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HIGH RESOLUTION INTERVAL VELOCITIES

Istvan KESMARKY*

The principal limit of the resolution of physical methods in the presence of random com-
ponents (i.e. noise) is well known in statistical theory. However, there has been an increasing
demand for a higher resolution of the physical parameters for exploration purposes. Therefore, an
important research aim is to achieve a reasonable compromise between the two controversial

requirements.

As demonstrated in this paper, the estimated interval velocities become very unrealiable and
highly correlated if resolution is increased. To find a compromise, the reliability of interval velocity
estimates must be increased to an acceptable level while ensuring that the estimates stay close to
physical reality. This process should result, more or less, in smoothing the original rough estimates.

This paper consists of three parts. In the first part, the statistical description of interval velocity
estimation errors is outlined. In the second part, the possibility of decreasing estimation errors is
discussed by taking into consideration the highly correlated nature of interval velocity estimates via
the computation of statistical residuals. In the third part a few synthetic examples of the application
of the method is shown.
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I. Statistical behaviour of the interval velocity estimates

First let us look at the statistical description of the estimated interval
velocity errors, the mean, the standard deviation, and covariance between
various layers. Suppose that seismic measurements are made above a half space
containing horizontal homogeneous layers. The spread parameters can be
chosen arbitrarily. As a result of standard velocity analyses, we may have a great
number of arrival time and stacking velocity pairs (/0, vs) corresponding to
primary reflections spaced arbitrarily close to one another. All these hyperbolic
parameters are supposed to contain statistical errors.The independence of the
errors corresponding to each horizon is also assumed to be present. This is a
realistic approach after a successful automated static correction.

The standard deviation and covariance of reflection hyperbola parameters,
t0and vs, can practically be deduced on the basis of the standard deviation, e,
of the random time shifts after the automatic static correction (see APPENDIX A).
Thus, in the case of a known standard deviation, a,, the mean, standard
deviation and covariance of hyperbola parameters, tQand vs, can directly be
estimated. These parameters can be regarded as secondary measurement data
of known statistical behaviour.
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Now, the estimation of interval velocities by the well known Dix formula
can be discussed. The formula is expressed by the error terms of each quantity:

K +4v92fo+At0) - (y ,+AvS ):(/g,_,+ At0i_)
(N, T dt0i)—(t0j_, + A/q. 1)

where:  \{is the interval velocity of the /-th layer
AV{is the error term of L|
vdhand tOhis the stacking velocity and the zero offset arrival time of the
A-th reflection, respectively.

The mean, standard deviation and covariance of interval velocity error
term, AVh can be expressed after expanding the expression into Taylor series,
retaining the linear terms and computing the expected values (sce APPENDIX B).

In essence, it may be said that the interval velocity estimates are unbiased
but, may have very large standard deviations in the case of small layer thick-
nesses or high noise level. The considerably large negative correlation between
interval velocity estimates of the adjacent layers is of further complication.

For example a stacking velocity error of a certain reflection affects two (the
upper and lower) interval velocity estimates in the opposite sense.

For a quick impression, an example of the standardized form of covariance
matrix C of AVt is:

W+ m (1)

1.00 '047 0.00 . . 0.00
-0.47 100 -0.61 0.00
0.00 ‘061 1.00 . 0.00

0.00 0.00 0.00 . 1.00

It shows that, the covariance can be characterized by a tridiagonal matrix.
Because of the large negative correlation, the interval velocity estimates show
non-minimum standard deviations. Evaluating these statistical parameters, the
interval velocity estimates can also be regarded as secondary (or tertiary)
measured data at a later stage.

2. Correction of correlation terms

A tridiagonal matrix, whose off diagonals contain negative elements, des-
cribes an alternating, oscillatory stochastic process. It is also known that actual
interval velocities vary systematically as sediment compaction varies therefore,
interval velocities of different layers are not quite independent.

The residual computation method, well known from statistics, offers means
to remove the correlation terms. The principle of the method is that terms
predicted from all other estimation errors AVk (k=£i) are subtracted from each
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estimation error AVt. The prediction can be carried out on the basis of a linear
regression model, similar to the predictive deconvolution.

Let us introduce the variable  which is the difference of the interval
velocity estimate, Vh computed by Dix’s formula, and an ideal estimate, vh to
be determined later:

G=Vi-vi (= AVI). @)

(The statistical behaviour of s the same as that of AMdescribed in APPENDIX B.)
The residual /, can be expressed by the inverse matrix D of the covariance
matrix C (see APPENDIX C):

J M

=70 Z ZkDK )

where, Dk and DHare elements of matrix D (= C_1) and M is the number of
sedimentary layers. The values r, are free from the correlation effect. The
covariance of the residual has the following form (see APPENDIX C):

E M = D4-«det (U)/(DiiDjj) @)

This expression depends on the covariance matrix, C (and vf) only. Equation
(4) serves as the theoretical lower limit of the correlation between residuals, >,
and t]j. To achieve an estimate of minimum standard deviation, the sum square

M

of the actual residuals N = £ /- must be minimized or decreased to the

i=1
theoretical minimum formulated by eq. (4), where ' denotes the actual value
during the iteration. Substituting ~ into the expression of >;and norm N, a
simple equation can be deduced, by equating the partial n dérivates to zero:

dN
N

= 1V O -«
where, By = £ DkDKj/Dk ®5)

Trivial solution: vi=Vi
Af

Practical solution: ~ (///Em{//:1}) = M

In spite of the meaningless trivial solution, the gradient vector can easily
be used to decrease norm N step by step, starting from an arbitrary smooth
velocity function t0).

At the /r-th step, N can be computed from and D. The direction of the
steepest descent of A can also be found varying the components &h). Thus, rj"+u
(i=1 2 ..., Af) can simply be reached by a displacement of a certain length,
within the direction mentioned above.

To start the iteration, a reasonable choice for a smooth velocity function
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is a simple stepwise function, which exactly obeys the local compaction trend
and best fits to the interval velocities computed by the Dix formula.

To find a reasonable solution, a technique can be applied that is similar to
the white noise addition method. All elements of covariance matrix C outside
the main diagonal are multiplied by a constant a, with values between zero and
one.

The case a=0 is equivalent to the application of the Dix formula without
modification. If a is equal to 1, the result generally is a strongly smoothed
stepwise function. An intermediate solution can be achieved by using a between
o and :.

3. Examples

A model example containing a velocity anomaly is shown in the next
figures.*

Standard deviation, a,, of the random time shifts with which the original
arrival time data were corrupted is 2 ms. (The source offset is 120 m, the
geophone interval is 120 m and the coverage is 12 fold.) The solid line always
shows the assumed noise-free model. The white lines (in the center of the grey
zones) show the estimated velocities computed from noisy synthetic data. The
grey areas show the standard deviations of the estimates. Fig. 1 is the case of
Dix’s formula (a=0). The interpretation and decision on the existence of one
(or more) low velocity anomaly are no easy tasks due to the large standard
deviations.

Let us regard now the practical use of the resultant interval velocity
estimate against the parameter a in the case of the given model (Fig. 2). In the
case of low noise level** the improvement is not significant, but in the case of
high noise or small layer-thickness the improvement is considerably better
expressed by the r.m.s. difference between the original noise-free interval veloci-
ties and estimates computed from synthetized noisy (t0, vs) pairs. The ideal
solutions are represented by the absolute minima of the curves. The range of
the curves (the relative improvement) is certainly greater in the latter case. In
most cases, the value a=0.9 results in nearly optimum fit.

In the case of a=1 the result is always an extremely smooth (biased)
stepwise velocity function. These solutions are very similar to one another, even
when the noise levels are quite different. This is the reason why the curves
converge in the case of a= .

* The situation represented by this model is similar to that of the interval velocity problem of
marine gas hydrates where the aim is to estimate the interval velocity of the free gas bearing layer
under the gas hydrate layer.

** Decreasing the noise level (a, = 0.5 ms instead of a, =2 ms) is equivalent to increasing the spread
length or the coverage, according to APPENDIX A.
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Fig. I. Velocity function, computed by Dix’s
formula, for a model containing a velocity
anomaly

I. abra. Dix-formulaval szamitott
sebességeloszlas sebesség-anomaliat tartalmazé
modellre

Puc. 1 BbluncneHHoe no gopmyne
[ukca pacnpegeneHve CKopocTeld Ans MOAenu,
BK/tOYatoLLeli B ce6s aHOManunio CKopocTu

INO-WRY TTNE ( 5)

Fig. 2. Estimated interval velocity versus a

2. dbra. Becsiilt intervallumsebesség-értékek az
a paraméter fliggvényében

Puc. 2. OueHnBaemble 3HaYeHUA UHTEPBaNbHbIX
CKOpOCTeVI B 3aBMCMMOCTK OT napameTpa a
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Figures 3. and 4. show the results of the algorithm in the case o fa=0.9 and
a= 1.0. The bulk of the large alternating errors was removed on the former and
the anomaly is better recognizable. The latter result is rather smooth. The place
of the anomaly is visible but its amplitude is rather small. Therefore, choosing
a=0.9 is a compromise between an unbiased but inefficient estimate and an
efficient but biased estimate. The estimate is biased because short interval
velocity anomalies appear as gradual changes.

For example, if the noise level is high, the outstanding feature of short
interval velocity anomalies may be completely smoothed out. This draws the
attention of the interpreter, that the given quality of the available seismic data
is not sufficient for certain conclusions.

It is worth noting that the whole process is in close analogy with the
standard predictive deconvolution. In the predictive deconvolution process
there is an oscillatory shotpoint wavelet to be removed from the trace. The
autocorrelation function (acf) of the wavelet can be estimated from the trace
itself. The inverse operator is computed from this acf.

In the interval velocity estimation, there is also an oscillatory term to be
removed. The acf of this term and the prediction operator can be computed
theoretically. The smooth function, w, to be determined should be that, from
which the result of Dix’s formula can be predicted with a given (minimum)
variance.

INTERUfiL UELOCITY (KMAS)

Fig. 3. Velocity function using the algorithm proposed (a=0.9)
3. abra. Sebességeloszlas a javasolt algoritmus alkalmazasaval, a= 0,9 esetén

Puc. 3. PacnpegeneHve cKOpocTeil Npu NPpUMEHeHWM Npeaaraemoro anroputma,
B cnyyae a = 0,9
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INTERUAL UELQCITY ( KMyS)

Fig. 4. Velocity function using the algorithm proposed (a= 1.0)

4. dbra. Sebességeloszlas a javasolt algoritmus alkalmazasaval, tx= 1,0 esetén

Put. 4. PacnpeaeneHune cKoOpocTeld Mpu NpPUMEHEHUW MpeanaraeMoro anropuTMma,
B cnyyae a = 1,0

4. Conclusions

In the estimation of interval velocities no local maxima of the velocity
spectrum have to be rejected in order to get small enough deviations. Such
type of information loss can be avoided. Due to this feature, the method can
comfortably be used for interpretation of automatically picked peaks on
velocity spectra.

The method retains the simple physical model during the interpretation.
Some smoothing methods result in smooth curves or splines instead of such
simple stepwise interval velocity functions.

The method automatically assures that resolution increases, if the measured
data are more reliable.

The method is a useful tool to find efficient estimates in the case of highly
correlated data.

The display of standard deviations of the estimated physical parameters
(interval velocities and depths) are especially useful for quick visual reckon-
ing of the reliability of the interpretation.
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APPENDIX A
Statistical description of the estimated reflection hyperbola parameters t0 and vs

A simple model of a reflection hyperbola located on a set of traces has the
following form:

JIA, v t0) = Ap (t- j/ 18- A (A D)

where f ki is a discrete element of a trace of a CMP (Common Mid Point) set,
K is the “offset” index (k runs from : to the actual coverage number),
/ is the “time” index
A is the amplitude factor of the wavelet
tp(z) is the known wave shape
/, is the time variable
xk is the offset variable
t0 s the zero offset arrival time
vs is the stacking velocity.
In the case of a regular spread, xkcan be expressed in the following simple form:

xk= 0 +{k-\)G (A.2)

where, @ is the actual spread offset and G is the geophone spacing within the
given type of CMP set. So, the statistical model of the correspondent traces yk

can be written:
Yy = fki +nk (A.3)

where, nki is the correlated random noise component of zero mean and standard
deviation, o.

The statistical interpretation theory gives means to the optimal estimation
of parameters, t0and \s, in the presence of noise. As a by-product, the standard
deviations and covariances also can be estimated [Holtzman 1971, Salat et al.
1982].

The effectiveness of the (pure quantitative) interpretation can be charac-
terized by the information matrix I, which is the inverse of the covariance matrix
of the estimated parameters in the above case.

The general element of the information matrix is:

d fki(p) SfkiiP)

|r “i gp, dpm (A4

where, Ry is the covariance matrix of the noise component, p = {p,, P2 ..., p..}
is the vector of unknown parameters.
Substituting (A.l) into (A.4), and applying indirect partial derivatives
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A d dik where A5
dv  dtkdv’ Ik (AS)
and, using the spectral representation of quadratic forms, we get:
A2 1 E nk
m2 Wil 2
A2 1
(As)
to,, Xk
l« =
a
Il fa2 i2
where, W = — azma)jizJ (A.7)

2N -R ST “d”
o0

< = n/At, At is the time spacing, ®(co) and r(cu) are the Fourier transforms of
the normalized autocorrelation functions of the wavelet fp and the noise,

respectively.
Inverting the 2 X2 information matrix we obtain the covariance matrix of

the estimated parameters:

D2(vs) A2W V.

D\to) (As)

E{vst0)

where, D =

Fortunately, very similar expressions can be derived from the case when
a hyperbola is fitted by the least squares method to the arrival times corrupted
by random time shifts of standard deviation ot [AlI-Chalabi 1974, Késmarky
1976, Marschall 1978].

The only difference is that the factors a2/(A2IV) and tk in egs. (A.s) are

replaced by of and t0, respectively. Thus

A2W (A9

a, can easily be estimated at the final step of the automated static correction.
This latter approach is much more simple for practical use.
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APPENDIX B
Statistical description of the estimated interval velocities, M

Expressing the error term, AV{from eq. (1), expanding it into Taylor series
according to Avsr Avs._t, At0.and AtO0._t, neglecting higher than first-order terms,
we obtain (omitting the subscripts nand o ):

Avi= Vitiav-vi It 1avinas VTV

Viit-ti-i) 2]

The expected values of significance are as follows (assuming “non static type’
random time shifts):

[tiAti. |- ti. IAti

E(AVAV) = ' + V'VjtitiE(AVjAVj) - vilj-M j. tE(AViIAvj_J +
M\GTITY

2 2
v 27‘?' P[VititiEIAVEAtj- 3 - vitlt]_ IE{AVIAL]) -

W -iv/io- 1GE(Avts Javi) t vi L. gl JE(B»,. vau}. 0)-

2Tj [+ - GE(A»_jAL_,) - »-jf _ati- jA 4»,- /)] +
vi-vfoo o e :
VjtjtiE(AvjAti_1)- vj_1tj ItiE(Avj_JAtI_ D+
2Ti [titE(Ati_,Atj_ t)- 14/,

p2-2$_2 Uit E{AVAL)-V]_tti_1ti_IE(AVj_1At) +

2 2

+ ffi--1 G E(At[AL]_I) - ti- itj-iE(At\At)]
where 7] = fi—f_x
APPENDIX C

Linear prediction of correlated random variables

Let us determine the coefficients au which satisfy the following condition
[Vincze 1968]:

~(Ti - 6iz2l2 ——-= min. (C.h)
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Equating the partial au dérivates with zero, we get:
Ci2o12 T Cidal3 + e+ CiVAIM —C;1, (i — (C.2)

where, Cu = £{£,£}.
Rearranging of eq. (C.2) yields (completing the system (C.2) with its first

row):

1 S
C .<*13 = 0 (C3)
0

where S is a constant. Eg. (C.3) is the same as the system used at the design of
prediction error (optimum spike deconvolution) operators, although, matrix C
does not exhibit the so-called Toeplitz symmetry.

The solution can simply be written as:

°Ai

a C4
U an (C.4)
The general solution has the form:

i D (C5)
where D is the y'-th element of matrix D (= C_1).
Now, the residual /7;can simply be expressed:
M
M A,
>h | T-fii (Ces)
j*i j= u i
The covariance of », can be written in the same way:
" X X DikDnCH =
D nDjj k |
Du mdet (D C.7
. ©) (€7)

because of X DnCK = Gjk det (D)
i
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NAGYFELBONTASU SEBESSEGFUGGVENY-BECSLES
KESMARKY lIstvan

A szeizmikus sztratigrafiai kutatas fontos célja, hogy az intervallumsebességeket minél ponto-
sabban. minél nagyobb felbontassal lehessen becsiilni. Az intervallumsebességeket a Dix-formulaval
becsiljik. A formula alkalmazasanal problémat okoz, hogy minél vékonyabbak a figyelembe vett
rétegek, a becsiilt paraméterek szoradsa és korrelaltsdga annal nagyobb. Egy lehetséges megoldas,
hogy csupan egy bizonyos korlatnal nagyobb rétegvastagsagokat vesziink figyelembe.

A szomszédos rétegek becsilt intervallumsebességei kozti nagy negativ korrelacio figyelembe-
vételével az ilyen informacioveszteségeket csokkenteni lehet. Az eljaras kisebb szérasu és kevéshé
oszcillalé sebességfiiggvény-becsléseket eredményez, egyezésben a megfigyelhetd6 kompakcids tren-
dekkel. A kapott fliggvények a paraméterek szorasaival egyiitt abrazolhatok, tomér formaban. Az
eljaras jol szemlélteti az anomalis sebességli vékony rétegek detektalasanak elvi korlatait.

OLEHKA YPABHEHWA CKOPOCTW C BbICOKOW PA3PELLAROLLEWN
CMNOCOBHOCTbIO

NMwTteaH KELLMAPKUN

Lns ceiicMMUYeckux cTpaTurpagmyeckmx NCcneaoBaHMi oueHb BaXKHO KaK MOXHO C 60/1bLLIOW
TOYHOCTbH U C BbICOKOV paspeLuatolleil Cnoco6HOCTbIO OLEHUTb CKOPOCTb UCCNeayeMoro UHTep-
Bana. VIHTepBa/ibHble CKOPOCTU OLEHMBAKOTCS C NMOMOLLbIO opMynbl Aukca. Mpu npumeHeHUn
3TOin (hopMy/bl, BO3HMKAeT Mpo6nema, CyTb KOTOPOI 3aKnto4yaeTcs B TOM, YTO 4YeM TOHbLLE
nccnefyemble con, TeM C MeHbLLUEe TOYHOCTbIO MOXHO OMpeaenuTh OLEHVWBaeMble NapameTpbl,
Tem 6osblie UX Koppenauus. 4ns paspelleHuns atoli Nnpo6nembl, MOXHO BblGMpPaTh ANS U3yYeHUs
Takue CNou, MOLLHOCTb KOTOPbIX 60/blle HEKOTOPOW MpeaenbHON MOLHOCTK.

Vicnonb3ys 3HAUMTENbHYHD OTPULATENbHYI0 KOPPENsUMI0 OLEHMBAEMbIX WHTEPBaNbHbIX
CKOPOCTEi coceHMX CN0EB, MOXHO YMEHbLUUTL TaKOr0 poda noTepu MHGopmauun. B pesynbTaTe,
npyv WCNonb30BaHMM 3TOr0 MeTofa, MONyyaem Takue OLEHKM YpPaBHEHMSt CKOPOCTW, KOTOpble
UMEKT 60MbWNA pa3bpoc M KonebaHusi, N0 OTHOWEHU K HabnAaeMbiM KOMMAKLMOHHbLIM
TpeHaaM. Monyyaemble ypaBHEHUS BMeCTe ¢ pa3bpocoM napaMeTpoB MOXHO M306pa3nTb B KOM-
nakTHoit opme. TMpy NPUMEHEHWM 3TOTO0 METO[a XOPOLIO MPOCNEXMBAKOTCA TEOPETUYECKME
rpaHuLbl AeTEKTUPOBAHNUS TOHKMUX CMOEB C aHOMasbHON CKOPOCTbLHO.



