb az anomalia, a d6lést viszont a gradiens
elrendezéssel lehet jobban meghatéarozni.

Nagyméretli haté esetén a gradiens elrendezéssel kapott anomalia csak lassan csékken a
gerjeszthetd test mélységének novekedésével. Ezért nagy testek kutatadsara sokkal alkalmasabb, mint
a dip6l-dipd6l elrendezés, ezen utébbival viszontjobban meg lehet hatdrozni a gerjeszthet6 test fels
hatarfeliletének mélységét.

A jol vezeté fed6 az &ramkanalizacié révén jelentésen csdkkenti a felszinen. galvanikus
moédszerekkel mérhetd anomalidkat.

BbIUNC/IEHVNE AHOMA/INIA COMPOTUB/IEHUA W BLISBAHHOW MOJISPU3ALINM
HAJ HAK/TOHHOW MPU3MOW, BMELLAIOLLEEV B [IBYXC/TOVHOW CPE/E

Xankkn COMMHMHEH

MpeacTaBnsieTcs nporpaMMa Ans BblYMCAEHUS LUAPOBLIM MOAENMPOBAHWEM aHOManuii
KaXYLLLerocs yienbHoro ConpoTMBEHUS 1 BbI3BaHHOW nonsipusauum. Mone BolYACASETCS METOLOM
WNHTErpanbHbIX YpPaBHEHWI Haf HaKNOHHOW NpW3MOlA, BMeLLatolleli B ABYXCNOWHOW cpege. Bce
COMPOTMBEHNSI MOTYT GbiTb KOMMIEKCHBIMUA W 3aBUCALLMMU OT 4acTOTbl, 6narogaps 4ero BO3-
MOXHO MOJEe/MPOBaHNe MeTO/a Bbi3BaHHOW MONAPM3aLLMM B LUMPOKOM WHTEpPBae YacToT. 3Haye-
HWsl CONPOTUBAEHNI, 3aBUCSAILLME OT YaCTOT MOTYT 6bITh faHbl B MPOrpaMMe Ha OCHOBE U3MepeHMii
(hM3nYECKUX NapameTpoOB NOPOJ, WM UX 3aBUCUMOCTb OT YacTOTbl MOAENMPYeTCs MaTeMaTuue-
CKUM cnoco6om.

ConocTaBnATCA aHOMaauu, MOMYYeHHble TPagMEHTHOM W AUNONb-AWMNO/L YCTaHOBKaMU
Haf, pasHbIMW e0n0rnyeckMM CTPYKTypaMu. BepTukanbHOe TOHKOE Teno no aHOManusaM AUnosb-
OMNONMb YCTAHOBKM OTpaxaeTcsi Gosee 4eTKO, YeM MO aHOManusM TpafMeHTHON YCTaHOBKM,
a nafieHvie Tena nyulle 0TPaxaeTcs aHOMaNMUsMU TPaAMNEHTHON YCTaHOBKMU.

Mpu 06beKTe 60/bLIOTO pa3Mepa aHOManus, U3MepeHHas rpafMeHTHON YCTaHOBKOIA, C yBe-
NYEHNEM Ty6KHbI 06bEKTA YMEHbLUAETCS TONbKO MefeHHO. M03TOMy rpajneHTHas ycTaHoBKa
6onee npurogHa ANs WUCCNefOBaHMA GOMbLUMX Ten, YeM AUMONb-AUNONb YCTaHOBKa. OfHako
AUNONb-ANNONb YCTAaHOBKON HafieXHee onpeensieTcs rny6uHa BepxHeil KPOMKU NoNspusytoLLero-
ca 06beKTa.

MokpblBatOLWMiA cnoli ¢ 60NbLUOK MPOBOAVMOCTHIO CYLLECTBEHHO YMEHbLUAET aHOManuu,
n3MepsieMble Ha MOBEPXHOCTM 3eM/IN KOHAYKTUBHbIM CMOCOGOM.
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A FEW UNSOLVED PROBLEMS OF APPLIED GEOPHYSICS
Gabor KORVIN*

The paper describes eight unsolved problems, stemming from statistical geophysics or rock
physics: computation of effective physical properties in fluid-filled sedimentary rock (Problems
1,2); dependence of the absorption coefficient of sound waves in heterogeneous rocks on the
randomness of the rock (Problems 3,4); fluctuation of the signal characteristics propagating
through random media (Problem 5); computation of the reflected energy from an infinite, randomly
dissipative half-space (Problem 6) ;and the statistical properties of the seismic signals, backscattered
from randomly uneven boundaries (Problems 7,8). In all cases basic references are provided and
applications pointed out.

Keywords: rock physics, sedimentary rocks, wave propagation, seismic data processing

Introduction

I shall briefly describe - somewnhat in the vein of Ruerie’s “Five Turbulent
Problems” [1983]- eight loosely connected puzzles, all stemming from statistical
geophysics or rock physics. In all cases | provide the basic references for further
work, including the history, motivation and possible applications of the pro-
blem. This paper is an outgrowth of a lecture held in 1982 at the Geology
Department of the University of Houston; | dedicate it to the memory of Milton
B. Dobrin, (1915-1980), late Professor of that Department, Man, Teacher,
Geophysicist.

1 Hierarchy of velocity equations: generalized mixture rules

The first problem is frequently encountered in geophysics, rock physics and
solid state physics.

Suppose we are given a composite material of volume V consisting of two
phases of the respective volume fractions P, Q; P+Q = V, and suppose these
constituents are uniformly distributed within the total volume. Suppose g is
some physically measurable property that assumes the values gxand g2, respec-
tively, for the two constituents, and a value g for the composite. Suppose,
further, that the value of g is unambiguously determined by the volume fractions
P, Q and the specific properties gx, g2:

g = M(gu g2,P,Q) @)

* EOtvos Lorand Geophysical Institute of Hungary, POB 35, Budapest, H-1440
Manuscript received: 1July, 1985
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In Korvin [19823] it is shown that, if a set of physically plausible conditions
is met, the only possible functional form of M(gt, g2, P, Q) is the *“general

mixture rule”
M(gi, 92, P, Q) = {®Pa\ +(1- P)p2Y )

for some real t, 190, or
M(gi,g2P,Q) = gn2-¢ ®)

which follows from Eq. (2) by I’Hospital’s rule for t=0. In Egs. (2), (3), ®is
porosity, defined as ® —P/(P+Q). The general mean values have the very
important property [cf. Beckenbach and Bellman 1961 § 1.16] that for
E/0é2>0, ®d0, dP\ and arga2the expression {da\ + (1 -d)a' 2} Mis
a strictly monotonously increasing function of tin (—oo, 00).

In case of sound speeds, e.g., in fluid-filled sedimentary rocks the general
rules (2), (3), contain, in particular, the following widely used “velocity for-
mulae”:

- for t= —2 the “approximate Wood equation” [Waterman and Truell

1961, Korvin 1977a, 1978 bj;

- for t= —1 the “time-average” equation [Wyllie et al. 1956];

- for r= 0 the “vugular carbonate” formula [of Meese and Walther 1967];

- for « = 1the average velocity formula [Berry 1959].

Tegland’s [1970] method of sand-shale ratio determination also assumes a
= - 1time average equation; Mateker’s [1971] effective attenuation factor in
an alternating sequence of thick sand-shale layers is a linear weighted (i.e. t= 1)
combination of the specific attenuations, further examples from different fields
of geophysics are to be found in Korvin [1978b, 1982 a].

The functional forms (2), (3) are derived in Korvin [1982a] from the following
set of physically plausible conditions. (The derivation is based on the theory of
functional equations, particularly on the results of Aczer [1961].)

Condition 1 reflexivity

M(gi,gl,P,Q) =gl foral P,Q (P+Q > 0) @

Condition 2. idempotency
M(gLg2P,0) = g1 forall P>0 5)
M(Ou 9i,0,Q) = g2 forall Q>0 (6)

Condition 3. homogeneity (of 0-th order) with respect to the volume fractions

Wao02,P, Q) = Wan NI XQ) ()
forall P, Q X suchthat P+Q> 0, #>0
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Condition 4. internity. The property g measured on the composite lies between
the specific values gu g2 of the constituents; ifgt< g2, say, then for P+Q > 0

M(gi, g2, 1,0) < (gu g2, P, Q) < M(gt, g2 0,1) 8

Condition 5. bi-symmetry (this concept is due to Aczél [1946]). Given two
composites, the first consisting of P1and Qx parts of materials of gr and g2
properties; the second of P2and Q2parts of materials of Gy and G2 properties,
the following two expressions for the measured property g of the four-
component aggregate must be equal:

g2 Pu Rj); M{GUG2 P2, 02); P, +Qf P2+ Q7 =
= M[M(gu Gu Pu P2); M(g2, G2, Qlt Q2: P1+Pf Qx+ Q2 )

Condition 6. monotonicity with respect to the volume fractions.
IfO0i<02. sa+ P+Qi> 0 RB2>Ri
then M(gLg2P,Q)<M(gl,g2,P,Q2 (10)
Condition 7. monotonicity with respect to the physical properties.
UP+Q> 0, g2<g2 then M(gl,g2P,Q)<M(gl,g3P,Q) (11)

Condition 8 homogeneity (of first order) with respect to the physical properties

M{lgx 1g2, P, Q) = W{an g2 P, Q
forall P, Q A suchthat 7+R>0, 9>0 (12)

In Korvin [19824] it is proved that if the function M(gu g2, P, Q) defining the
effective physical property g of a two-component material satisfies Conditions
1-8 (Egs. 4-12) then

0= Wm@ n Q) = {®a\+"-d)a2jn’
for some real  1C®0, &= P+Q or g= ofor®

In case of sound speeds, e.g. in sandstone, Fig. 1 shows porosity-velocity
curves for different values of the paramétert (gt=wun = 1545 m/s;
g2 = vmatrix = 5542 m/s, after Meese and Wairther 1967; the™ Berea, Boise,
Miocene, Page sandstone data are taken from M eese and W atther [1967], the
Texas data from Hicks and Berry [1956]). It is seen from Fig. 1 that'the
sandstone data are best fitted by a t = -0.6 curve, i.e. by the formula

Vo[ -2+ (1-D «x}U06
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Fig. 1 Porosity-velocity master curves for sandstone [From Korvin 1978b]
1 abra. Porozitas-sebesség gorbesereg homokkdvekre [Korvin 1978b-b6l]

Puc. 1 KpuBble 3aBUCMOCTM CKOPOCTM OT MOPUCTOCTK N8 necyaHukax [Mo Korvin 1978b]

Thus, we are led to Problem 1\ What is the physical meaning (if any) of the
parameter t in Eg. 2? Does t = -0.6 have any particular meaning for sand-
stone?
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There is also another, variationa. approach, for the determination of the
effective properties of composite materials, culminating in the celebrated HS
[Hashin-shtrikman, 1963] bounds on the effective properties in terms of the
specific ones. A very recent summary of the topic, with many references, is
Hughes and Prager [1983], see also sterr [1983]; the standard reference for
earlier work is Hasnhin [1964].

It would be nice to see somebody solve Problem 2, that is, to reconcile the
functional equation approach [of K orvin 1978b, 1982a] with the HS variational
approach, or at least to use HS bounds to derive non-trivial bounds for t.

2. Sound absorption and rock entropy

In 1978 Bertzer Studied elastic wave propagation in randomly porous
materials. He concluded that “for low frequency regimes the randomness of
porosity leads to an increase in the attenuation and dispersion of the elastic
wave”.

Bettzer’s result is highly plausible and in agreement with the general
understanding that the heterogeneity of a medium causes additional dissipation
of the propagating elastic wave. (It is well known, for example, that the sound
attenuation in crystalline materials is less for a single crystal than for an
aggregate; [Bradiey and Fort 1966].) Prior to Beitzer's work similar con-
clusions had already been reported by the present author, in connection with
elastic waves propagating in a random stack of layers (the hypothesis was
published in 1976, its heuristic proof in 1978c). K orvin [1980] applies stochastic
perturbation methods of random wave propagation theory [Ketiter 1964,
Karatl and Kerter 1964] in order to generalize Beitzer’s results for rocks of
random structure. In Korvin [1980] it is shown that in multicomponent rocks
the low-frequency attenuation coefficient is proportional to (more exactly,
positively correlated with) the quantity

M

P : 13
- = Pi 08P (13)

E =

where/?, (/ = 1, ..., n) is the relative volume ratio of the /-th phase, Ip, = 1.The
quantity E, however, measures the randomness of the constitution of the rock
and, in Russian literature, is termed “rock entropy” [cf. Byryakovskiy 1968].
Recalling that in the statistical theory of phase transitions of disordered systems
the entropy of a random aggregate of several components always consists of two
parts

mixture (14)
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where Snidue has the same form as the entropy E in Eq. (13). Eq. 14 is the
so-called Flory-Huggins formula, [see ziman 1979, 8 7.2.], we immediately see
(Problem 3) that either the concept of rock entropy should carefully be re-
defined, or the random wave equation solved more precisely in order to decide
whether or not the attenuation depends on the configurational part of rock
entropy.

The hypothetical connection between attenuation and randomness (en-
tropy) of the rock presents us with a further, much more delicate problem.

It is well known that frequency-dependent attenuation and velocity disper-
sion lead to a distortion of propagating acoustic pulses; Barknhatov [1982, §
3.6.4] and Barkhatov and Shmetev [1969] even speak about the changes of
signal entropy during hydroacoustic propagation. Kuznetsov et al. [1973] and
Hottin and Jones [1977] propose that the correlation between the propagating
pulses for the determination of the attenuation characteristics be measured.
Theoretically, the propagation of the two-point correlation function (as of any
other quadratic quantities) can be described by the Bethe-Salpeter equation
[Bourret 1962] or by appropriate transport equations [see e.g. Bugnoto 1960].
In connection with the latter approach Frisch [1968 p. 145] comments: *.. .there
are some physical difficulties in the interpretation of the solution, which have
not been settled yet. It appears, for example, that in contradistinction to the
homogeneous nonrandom case, there is an energy loss, even when the medium
is not dissipative.”

It seems to us that this problem, together with that concerning the intercon-
nection of attenuation and randomness, can be solved by following up the
pioneering ideas of Casti and Tse; these authors showed in 1972 that the
Kalman-Bucy optimal filtering theory and radiative transfer theory “which
from a physical point of view seem to have very little in common, may be
brought together by careful examination of their respective initial value for-
mulations” [op. cit. p. 42].

In their concluding remarks Casti and Tse [1972 p. 53] state: “In conjun-
ction with the active filtering problem, let us mention a radiative transfer
function ...this is the absorption function which is defined by means of con-
servation law, i.e. it corresponds to the radiative energy which is input to the
atmosphere, but which is neither transmitted through nor reflected back out...
In the active filtering case there is reason to suspect that this function may
correspond to a loss of inherent information in the known control input due to
interaction with the noisy system. If this correspondence can be made precise,
it would seem to be possible to establish a conservation of information law for
stochastic systems”.

That is, we can state our Problem 4 as: Derive attenuation in random media
from “conservation of information” principles!
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3. Ignorance versus depth: the turbidity factor paradox

One of the basic results of seismic wave propagation in randomly inho-
mogeneous media is that velocity- and density inhomogeneities cause scattering
of waves, the scattered waves are superimposed on the primaries and lead to
amplitude and phase fluctuations in the observed wave pattern. We shall neglect
density fluctuations and assume that an acoustic wave of frequency/ propagates
along a distance AB = L in a random medium where sound-speed randomly
fluctuates around some constant CO as

Co
= = 14
¢ 1+£ (14)
where

<£>

0,<€2) « 1L RJIr) = <EXEX+r)> =
<€2) exp [~\r/rOY (r = Irl),

rOis the correlation distance of the inhomogeneities. Denoting mean transit time
L/CO by T, its fluctuation by AT and mean wavelength by A it can be shown
that, if rO»A:

((AT)Z) = ~2(e2Yr0)n (15)

(see Chernov [1960], or Korvin [1973] for a more general case). The gist of Eq.
(15) is that the square of the fluctuation of transit times linearly increases with
the distance travelled. To show a practical example of Eq. (15), let us recall the
classical paper of Gretener [1961] who analysed the deviations between the
integrated travel times computed from conventional and continuous velocity
loggings in wells. The deviations found by him consisted of a systematic and a
random part. The systematic deviations were ascribed, in a much-discussed
paper of Strick 1971, to velocity dispersion while the random scattering was
found to increase with the square root of the distance travelled by the seismic
wave (in accordance with Eq. (15), see Fig. 2).

Fig. 2. Scattering of arrival times. [After
G retener 1961]

2. dbra. A beérkezési id6k szdrasa [Gretener
1961 utan]

Puc. 2. OTKNOHEHWs BpeMeH BCTymaeHus [Mo
Gretener 1961]
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The companion formula to Eq. (15) refers to the logarithmic amplitude
fluctuation of the propagating waves and states that

(16)

where A0 is wave-amplitude in the homogeneous medium and g is a function,
which possibly also depends on frequency, correlation distance, etc.

The factor g is termed “inhomogeneity factor”, or “turbidity factor” ([Ga1-
kin and Nikolaev 1968, Nikolaev and Tregub 1970], the definitive mono-
graph on the subject is [Nikotaev 1973]).

A great number of studies have been carried out in seismology to determine
the inhomogeneity of the crust and upper mantle using time- or logarithmic
amplitude fluctuation, or both [Aki 1973, Capon 1974, Berteussen et al. 1975,
etc]; most recently by Powerr and Mertzer [1984]; a similar study in reflection
seismics was carried out by Korvin [1977b]. For exploration geophysicists, the
message of Egs. (15), (16) is that the error of the seismic measurements linearly
increases with the depth studied (as was observed by Posgay as early as 1954)
i.e. our ignorance about the Earth linearly increases with depth! This trium-
phant feeling of ignorabimus has recently been shattered by the fascinating
model experiments reported by Gertrude Neumann and K. Schier in 1977.
Neumann and Schietr prepared more than 20 two-dimensional models (some-
what in the vein of Levin and Robinson [1969]) consisting of 2000 x 800 mm
macrolon and 2000 x 1200 mm perspex plates with inhomogeneities quasi-
randomly arranged in rows (Fig. 3). They estimated the logarithmic amplitude
fluctuation and computed the turbidity factor assuming the validity of Eq. (16)
(where L should be substituted by the number of “rows” of inhomogeneities in
the model). Their results are reproduced in Fig. 4, for one family of the macrolon
models. The estimated g factor first increases with the number of rows N, then
begins to decrease, i.e. instead of (16), they found a

(17)

law, for greater distances with an exponent a less than 1 This, of course,
reminded N eumann and Schier 0f Brownian motion or diffuse multiscattering
(op. cit. p. 225).

Since these model experiments are extremely well-documented, it is worth
while to call the reader’s attention to this paper and to pose Problem 5 as:
Explain quantitatively the findings of Neumann and Schier [1977] in terms of
diffuse multiscattering! The problem becomes even more important since a very
recent paper of Powert and Mertzer [1984] has cast renewed doubts on the
overall applicability of the Chernov- (i.e. Nikolaev-, i.e. Rytov-) method.
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L-2?20mm
Ab-300mm

Fig. 3. Structure and model parameters used in the experiments of Neumann and Schiel [1977]
3. abra. Felépitési- és modell-paraméterek Neumann és Schiel [1977] kisérleteiben

Puc. 3. MapameTpbl CTPOeHNsA U MOAenu B akcnepumeHTax Neumann-a u ScHIiEL-a [1977]

Fig. 4. Dependence of the turbidity factor G on the number of rows N in one of the
Neumann-Schiel macrolon models. [After Neumann and Schiel 1977]

4. abra. G turbiditas-faktor fliggése N sorszamt6l, Neumann és Schiel egyik makraion
modelljében. [Neumann és Schiel 1977 utan]

Puc. 4. 3aBucumocTb (hakTopa MyTHOCTM G OT HOMepa N, Ha MaKpOSIOHHOW MoAenu
Neumanns 1 ScHIiEL-a. (Mo Neumann u Schiel 1977)



382 G. Korvin
4. Energy return from a dissipative half-space

There is an interesting theorem of Robinson and Treiter [1965, 1966]
which states that any series of parallel layers, characterized by an arbitrary
sequence of reflection coefficients, which is bounded by a totally reflecting
“wall” (r= + 1), completely reflects the incident energy in an infinite observation
time. In [1977 a] Korvin, In an attempt to generalize the Robinson-Treitel
theorem, restated the problem in terms of a one-dimensional random walk of
acoustic energy quanta, applied the invariant embedding technique of Betiman
et al. [1958], and derived a partial integro-differential equation for the descrip-
tion of the total energy U(t) reflected from a random infinite half-space in the
time interval (0, t). It was proved that for one-dimensional inhomogeneities,
assuming a stationary sequence of random reflection coefficients and that the
reflecting interfaces obey a Poisson distribution, the total incident energy is
reflected from the inhomogeneous half-space during an infinitely long observa-
tion time. The asymptotic form of U(t) is also given, in Eq. (79) of Korvin
[1977 a].

It turned out later that various formulations of this problem can be encoun-
tered in the most different branches of physics (in solid state physics, for
example, the phenomenon is closely connected to the “localization theorems”,
see ziman [1979, Chapter 8], or the recent summary of Stephen [1983].

The most ingenious proof of the total reflection by a semi-infinite random
medium was given by Sutem and F risch [1972] [see alsO Sutem 1973] who used
the Ricatti transformation to reduce the Helmholtz equation to a single-point
boundary problem, observed that the complex impedance ZNof a random stack
of N layers constitutes a kind of “random walk” on the half-plane C+(1mz >0)
as the number N of layers is gradually increased, and used the ergodic theory
of dynamic systems [Arnotd and Avez 1967, Haimos 1956] to prove total
reflection.

Of course, ergodic theory gives no indication as to the rate of development
of a system towards its equilibrium. The Monte Carlo computer simulations in
Sutem and Frisch [1972], however, suggest that the mean reflection coefficient
exponentially converges to one, rather similarly to the asymptotic Eqg. (79) in
Korvin 1977a.

In Sutem and Frisch [Op. cit., p. 225] there is posed the important problem
connected with the more realistic case of a slightly dissipative medium which,
obviously, cannot be totally reflecting. Computer simulations (Fig. 5) indicate
that the Césaro means of the reflection coefficients

still converge, but more slowly than for a non-dissipative half-space, and to a
finite limit less than one. Unfortunately, the ergodic theory, used by sutem and
Frisch for the nondissipative case, does not apply if we assign complex values
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to the refractive index since the measure corresponding to the random walk of
the complex impedance ZNwill not be invariant any more.

At the same time, in the dissipative case, the integro-differential equation
in Korvin [1977] will also yield divergent solutions. Thus, it seems justifiable
to invite the reader to solve Problem 6, i.e. to generalize the theorem of Robin-
son and T reite1 and compute the energy returned from a, finite or infinite, stack
of random dissipative layers!

Fig. 5. Césaro mean of the reflection coefficient in a randomly alternating stack of two slightly
dissipative layers with the refractive indices nx = 2+ 5/« 10'3and n2 = 5+ 5/- 10~3,
respectively, and with a mean layer thickness of unity. [After Sulem and Frisch 1972]

5. &bra. Két, enyhén disszipativ réteg véletlenszer(ien valtakozé soranak reflexios koefficienseibdl
képezett Césaro atlag. A torésmutaték: n, = 2+ 5/- 10“\ ill. n2 = 5+ 5/« 10“3, az atlagos
rétegvastagsagok egységnyiek. [Sulem és Frisch 1972 utan]

Puc. 5. CpefiHee Césaro nony4yeHHOe 13 KOIPMULNEHTOB OTPaXKEHWUI CNy4aiHO U3MEHAOLLErocs
MHOXECTBa ABYX CnabofmccunatusHbIX cnoes. KoaguumeHTbl npenomMneHns:
«l = 2+5/- 10'3;H2 = 5+ 5/- 10~3, cpegHas MOLHOCTb CNOEB COCTaBAAET eANHULY.
[Mo Sulem n Frisch 1972]

5. Langleben’s phenomenon and the diffuse reflection shadow

It has long been a basic problem of Hungarian reflection seismics that in
many cases we can get only intricate diffuse reflections from the uneven surface
of the basement [Szénas and Adam 1953]. Due to these diffuse reflections it is
rather difficult at some places to map the basin floor accurately: diffraction
arrivals coming from the surface unevennesses follow the basement reflection
as a “diffuse shadow” of a few hundred ms length so that it tends to be very
difficult to detect eventual deeper reflections. In marine seismic profiling, similar
difficulties were reported by C 1ay and Rona [1964]. The existence of the diffuse
reflection shadow following rough boundaries has also been demonstrated by
model experiments [Voskresensky 1962, Leong et al. 1971]. For a special
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non-differentiable random surface model the time-behaviour of the diffuse
reflection shadow was theoretically investigated in the low-frequency limit by
Biot [1957]; for Gaussian differentiable random surfaces, and in the high-
frequency limit, by Korvin [1982b]. Recent interest in the topic is indicated by
Tsai [1984] who proposes special CDP stack and velocity filtering techniques
to reduce coherent scattered noise.

In 1970 Langieben reported a very strange series of experiments, carried
out under the ice cover in Tanquary Fiord, Ellesmere Island, NW Territories,
Canada. He measured the specular reflection of water-borne sound at the
water-sea-ice interface as a function of the angle of incidence and of frequency.
The geometrical configuration of his measurement is reproduced in Fig. 6 (the
frequency varied from 20 kHz to 450 kHz). His results (Table 1) do not show
any systematic change of the specular reflection coefficient with frequency. The
“striking insensitivity of back-scattering to frequency”, in cases when the scales
of irregularities range from many times smaller to many times greater than the
radiation wavelength, had also been observed by M arsn [1961, p. 332]. Note
that the dendritic growth of ice very likely also results in such an ill-defined
phase-boundary of fractal geometry [cf. Brady and Bai1 1984], containing
irregularities at all scales. (The possible fractal nature of the underside of sea
ice was first observed by Rothrock and Thorndike [1980]; see also their more
recent paper [1984].)

Fig. 6. Geometrical configuration of Langleben's experiment. Source and detector move along
the semicircle indicated. [After Langleben 1970].

6. dabra. Langleben kisérletének geometriai elrendezése. Ado és vevd egy félkoron mozog.
[Langleben 1970 utan]

Puc. 6. CeomeTpus 3KcnepuMeHTa Langleben-3. [aTunmK U NPUEMHUK ABMXKYTCS Ha OLHOM
nonykpyre. [[o Langleben 1970]



Table I. Amplitude of reflection coefficients at the water-sea-ice interface

Frequency
kHz

17.9
23.1
24.8
47.0
56.5
89.9
118
126
184
227
332
387
435
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15

0.24
0.091
0.13
0.056
0.083
0.039
0.13
0.055
0.056
0.021
0.17
0.083
0.066

[after Langleben 1970]

0

0.20
0.034
0.070
0.17
0.25
0.053
0.16
0.036
0.11
0.005
0.22
0.091
0.088

Angle of incidence [degree]
45

0.48
0.18
0.29
0.89
0.42
0.41
0.72
0.32
0.56
0.43
0.019
0.36
0.016

60

0.36
0.41
0.63
0.89
0.75
0.63
0.88
0.69
0.75
0.44
0.50
0.16
0.11

5

0.88
0.51
0.38
1.22
0.75
0.96
1.06
0.81
0.97
0.91
0.45
1.00
0.94
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The surprising feature of Langieben’s data is that, when averaged over
frequency, the mean reflection coefficients become a reasonably smooth func-
tion of the angle of incidence (Fig. 7). Since, using the jargon of data processing,
averaging over frequencies is equivalent to a deconvolution operation in the
time domain, Langteben’s results suggest the hypothesis (Problem 7), that a
suitable generalization of the single- or multichannel deconvolution procedure
could be profitable in the elimination of the diffuse reflection shadow.

Fig. 7. Amplitude reflection coefficient of water borne sound waves reflected at the underside of
the sea ice cover, as a function of angle of incidence. [After Langleben 1970]

7. abra. A tengert borito jég alsé hatarfeluletérdl visszavert hanghullamok reflexios koefficiense

a beesési szog fliggvényében. [Langleben 1970 utan]

Puc. 7. KoaththmuMeHT OTpaXKeHNs 3BYKOBbIX BOJH, OTPXAOLWMNXCA OT HVDKHENA MOBEPXHOCTU
rpaHMUbl Nbfa, MOKPbLIBAKOLWEro Mope, B 3aBUCMMOCTM OT yrna nageHus. [Mo Langleben 1970]
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In the single-channel solution it should be recalled that the diffuse “rever-
berated” signal is very likely not minimum-phase [see Korvin 1982D], i.e. the
deconvolution filter must be specially designed (as, for example, in Ristow and
Jurczyk [1975]). The design of the multi-channel filter for the removal of the
diffuse reflection shadow could very likely be made along the general lines
described in Backus et al. [1964]. For the estimation of the horizontal and
temporal correlations of the diffuse noise, that is necessary for the design of the
optimum multichannel filter, use should be made of the results in Levin and
Robinson [1969], D unkin [1969], Korvin [19786.] It goes without Saying that
a physical explanation of Langieben’s phenomenon (i.e. why is the frequency-
averaged backscattering coefficient equal to the backscattering coefficient of an
effective smooth surface, at least for a certain kind of random surfaces?) is still
badly needed and it is posed here as Problem 8.

* * %

The main ordering principle behind this set of problems has been my
continuous interest in the last 15 years in applying random wave propagation
concepts and statistical ideas to the physics of sedimentary rocks. | do hope my
readers will find some of these problems sufficiently interesting so as to solve
them - as | called for in the original title of this lecture: “Afew problems I'd like
to see solved".
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AZ ALKALMAZOTT GEOFIZIKA NEHANY MEGOLDATLAN PROBLEMAJA
KORVIN Gabor

A cikkben nyolc megoldatlan problémat targyal a szerz6, amelyek a statisztikus geofizikabol,
vagy a k6zetfizikabol szarmaznak. A problémak a kovetkez6k: folyadékkal telitett Gledékes kdzetek
effektiv fizikai paramétereinek szamitasa (1.és 2. probléma); hanghullamok abszorpcids koefficien-
sének fliggésége a heterogén kézetek véletlenszer(iségétdl (3. és 4. probléma) ; véletlenszerl kdzegen
athalado jel jellemz@inek ingadozasa (5. probléma); véletlenszer(ien disszipativ féltérrél visszaverd-
d6 energia szamitasa (6. probléma); és a véletlenszerlien egyenetlen hatarfelliletekrél visszaszort
szeizmikus jelek statisztikai tulajdonsagai (7. és 8. probléma). Minden esetben kézli a leglényege-
sebb irodalmi hivatkozasokat és ramutat az alkalmazési teriletre.

HEKOTOPbLIE HEPELUEHHBLIE MPOB/IEMbI MPUKAALHOW FTEO®U3NKUN

Fa6op KOPBUH

BcTaTbe aBTOP 06CYX/aeT BOCEMb HEPELLEHHbIX MPOGIEM, KOTOPbIe BbITEKAIOT U3 CTaTUCTU-
YecKoW reomankn unm 13 usrnkn nopof. ATo Cnefytouine Npo6aemMbl: BblunCaeHNE 3PHEKTUBHBIX
(h13MYeCKMX NapaMeTPOB 0CALOUHbIX MOPOJ HACBILLEHHbIX XUAKOCTbIO (Npobnembl 11 2); 3aBUCU-
MOCTb KO3(hduLmeHTa abcopbLMmM 3BYKOBbLIX BOMH OT CNY4YaNnHOCTW reTeporeHHbIX nopog (npobne-
Mbl 3 14); U3MEHEHWEe NapaMeTPOB CUrHana, MPOXOASLLEro Yepes caydaliHyto cpefly (npobnema 5);
BbIYMC/IEHNE OTPAXKEHHON 3HEPTUM OT CMyYaiiHO AMCCUMATUBHOIO MOAYNPOCTPaHCTBa (Npobaema
6); CTaTUCTMYECKMe CBOWCTBA OTPaXKEHHbIX CEMCMWUYECKMX CUTHAMOB OT CMy4aliHO Hernagkmx
noBepxHocCTeli pasaena (Npobnembl 7 1 8). ABTOP B BCEX CMy4Yasx [aeT CamMble BaXHbIe CChbIKM Ha
NUTepaTypy Y yKasblBaeT 061acTU NPUMEHEHNS.
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FREQUENCY CONTENT OF SEISMIC WAVES AS A FUNCTION OF
CHARGE

Hans RISCHE*

In test-measurements aimed at determining the influence of charge quantity on the f!equency
content of seismic waves the known relation A=kQp was checked and improved to p =a—b mfre-
quency. This relation is an adequate approximation for describing the depedence of the spectral
amplitude behaviour on the quantity of charge.

Keywords: reflection method, shot-generation, charge quantity, frequency content, field tests

1. Introduction

It is well known that, in onshore seismic work, shot generation creates the
best conditions for extending the effective frequency band of the seismic waves
in the direction of the higher frequencies (high-frequency seismics). This exten-
sion is necessary in order to meet one of the most important requirements of
geological exploration - better horizontal and vertical resolution. It can already
give quite remarkable results in the presence of excellent excitation, propagation
and reception conditions, and in cases where suitable generation and reception
techniques are used [Farr 1976].

The essential parameters for shooting are the quantity and the depth of the
charge (bearing in mind the properties of the rock close to the surface). While
the depth of the charge in high-frequency work is necessarily below the low-
velocity layer or in the solid rock, the only requirement for the quantity of
charge is that it should be as small as possible.

Similar requirements on the quantity of the charge result when seismic
waves are generated at very shallow depths [Rische 1985]. This technique is used
particularly in cases where there is a cost limit on field work. The shooting then
takes place for the most part only a few metres below ground level in the
low-velocity layer. Here again the quantity of charge must be small for the
technique to be successful, as has been shown by examples in exploration
practice [Gaertner et al. 1985].

* Karl-Marx-Universitat, Sektion Physik, Talstr. 35, 7010 Leipzig, GDR
Manuscript received: 28 March, 1985
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2. Known relations
From theoretical considerations it follows for longitudinal body waves that

amplitude, A=kIQU3
period, T=k2Q13
dominant frequency, f 0=k3Q~13

(Q=quantity of charge, kt= material-dependent factors).
Considering plane compressional waves, on the other hand, it follows that

A=kQI2

In most cases, these relations provide the only basis for influencing the fre-
guency content of seismic waves using the quantity of charge [Zio1kowski and

Lerwill 1979]
When a charge/amplitude relation is empirically determined the result is

A=KkQp

where p can have quite different values. According to M eissner and Stegena
[1979], for example, the range for p may be

05<p< 13.

Too little is known as yet about the way in which p depends on the specific shot
conditions, and no formulation exists so far.

The data published for p so far indicate that this exponent should depend
also on the quantity of the charge, Q. Thus Levyant [1964] reported experi-
mental results and determined

p=0.85 for 0.4<Q<2.5 kg,
p=0.55 for 2.5<Q< 10 kg.

Fig. 1 shows the values found.

Similar findings have been reported for the apparent frequency,/0, but less
experimentation has been done to verify these. What is mostly found is

where the exponent - 1/3 is derived from theoretical considerations whereas
—1/2 is derived from experimental data. Since a considerable range of scattering
exists for the charge/amplitude relation whose dependence on the shot con-
ditions is largely unknown, a situation which is at least of similar uncertainty
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must be assumed for a charge/frequency relation. However, too few experimen-
tal results have been published so far for a quantitative determination of the
range of this exponent.

Fig. 1. Total amplitude of seismic waves as a function of charge quantity, Q [after Levyant
1964]. Flg- charge depth; h,, - thickness of low-velocity layer

1 abra. A szeizmikus hullamok amplitidéja a Q toltetnagysag fliggvényében [Levyant 1964
utan], HQ- toltetmélység; h0- lazaréteg vastagsaga

Pue. I. AMNAUTYAbl CeliCMUUYeCKMX BOH B 3aBMCMMOCTW OT BEAMUWHbI 3apaga Q
[no Nesanty 1964].
Hg- rny6uHa 3apsga; VD - MOLLHOCTb 30Hbl MasblX CKOpOCTeit

3. Graphic representation of the frequency effect

There is no prospect of solving the problem by determining the apparent
frequency,/0, with the aim of establishing a more detailed connection with the
quantity of charge. The reason is that while the apparent frequency is of interest
for the purpose of wave correlation and interpretation, there should be different
changes caused in the specific frequency components by varying the quantity
of the charge, and these can therefore be demonstrated only in the am-
plitude-frequency spectrum. An example of this is shown in Fig. 2 A good
survey results from the direct comparison of spectra for various distances from
the shotpoint and for individual time windows which contain different waves.
It is obvious that the higher frequency portions increase as the quantity of the
charge is reduced. It is conspicuous especially for the reflected waves that while
the maxima change their amplitude systematically, their frequency remains
stable. This applies, however, only to one reception range (x, t) each where the
geophones, ground coupling, wave paths and reflection effects remained un-
changed throughout the series of experiments. When, however, a comparison
is made of the spectra of the reflected waves in the two different reception
ranges, the position and form of the individual maxima will be found to differ
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considerably. This suggests the need for a representation or calculating tech-
nique from which these effects which have been caused by wave propagation and
reception, are eliminated.

Normalized spectra are compared in Fig. 2; absolute spectra are shown in
Fig. 3 that refer to the same (X, t) range as those in the centre column in Fig. 2
It is clearly demonstrated that the decrease in the amplitudes intensifies toward
the higher frequencies as the quantity of charge grows, whereas it is hardly
present in the frequency interval covered for which the charges are very small
(e.g. two caps). The idea which suggests itself first is to try and generalize this
amplitude change in the form of a simple envelope curve. It is not practical,
however, because the effects from wave propagation and reception are still too

strong.

175 - 215
0.20 - 0.40

105 - 145

0.16 - 0.26
REFLECTED  WAVES

X [ml 25-55
(si 0.16 - 0.40
SURFACE WAVES

Fig. 2. Amplitude-frequency spectra for variations of charge quantity, Q, and for different
distances , from the shot point and different time intervals At. Charge depth: 15 m, closely
below low-velocity layer

2. abra. Amplitado-frekvencia spektrumok valtozoé Q tdltetnagysagra és killonb6z6
y robbantépont tavolsagokra, kiillonb6zé At id6ablakokban. Toltetmélység: 15 m, kdzvetlenil
a lazaréteg talpa alatt

Puc. 2. AMNIUTYAbI-4aCTOTHbIE CMEKTPbl MPW PasHbIX BeIMUMHAX 3apsga Q U paccTosHMiA
MeXay MyHKTOM B3pbiBa 1 MYHKTOM MpuemMa B pasHbIX BPEMEHHbIX OKHax. Mny6uHa 3apsga
15 M, HenocpeacTBEHHO MOZ 30HO MasbiX CKOpOCTei
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Fig. 3. Absolute amplitude spectra for different charge quantities, Q (for data, see Fig. 2, centre
column)

3. dbra. Kulénboz6 Q tdltetnagysagokhoz tartozé abszolGt amplitidéspektrumok (adatok, mint
a 2. dbra kozépsé oszlopaban)

Puc. 3. AGCONMIOTHbIE aMNAUTYAHbIE CNEKTPbI, OTHOCALLMECS B Pa3HbIM Be/MYMHAM 3apsija
Q (pmaHHble TakXkKe Kak B cpeaHem cTonbue, puc. 2)

As a next step one may try to show the spectral amplitude response
separately for the individual frequency components as a function of the quantity
of the charge. Fig. 4 indicates that this appears to be a good approach to
quantifying the relation between the quantity of the charge and the frequency.
At low frequencies the amplitudes increase with the quantity of the charge and
then decrease from about 30 Hz onward. This decrease is greatest at about 40 Hz
and then diminishes with increasing frequency. There is the same trend for all
three reception ranges analysed, with regard both to surface waves and reflected
waves, and the predominant effect of wave propagation and reception has been
eliminated.

When one changes over now to the amplitudes of the absolute spectra and
selects a double logarithmic scale, a type of representation results which was
once tried by Mototova [1964] but has not been used since (Fig. 5). It can
provide p values for each frequency interval and each individual frequency
component, which then serve as a measure of changes in the spectral amplitude
portion as a function of the quantity of the charge. When the p values found
in this manner are summarized as a function of frequency, this should give a
suitable approach to determining charge quantity-frequency relations. This
should make it possible to compare quantitatively the different excitation con-
ditions such as the depth of the charge, the surrounding rock and the type of
explosive.
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88Hz 92HZ 100 Hz
Q [kg]
=6m 75 m  0"16-0-36s SURFACE WAVES
ho =3 m 175 m  024-0 40s

|
105m (hs-066sJ REFLECTED WAVES

Fig. 4. Amplitudes of normalized spectra as a function of charge quantity, Q, for individual
frequency components (for data see Fig. 2)
HQ- charge depth; h0- thickness of low-velocity layer

4. dabra. Normalt amplitiddéspektrumok a Q tdltetnagysag fliggvényében, kivalasztott frekvencia
komponensekre. HQ- toltetmélység; hO- lazaréteg vastagsaga (adatok, mint a 2. dbran)

Puc. 4. Hopmanu3oBaHHble aMNAUTYAHblE CMEKTPbl Ha BblGpaHHbIE KOMMOHEHTLI YacTOT
B 3aBMCUMOCTM OT BENUYMHBI 3apsija.
Hg - rnybuHa 3apsaga; h, - MOLWHOCTb 30HbI MafblX CKOPOCTeR (AaHHbIE TaKXKe Kak B puc. 2)
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Fig. 5. Amplitudes of seismic waves as a function of charge quantity, Q. for different frequency
intervals [after Molotova 1964].
HQ- charge depth; /;, - thickness of low-velocity layer

5. abra. A szeizmikus hullimok amplitadoéi a Q t6ltetnagysag flggvényében, kiilonb6z6
frekvencia-intervallumokban [Molotova 1964 utan]
HQ- toltetmélység; h,, - lazareteg vastagsaga

Puc. 5. AMNANTYAbl CEACMUYECKUX BOMH B Pas3HbIX 4acTOTHbIX MHTepBanax B 3aBUCMMOCTU OT
BeNNYMHLI 3apsaga [no Monotosoli 1964].
Hq- rny6uHa 3apsga; VD- MOLLHOCTb 30Hbl MasblX CKOPOCTEN

4. A graphical-numerical method

In a relation

A{Q.f) = kQpif)
or
19" X(0 = lgk+(Ilg Q) (pfi)
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the following applies to each frequency component of the spectrum:

= A fi. A fi. QI

Pfi igQ2~igQ1

In this way thepfi values can be determined from the inclination of straight
lines. For a sufficiently safe determination of the inclination of the straight line
it is useful to have readings available for several (at least four) different charge
quantities. The individual charges in a series of experiments should differ by a
factor of two each. Figs. 6-8 demonstrate how such a series of experiments is
evaluated.

Fig. 6 shows the spectral amplitudes derived from the absolute amplitude
spectra, as a function of the quantity of the charge. As can be seen, the relevant
readings can be summarized to give straight lines. The pfi determined from these
are plotted on the r.h. side of Fig. 6. From this series of data it is already clear
that a systematic connection should exist between p and /.

Fig. 6. Spectral amplitudes of reflected waves as a function of charge quantity for determining
exponent p (for data, see Fig. 2, centre column)

6. abra. Reflektalt hullamok spektrum-amplitidoi a tdltetnagysag fliggvényében a p kitevé
meghatarozasara (adatok, mint a 2. abra kdzéps6é oszlopaban)

Puc. 6. CnekTpanbHble aMNANTY bl OTPAKEHHbLIX BOMH, B 3aBUCMMOCTI OT Be/IMUMHbI 3apsaa
ANs onpefeneHus nokasatens «p». (LaHHble TakXe Kak B CpefHeM cTonbue puc. 2)
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When these pf . values are plotted against the frequency, the result provides
the desired quantitative relation. For example, Fig. 7 summarizes the p values
of Fig. 6. The reduction ofp with increasing frequency which has been previous-
ly detected in a qualitative sense, is now quite obvious. Now the attempt can
be made to determine an approximate function, in this case a straight line

p=a-bf

where the constants a and b are the desired comparative values which indicate
the change in the spectral amplitudes when the quantity of the charge varies (J
denotes frequency). The only remaining effects on these constants are essentially
the surrounding rock and the depth of the charge.

This statement must, however, be qualified in one respect. As has been said,
some workers report that the exponent p in the relation A = kQpis dependent
also on the quantity of the charge in cases where the charge quantity interval
under consideration is quite large (see for example Fig. 1). In these cases p is
reduced as the quantity of the charge increases. It therefore appears desirable
to define the p values obtained and/or the function p = / (frequency) with its
constants determined from these values, only for a specific range of charge
quantities that should not be too wide.

Fig. 7. Exponent p as a function of
frequency (values from Fig. 6)

7. abra. A p kitevd a frekvencia
fuggvényében (a 6. abrardl vett adatok)

Puc. 7. Noka3satenb «p» B 3aBU3UMOCTU
OT 4acToT (faHHble B3ATbl U3 puc. 6.)

Fig. 8 is intended as an illustration of the fact that the determination of p
may be rather difficult. It shows the values for the surface waves from Fig. 2,
and there is an obvious difference between these and the reflected waves (Fig. 6).
The amplitude curve inclinations can be determined only up to 40 Hz because
no straight lines can be formed beyond 50 Hz. In these cases it will not be
possible, for the time being, to identify p and, as a result, p = / (frequency).
Instead the representation Ig A = F(lg Q) must be used for assessment and
comparison. In this example, reflected waves may possibly have an effect on the
data, considering the low charge quantities.
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Fig. 8. Spectral amplitudes of surface waves as a function of charge quantity for determining
exponent p (for data, see Fig. 2, left column)

8. abra. Felileti hullamok spektrum-amplitidoi a toltetnagysag fiiggvényében a p kitevé
meghatarozasara (adatok, mint a 2. dbra baloldali oszlopaban)

Puc. 8. CnekTpanbHble aMNANTY /bl MOBEPXHOCTHBIX BO/MH, B 3aBUCUMOCTM OT BENMYMHLI 3apsaaa
AN onpeaeneHus nokasatens «p». (JaHHble Takxe Kak B NEBOM CTo/6LUe puc. 2)

Finally, mention should be made of another possibility for determining p
which can be used when readings are available for only two different charge
guantities. An alternative to

lgOz-1gél

_ Y(AaJAq)ii
Pii  Ig(R2RI)

where (AgJAg"j.(in the range 0iS/(iS maximum frequency with an amplitude
which can still be evaluated) is the division of the two spectra for Q2 and Qx.
Since Ig (Q21Q1) is constant here, p can be determined from the spectral division.
One should, however, be careful of this kind of determination because the
accidental effect from a single shot which is reduced by the formation of straight
lines in the event of several charges, may excessively influence the result. An
example of this type of determination is given in Fig. 9. Here it seems just about
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possible to eliminate the effect of a connection between p and / (caused by a
slight shift in the amplitude maxima of the two spectra), particularly for the
higher frequencies. As for the low frequencies, however, the shape of a curve
already becomes quite problematic.

Fig. 9. Exponent p as a function of frequency, determined from spectral division for two charge
quantities (Q2=0.17 kg, Qx=0.04 kg)

9. abra. A p kitevd a frekvencia fliggvényében, két toltetnagysaghoz tartozé spektrum
hanyadosabol meghatarozva (82=0,17 kg, 320 .04 kg)

Puc. 9. MokasaTtenb «p» B 3aBUCUMOCTW OT 4acTOThbl, ONpeAensieMblil feneHneM CreKTpoB,
OTHOCAWMXCS K ABYM BenmumHam 3apsiga (82=0,17 kr, 820 .04 «r)

5. Preliminary results

The following data have so far resulted from an analysis of charge quantity
tests for the Cenozoic:

Area R(kg) HO(m) hoim) Wave type a b
12 0.005
1 0.04-0.35 15 14 reflected 115 0005
1.0 0.013

5 14 reflected 11 001
2 0.04-0.7 18 15 reflected 1.25 0.004
17 0.008
6 15 reflected surface 23 0027
wave 18 0.023

3 0.04-0.17 24 21.5 reflected 17 0.01

6 215 reflected 2.0 0.016
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This makes it possible to estimate quantitatively the effect of the charge
quantity on the frequency content of seismic waves for an area studied and
under the measuring conditions selected. For example, the following can be
concluded for area 1

The constants a and b are
for shooting below the low-velocity layer (LVL) a—1, b=0.005

for shooting in the low-velocity layer a=1, 0=0.01.
From this it follows for shooting in the LVL  below the LVL
for frequencies around  0- 20 Hz 0 40 Hz
A~Q 12 40- 60 Hz 80-120 Hz
A~ Q°=const. 80-120 Hz 180-220 Hz
A~ (2712 150 Hz 300 Hz

This means that in the case of shooting in the low-velocity layer any growth of
the charge quantity in the normalized amplitude spectrum causes a reduction
of the higher frequency portions which is double that for shooting below the
LVL. Or, conversely, any reduction of the charge quantity will roughly raise the
higher frequencies in the normalized amplitude spectrum twice as much if the
charge is exploded immediately in the low-velocity layer, compared with an
explosion below the LVL. The decisive factor for the measuring quality and for
approaching geological projects in these cases therefore consists of finding a
charge quantity which is just about sufficient.

6. Concluding remarks

In the three areas studied, the relation p = a—b f {see table) which has been
obtained is an adequate approximation for describing the dependence of the
spectral amplitude behaviour on the quantity of the charge. In area 3 it is
suggested that this dependence can also be expressed by the relationp = a- bf4
(1 <g<2). This is why the results presented here are intended only as examples
whose applicability is restricted to the particular area being studied. Regardless
of the type of this relation, however, the determination method used, and the
guantifiable statement in comparing different excitation parameters, are gener-

ally practicable.

REFERENCES

Farr J. B. 1976: Very high resolution seismic profiling. 38th EAEG Meeting, The Hague, Preprint

Gaertner H., Rische H., Fischer K. H. 1985: Schusseismische Braunkohlenerkundung als Alter-
nativldsung. Zeitschr. f. Geol. Wissensch. 13, 1, pp. 23-32

Levyant V. B. 1964: On the effectiveness of near-surface explosions for seismic measurements (a
case history of the Volgograd area (in Russian). Geol. irazv. 10, pp. 123-140

Meissner R., Stegena L. 1977: Praxis der seismischen Feldmessung und Auswertung. Akadémiai
Kiad6. Budapest



Frequency content of seismic waves as afunction of charge 403

Molotova, L. V. 1964: On the influence of explosion conditions on the frequency spectra of seismic
waves, |. Results of experimental measurements (in Russian). lzv.- A.N. SSSR, Ser. geof., 12,
pp. 1753-1766

Rische H. 1985: Anregung seismischer Wellen in sehr geringen Tiefen. Geophysik und Geologie,

3, 2. pp. 125 136 ) ) ) o .
Ziolkowski A., Lerwill W. E. 1979: A simple approach to high-resolution seismic profiling for

coal. Geophysical Prospecting 27, 2, pp. 360-393

SZEIZMIKUS HULLAMOK FREKVENCIA-TARTALMANAK FUGGESE A
TOLTETNAGYSAGTOL

Hans RISCHE

A toltetnagysag - frekvencia-tartalom 6sszefliggés vizsgalatara végzett kisérleti mérések soran
az ismert A - kQp dsszefliggést ellendrizték és egy jobb, p=a - b mfrekvencia kapcsolatot hataroz-
tak meg. Ez az egyenlet megfelel6 pontossaggal kozeliti az amplitad6spektrum toltetnagysagtol valo
fliggését.

3AB/ICMOCTb YACTOTblI CEMCMUYECKUX BOJIH OT BE/INUMNHbI 3APALA
MaHC PULLE

Mpn NpPoBeAeHUM OMbITHbIX U3MEPEHUIA C Liebio U3YUeHNs 3aBUCUMOCTM YacTOTbl OT BeNNUU-
Hbl 3apsida NpoBepsnach M3BECTHAs 3aBUCUMOCTbL A = k<( 1 onpeaensnacL 60nee TouHas CBA3:
a—bj.3To HOBOE ypaBHEHWe A0CTaTOUHOM TOUHOCTbIO NPUGNNKAET 3aBUCUMOCTb aMMITYAHOTO
CMeKTpa OT BENMUMHbBI 3apsja.
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COMPUTATION AND RELIABILITY OF PSEUDO-POROSITY
SECTIONS FROM SEISMIC DATA

Imre SZULY'OVSZKY™*

The paper compares the porosity section computed from a pseudo-acoustic impedance section
with borehole data from a productive area. An investigation on the distortion in porosity computa-
tion is performed in a sand reservoir using seismic acoustic impedance instead of velocity, and the
average values of other parameters.

Keywords: reflection seismics, pseudo-acoustic impedance, porosity transformation, porosity predic-
tion, Wyllie relationship, sandstone reservoir

1. Introduction

The transformation of a seismic section into a pseudo-acoustic impedance
section - using, for example, recursive inversion - opened new ways to get
information that was not part of conventional seismic processing. The pseudo-
acoustic impedance section was the first [Lindseth 1979]. Its information con-
tent is the same as that of the original seismic section but the appearance is
different. The amplitudes in the original seismic section are proportional to the
derivative of the acoustic impedance but the amplitudes in the pseudo-acoustic
impedance section are proportional to the acoustic impedance, one of the
important physical parameters. The reliability of the pseudo-acoustic section
may be enhanced by borehole data. The pseudo-acoustic impedance section -
though with limited accuracy and much less resolving power - can be used as
a series of acoustic impedance logs and, for example, a porosity section can be
computed.

The reliability of the derived porosity is not as great as the reliability of the
borehole porosity although the seismic porosity represents continuous informa-
tion along the seismic line. The derived porosity section may be called pseudo-
acoustic porosity and it approximates only acoustic porosity derived from well
log data.

In order to compute the pseudo-acoustic porosity, the pseudo-acoustic
impedance section is required and to compute the latter borehole information
is needed. Seismic processing Yyields an approximation of the reflection coef-
ficient series restricted by the seismic frequency band. It is well known that the
acoustic impedance series and the reflection coefficient series represent the same

* Geophysical Exploration Company, POB 213, Budapest, H-1391, Hungary
Manuscript received (revised form): 16 May, 1985
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information - they can be transformed into each other, but only if the starting
velocity is known. Moreover, the seismic method has a restricted resolution. In
a real case the starting velocity is not known and the seismic resolution is not
large enough to gain information about the fine structure of the geological
sequence. In view of this, an infinite number of real acoustic impedance func-
tions may be ordered to a fixed seismic reflection coefficient series. Similarly,
an infinite number of lithology sections may be ordered to the fixed acoustic
impedance function. Porosity is a lithology parameter, consequently, starting
from seismic information to get lithology information, e.g. to get porosity
without borehole information, is just not possible. Velocity, fluid content and
lithology must be known to obtain a correct porosity prediction. The Wyllie
time average relation - the porosity transformation equation - is experimentally
determined for a fixed lithological unit. In its well log application corrections
are used to eliminate the distorting effects of some parameters. Acoustic poros-
ity is only one of the components in an effective porosity determination since
porosity data may be computed from gamma-gamma, neutron-gamma and
resistivity logs.

When predicting porosity from seismic data the possibilities are more
restricted than in the case of well log data but, by investigating the correctness
of the relation, the reliability of the results can be checked. Porosity is one of
the most significant parameters in a reservoir so it seems to be worth determin-
ing it from seismic data, even with limited accuracy.

2. Acoustic porosity prediction from seismic data

To compute seismic pseudo-acoustic porosity, the absolute velocity func-
tion is needed. Therefore, the first step is to obtain a reliable absolute pseudo-
acoustic impedance section. In most cases relative sections are sufficient since
the anomalies are recognizable. To compute a relative pseudo-acoustic im-
pedance section, the proper seismic phase has to be used, and the approximate
scaling of the seismic section and the approximate starting velocity are necess-
ary. To compute the absolute section, the following additional information is
required: the exact values of the scaling coefficient, the starting velocity and the
low frequency acoustic impedance component. All of these can reliably be
acquired from borehole data. The easiest way to check and find the correct
values of all the above parameters is the following: a nearby borehole acoustic
impedance is measured, the pseudo-acoustic impedance section is computed
with the estimated parameters, and the borehole acoustic impedance log and a
pseudo-acoustic impedance trace close to the borehole is displayed. All the
parameters are varied to get minimum discrepancy between the two traces. The
longer the borehole log, the better the parameter estimation.

Figure 1 shows part of a seismic section from a productive area. The
borehole locations are shown (A and B). Their offset distance from the seismic
line is 150 m on both sides. The result of the foregoing parameter estimation
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is shown in Fig 2. A is the CDP trace close to the borehole, B is the same trace
after deconvolution, C is the borehole acoustic impedance trace, D is the
borehole acoustic impedance trace superimposed on the pseudo-acoustic im-

pedance trace.
Figure 3 shows an absolute pseudo-acoustic impedance section. The acous-

tic-impedance log of borehole B is displayed at the nearest trace, both traces
drawn in heavier lines. The coordinate system of the borehole acoustic im-
pedance log is displayed too. If the coordinate system is shifted to any CDP
point the value of the pseudo-acoustic impedance can be read at any time.

AB

11

130 lio 150 160 170

Fig. I. Seismic time section with borehole locations A and B
/. abra. Szeizmikus idészelvény az A és B mélyfaras helyével

Puc. 1. BpemeHHOn pa3pe3 mecTamu rny6okoro 6ypeHuss A n B
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(M/BECKO ICC.) (M/BECHG /CC.)

D

Fig. 2. Borehole acoustic impedance log and pseudo-acoustic impedance log close to the
borehole. A: CDP seismic trace, B: trace A after deconvolution, C: pseudo-acoustic impedance
trace computed from trace B, D: trace C and the borehole acoustic impedance log shown
together

2. dbra. A mélyfuras kozelébe esé pszeudoakusztikus impedancia-szelvény és a mélyfarasi
akusztikus impedancia gorbe. A: szeizmikus &sszeg-csatorna, B: dekonvolvalt 6sszegcsatorna. C:
pszeudoakusztikus impedancia csatorna B-b6l szamitva, D: a C csatorna és a mélyfarasi
akusztikus impedancia gorbe egyutt

Puc. 2. Pa3pe3 MceBf0aKyCTMUECKON XXEeCTKOCTU M KpMBasi akyCTUUECKOIi KEeCTKOCTH,
Haxopslvecs B6AM3N rny6okKoro GypeHus. A: ceficMuueckas cymmoTpacca, B: cymmoTpacca
nocne 1eKoHBoMbUMKM. C: Tpacca NceBoaKyCTUUECKOl KECTKOCTM, BbluncneHHasa u3 B, D:
Tpacca C 1 KpuBasi aKyCTUUECKOI ECTKOCTM BMecTe
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0 looo 2000 5000 Uooo [k/SEC ]|

Fig. 3. Absolute pseudo-acoustic impedance section with the borehole acoustic-impedance log

3. dbra. Az abszolut pszeudoakusztikus impedancia szelvény a mélyfurasi akusztikus impedancia
gorbével

Puc. 3. Paspe3 a6CONMOTHON MCEB0AKYCTUYECKOI XECTKOCTU BMECTE C KPUBOI aKyCTUYeCKOi
XKECTKOCTH

We can compute acoustic porosity from all the traces of this absolute
pseudo-acoustic impedance section. The computation is made by the Wyllie
time average relation. This equation supposes that the porosity is intergranular
and only the rock matrix and the interstitial fluids are present. The formula
including transit times is well known:

b =
Atr—At,,

where @ denotes porosity
At__ transit time of the rock matrix

Atf transit time of the interstitial fluids.
The formula was experimentally determined for brine-filled sandstones of vari-
able porosity and in this case it is substantially accurate. In all the cases which
are different from this we have to correct the distorting effects. These may be,
for example, as follows:
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- Low consolidation: extremely high values of porosity would be com-
uted.

- ghale content: the transit time is higher than in the case of a rock with
the same porosity but without shale content, therefore the derived po-
rosities seem to be higher than the real values.

- Hydrocarbon content: the velocity decreases (transit time increases) in
the presence of a certain percentage of gas so higher porosity values
result as compared with the real values.

- Too high porosity may appear as a distorting effect when using the
borehole sonic log - since in this case the invaded zone is thin, the mud
cake is thick, the original pore content remains in the pores of the
invaded zone. In case of gas content the resulting porosity must be
multiplied by a factor of approx. 0.8.

To eliminate the above distortions empirical corrections are employed. It is clear
that the computation of acoustic porosity is not without difficulties even when
using well log data.

When computing the porosity from seismic data, the above mentioned
distorting effects also appear - with the exception of the different invasion
effects. These additional distorting effects may be as follows:

- The pseudo-acoustic impedance traces are strongly band-limited com-

pared with the borehole sonic log.

- The pseudo-acoustic impedance trace is an approximation of the acous-
tic impedance log, yet the Wyllie relation uses transit times. The effect
of density must be eliminated or investigated.

- A seismic trace and the pseudo-acoustic impedance trace can be seen as
a composition of constructive and destructive interferences. The largest
amplitude anomalies of the seismic trace are not in correlation with the
largest acoustic-impedance variations in any situation. In view of this the
pseudo-acoustic impedance trace cannot be expected to approximate
closely the real acoustic log. Moreover, non-productive buildups can
generate similar acoustic-impedance anomalies as a porosity anomaly
but in the procedure it is handled as a porosity anomaly.

- We are not able to change lithology parameters from sample to sample
as in borehole data processing, since these are not available for the whole
seismic section.

- 5% relative error in transit time causes about 16% relative error in the
resulting porosity at ®= 20% porosity value. Obviously, the transit times
computed from the seismic section are not precise so the seismic acoustic
porosity values are somewhat qualitative in nature.

In practice it is indispensable to examine the measure of the different
distorting effects. The following analysis was made on the borehole data of the
investigated area. We have checked the sandstones in the area to ascertain its
state of consolidation. Figure 4 shows the relation of density and velocity in
borehole A. We used the logarithm of the density and velocity; the circles show
sands, asterisks show shales. We made linear regression for sands, for shales and
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also for the whole data set. The relation between the density and velocity - after
Gardner et al. [1974] - is given by

g = AvB

where A =0.31, # = 0.25, for depositions, when the velocity is measured in m/s,
the density in g/cm3.

The parameters of the regressions are as follows:

sandstones /1=0.13 A=035 C=0.78

shales /1=0.35 # =024 C=0.77

whole data set 1=042 # =022 C=0.65

where C is the correlation coefficient.

Lud
m

LNRO CGR/CM3 )

Fig. 4. Velocity - density relation

4. dbra. Sebesség - s(r(iség dsszefiiggés

Puc. 4. 3aBUCUMOCTb MEX[Y CKOPOCTbIO U MNOTHOCTbIO



412 I. Szulyovszky

We see from the figure and from the regression coefficients that the sands
and shales are well separated by density and velocity values: the correlation
coefficient is much better for the separated data than for the whole data set. The
coefficients are near to the published values. The average velocity for sands is
about 3050 m/s [328 ps/m] which corresponds to consolidated sandstone.

The Wyllie formula requires transit times; from the pseudo-acoustic im-
pedance we get acoustic impedance values. There is some possibility to compen-
sate the effect of density: by interpolation, extrapolation of well log data, or by
establishing a statistical relation as before but it is not mandatory to apply the
correction. In cases when the seismic dynamics is governed by density variations
[Gogonenkov-K rasavin 1983] the correction must be carried out otherwise it
is nonsensical to compute seismic porosity because the reliability will be very
poor.

If the seismic dynamics is governed by velocity variations, the reliability of
the resulted seismic porosity will be better but the effectiveness of the density
correction must be verified to avoid generating larger errors with the correction.
Figure 5 shows the density, the velocity and the acoustic impedance curves in
borehole A. The acoustic impedance curve is very similar to the velocity curve
so, using constant density, we can compensate the effect of density in an
acceptable way. Ifwe have core samples, additional investigations may be made.

When the above investigations show a good correlation between borehole
acoustic porosity and seismic pseudo-acoustic porosity, there are two ways to
get the porosity section from the seismic section. The first is to transform the
pseudo-acoustic impedance traces to a porosity section, using the borehole data,
making the empirical corrections as mentioned on page 410, comparing the
nearest corrected trace with the effective porosity resulting from integrated well
log interpretation and - thus calibrating the seismic porosity trace. The other
way is stratigraphic interpretation, average transit time determination and
porosity computation for the strata [Angeleri-Carpi 1982, Maureau-V an
Wijhe 1979].

We have followed the first option. The determination of the lithology
parameters was done in the following way: Fig. 4 shows that the average velocity
of the sandstone is about 3050 m/s [328 ps/m]; the average velocity of the shales
is about 2750 m/s [364 ps/m], This sandstone velocity is in the lower part of the
customary consolidated sandstone velocity range. This shale velocity is higher
than the customary shale velocity range. In addition, it overlaps the velocity
range of the consolidated sandstones. The reason for this is probably that they
are not clean formations; the sand has an average 23% shale, shale has an
average of 15% sand content so the velocities are close. Consequently, the whole
section can be handled as a homogeneous formation in view of porosity. Since
the sandstones can be regarded as consolidated sandstones, we have used a transit
time of 180 ps/m for the matrix.

For fluid transit time we have used the recommended 620 ps/m value; 23%
average shale content was used during the transformation. Figure 6 shows the
derived porosity section. Its reliability can be checked in the same manner as
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Fig. 5. Borehole density, velocity and acoustic impedance logs
5. dbra. Mélyfurasi slir(iség-, sebesség- és akusztikus impedancia gorbe

Puc. 5. KpuBble NIOTHOCTU, CKOPOCTU U aKyCTUYECKOMN XKECTKOCTU, NOAYyYeHHOW Npu rny6oKom
6ypeHun

in the case of the pseudo-acoustic impedance computation. The well data from
borehole B and a nearby seismic porosity trace are shown in Figure 7. Trace 1
is SW: water saturation; SXO: the flushed zone water saturation; SWR: residual
water saturation. The dark zones mark the gas-bearing layers. Trace Il is the
effective porosity result of well log interpretation; trace Il is the acoustic
porosity computed from the sonic log; trace 1V is the porosity computed from
the well acoustic impedance data. No essential difference is present between the
porosity logs computed from sonic or acoustic impedance trace. The gas-bear-
ing layers appear with strong anomalies for which - applying the correction -
the porosity values are acceptable. The last trace (V) is the nearby seismic
porosity trace. This shows quite good agreement with the well log acoustic
porosity trace, if smoothed as if filtered in the seismic band-pass.

The layers between 1440-1480 m have rather high porosity and they
contain water judging by other well logs. This is not seen in the borehole
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Fig. 6. Porosity section
6. abra. Porozitas szelvény

Puc. 6. Pa3spes nopuctocTtu

7. dbra. Mélyfurasi informéaciok és a szeizmikus porozitas csatorna
I: SW - viztelitettség, SXO - elarasztott zona viztelitettsége, SWR - maradék viztelitettség;
Il: effektiv porozitas a karotazs gorbék komplex értelmezéséb6l; I11: akusztikus porozitas. az
akusztikus karotazsbol szamitva; IV: porozitas, az akusztikus impedancia adatokbél szamitva;
V: szeizmikus porozitas csatorna

Puc. 7. JaHHble rny6oKoro 6ypeHus u celicMmuyeckas Tpacca MopucTocTu
I: SW - BogoHacbIWweHHOCTb; SXO - BOAOHACHIWEHHOCTL 3aMbITOl 30HbI, SWR  ocTaTo4Has
BOAOHACbILLEHHOCTb; Il adhheKTMBHAA NOPUCTOCTb MOMYYeHHas MO KOMMIEKCHOM
WHTEprpeTauun KapoTaXKHbIX KpuBblX; Il1l: akycTuyeckas mopucTOCTb, BblYMCNEHHAA U3 [aHHBIX
aKyCcTunyeckoro Kapotaxa; IV: nopucTocTb, BblUMCIAEHHAS U3 AaHHbIX aKyCTUYECKON XECTKOCTU
V: celicMMyeckas Tpacca NopucTocTu
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Fig. 7. Borehole information and seismic porosity trace
I; SW - water saturation, SXO - flushed zone water saturation, SWR - residual water
saturation; Il; effective porosity from integrated well log interpretation; Ill: acoustic porosity
computed from sonic log; IV: porosity computed from acoustic impedance data; V: seismic
porosity trace
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acoustic porosity nor in the seismic acoustic porosity. To trace these layers the
corrections would have to be carried out more exactly, resulting in more detailed
well acoustic porosity values. In seismic application we have carried out the
corrections only in smoothed form in agreement with the seismic resolving
power which is far smaller than that of the well log resolving power. In spite
of this limitation the gas-bearing layers appear with good detectable porosity
maxima in the seismic porosity trace too.

3. Conclusions

It is easy to compute a relative pseudo-acoustic impedance section from
seismic data. To transform it to an absolute pseudo-acoustic impedance section,
borehole acoustic impedance information is needed. We have a further possibil-
ity, i.e. the computation of another lithology parameter, porosity from an
absolute pseudo-acoustic impedance section but more borehole information is
indispensable for the computation and for checking the reliability of the results.
If the reliability of the seismic porosity is good, it can greatly contribute to the
reservoir delineation.
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