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Introduction

The physical principles of the induced polarization method were known as
early as in the 19th century but the idea that this phenomenon might be applied
as a geophysical prospecting tool first occurred in the late forties. The method was
soon found to be a powerful technique for ore and—to a certain extent—ground-
water prospecting and it has been further developed since then in two main direc-
tions. Recently two different versions of the induced polarization (IP, for short)
methods are common: the “time-domain” and the “frequency-domain” methods.

While IP measurements proved to be highly efficient in ore prospecting they
are still inferior to other techniques in certain respects. Namely, a serious disadvantage
of the method is that it does not yield exact rock-physical parameters only anomalies,
i.e. relative values which do not express actual physical properties of the rocks
but depend on the parameters of the instrument used. If we perform repeated
measurements with different instruments at the same site then all of them would
correctly localize the individual anomalies, but with quite different amplitudes,
as a rule.

To make this clear let us recall the basic difference between the measurement
of the specific resistivity (SR) and that of the IP. The apparent SR is computed
from the formula

where we have adopted (trougliout these pages) standard notations. Assuming ideal
conditions the (@ value measured is independent of the parameters of the instrument.
Inspecting, on the other hand, a similar formula of the time-domain method (Niisson.
1971)

h

where tx, & are limits of integration with respect to the decay curve, P(t) is the
potential measured at time t, and t is the moment when the current is interrupted,
it is instantly clear that t, and t are instrumental parameters and there is no obvious
argument to think the IP values themselves as being independent of 4 and 2. As
a matter of fact we would have come to the same conclusion if we had analyzed
any other formula of the IP method.*

*ELGI, Budapest
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All in all, it can be said that when measuring SR the value of ga is uniquely
given by a quantitative relation while in IP measurements we have to restrict our-
selves to empirical formulae which inherently depend on the instrument used.
The question naturally arises whether there could be found an instrument-
independent value measurable by IP methods which would already directly charac-
terize certain physical properties—e.g. ore-content—of the rocks.

In the present paper we shall address ourselves to the solution of this problem.
To have a convenient footing to start with we shall first review Maxwell’s equations.

Theoretical difficulties of the description of the IP effect

Let us assume that in the rock investigated the inducing current is DC or a low-
frequency AC (of some tens cps) and that the rock is electrically conductive. Under
these circumstances the resulting electromagnetic field is described by the quasi-
stationary Maxwell equations which read, in the MKS system of units, as follows:

culH =aE a), curt € = —a 8 b),

. i (1)
div =0 c), divd =0 d),

where E and H are the usual field-strengths, a is conductivity and 1 the magnetic
permeability. Obviously, it cannot be expected that Egs. (1) should give any in-
formation as regards the induced polarization since these equations do not contain
quantities corresponding to the polarization of the rock. But, as a matter of fact,
the existence of IP has been repeatedly checked by experiments and also Maxwell’s
equations are of general validity, so there must exist a general enough setting of
these equations which would describe the IP effect and yet it would include the
system of equations (1) as a sjiecial case.

If we wish to preserve the general validity of Maxwell’s equations care must
be taken that after any modification or extension of their range of validity the
correctness of the resulting equations be rigorously checked. It is, of course, a sound
generalization if we substitute the resultant of different specific conductivities into
Eqgs. (1). An extension of this kind was advocated by Wait (1959) in his theoretical
work on the foundation of the frequency-domain measurements and this has been
applied eversince by many authors.

Starting out from theoretical considerations Wait (1959) introduced the concept
of complex impedance defined by the formula

o=a +iaE 2)

where e denotes circular frequency and e is the dielectric constant of the rock.
For alternating currents the magnetic field strength is
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Substituting Eqgs. (2) and (3) into the system of equations (1) we obtain Max-
well’s equations as given by Wait:

curl H=(a+icoe)E a), curl E = - iuo)H b),
diveE =S c), divif=0 d),

where S denotes volumetric charge density. Egs. (4b) and (4d) agree with the corre-
sponding formulae of Eq. (1), Eq. (4a) needs no special explanation but several com-
ments should be made about Eq. (4c). The volumetric charge density S figuring
on the right-hand side of the above equation inevitably arises which means that
a displacement current occurs in connection with the dielectric rock medium. So,
in such a field, Ohm’s law is violated since the conditions of a closed circuit are not
met. This assumption, however, is ojaen to serious objections especially if ree perform,
in thought, the following experiment.

Let us prepare a rock model by impregnating quartz sand with highly conductive
electrolyte. It has been many times experienced with resistivity measurements
that in such a field the current is divergence-free. If we mix metal filings into this
model there immediately appears an induced potential which is probably due to
the volumetric charge density S figuring in Eq. (4). This, however, would imply
that the postulations assuring the validity of Ohm’s law are not obeyed. So we are
faced with a paradox situation. If the highly conductive rock-model and the metal
filings both satisfy Ohm’s law there seems to be no rational explanation why their
mixture would fail in this respect.

We shall try to resolve this contradiction, in what follows.

An electrodynamical rock-model for the IP effect

To begin with, we propose a simple physical pattern of the phenomenon without
going too deep into the intricacies of a complete electro-chemical treatment. We
shall use the rock-model described above.

Suppose that we measure, first of all, the specific resistivity of a pure quartz
sand with some DC-method after a sufficiently long time from the initiation of the
measuring current. We introduce then metal filings into the rock as to ensure a
maeroseopically homogeneous sample and repeat the previous measurement under
identical conditions. Because of the introduction of the metal filings it would be
natural to expect that the specific resistivity of the model should decrease, but we
shall soon learn the very opposite if we perform the experiment: i.e. the specific
resistivity will be found to increase and after interrupting the measuring current
an induced potential will be detected. To explain these experimental findings we
refer to Fig. 1

The great circle in Fig. la. represents
metal filings of molecular dimensions, say,
positively charged, situated evenly in the
above sample. The potential field of the
positively charged metal filings causes the
negative ions of the electrolyte to move
towards the metal filings until they com- ] éabra
pensate for its potential field. The resulting Pue. 1
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charge-configuration will be neutral, that is, it will not exert attraction on the
remaining free ions of the electrolyte. If we deliver voltage to the sample then,
besides the internal field, an additional external field acts on the configuration of
Fig. la, and the ions will move further, as in Fig. Ib., until equilibrium is reached
again. The charge-configuration rearranges itself to a dipole whose potential field
keeps balance with the external field.

If the external field is switched off the dipoles gradually lose their charge and
assume again the shape shown in Fig. la. So, we may propose the following me-
chanism for the increase of specific resistivity in electrically polarizable rocks resp.
for the voltage-decay in them after the interruption of the inducing current: at the
initiation of current the arising potential field acts on the totality of ions and the
rock behaves as if it were non-polarizable. This is due to the fact that the external
field which acts on those ions which are situated in charge-configuration is many
times greater than the field pointing towards the centre of the configuration and so,
not only free ions, but bound ones as well will participate in conduction. The bound
ions move the slower the farther they get from the centre since, by their movement,
they create a dipole whose field of force compensates for the external field. After
some, definite, time bound ions cease to participate in electric conduction and only
free ions will take part in it what explains why resistivity increases. The greater
percentage of ions is bound in charge-configurations the greater the increase of
resisitivity will be.

At the interruption of the inducing current charges inside the dipoles strive
to their original positions, a current begins to flow inside the dipoles and their
potential field decreases. The direction of this current is opposed to the inducing
current, the currents inside the dipoles close at the free ions which are adjacent to
these dipoles as shown in Fig. 2. The direction of these latter currents is, however,
identical with the inducing current with a magnitude equal to the dipole-currents.
It is just this current which maintains the induced polarization after the interruption
of the inducing current.

Summarizing, the following conclusions can be drawn from what has been
said above, for further use:

1. In electrically conductive and polarizable rocks only a definite part of the
inducing current is converted to Joule heat due to ohmic conductivity.

2. The other part of the inducing current is stored, as in an accumulator, during
the time of induction and after the interruption of the inducing current it is also

converted to Joule heat through
losses of resistivity.

'\J‘ 3. The ratio of the two currents
is determined by the number of
points where dipoles are formed or,
more exactly, by the ratio of the
bound- and free ions.

These conclusions will be found
as decisive in the subsequent theo-
retical considerations. But even now
they suggest that there must be

Fig. 2 some kind of relationship between
2. édbra the polarization parameters and the
Puc. 2 ore-content of the rock. At this
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point of our exposition, however, it would be too early to make any definite statement
without a thorough mathematical investigation of the above, physically suggestive,
pattern.

Mathematical formulation of the theory of IP

To make mathematics as simple as possible, some idealizing assumptions will
be made. It will be assumed that the investigated rock is macroscopically homo-
geneous, isotropic and of infinite extension and that the dipoles are brought about
at evenly distributed points throughout the rock.

Suppose, that the inducing current is introduced at some
— ay-—-point A into the rock and that the potential is measured
at M (Fig. 3). Electrodes N and B are placed at infinity.
The distance between electrodes A and M is r.
- ! As it is well known, if the rock is not polarizable the
! current initiated at A is divergence-free at every other

-------- point. Denote the current density by jO. Because of the
dipoles formed also an additional current density, say jpi

Fig- 3 will occur and these current densities together account for the
3. abra actual current in the rock. The polarization current density
Puc. 3 j and the resulting polarization field-strength are both

functions of the volumetric dipole density, denoted by S.

The polarization field strength P and the dipole density s are in interrelation
as shown by the function

divP= -S. (5

The cuxrent density jp can also be expressed by means of the field-strength
vector P. Indeed, the dipole momentum of a polarized volume element dr is given
by Pdr. If the average surface of a dipole isds, its length dl, and the infinitesimal
charge is e, then

Pds dl —edl.
Upon simplification, and differentiation with respect to time:

aP 1 pe T
~dt= Ts~dt™NJp’

A further relation, which will be used later, is the electrodynamical equation
of continuity:
+divd0s. (7).

After these preparations we proceed to write down the current which really
flows in polarizable rocks, i.e. which already satisfies Ohm’s law. On the strength
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of our previous considerations it is plausible to expect that the density of this cur-

rent, say j, is of the form
J=jo-jPe ()

To prove this, we have to show that the divergence ofj vanishes. Substituting
Eqg. (6) into Eqg. (8):
I I ap
3-Jo dt
and taking the divegence of both sides
divj =aivjo- =2V

Further, making use of Eqgs. (5) and (7), we have

i.e. the charge-density vector j given by Eq. 8 is divergence-free and so the potential
of point M is uniquely determined by this current. Equation (8) is already suitable

to determine the direction of the current-density j namely that it acts against the
inducing current, but it contains no information as to the magnitude of this density.

It has been recently found in a number of laboratory measurements that the
density of the induced current is proportional to that of the inducing current, i.e.

N\ —x \o\ = )

Some comments should be made about this relation. In the first place we note
that Eq. (9) is an approximate relation, valid as long as the inducing current is
small. For a sufficiently large inducing current the dipoles developed might disin-
tegrate and Eq. (9) is no longer valid. As a matter of fact in actual field work we
never encounter such extreme current densities (except in the immediate vicinity
of electrodes) since the current-density decreases with the reciprocal of the second
power of distance and we know from Dakhxov (1959) that for current-densities
of the order of 0.1 mA/cm2Eq. (9) already holds.

A second comment is that besides the disintegration of dipoles any deviation
from idealized conditions might affect the validity of Eq. (9).

In field conditions the energy of the inducing current introduced into the soil
will partly be consumed due to resistivity losses, another part will be spent for
bringing dipoles about, but there always remains a piece of energy which may
cause, through physico-chemical transformations, a permanent potential field.
Within the scope of the present paper this phenomenon will be considered as a small
perturbation which contributes to the noise-background of the measurement,
and the validity of Eq. (9) will be taken for granted. It seems likely that a proper
combination of time-domain and frequency-domain methods would be an efficient
tool for suppressing this type of noise.

Returning to Eq. (8), we multiply both sides by the specific resistivity o of
the rock:
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The dimensions of both sides are that of field-strength, the terms on the right-
hand side are the inducing-, resp. polarization field-strenghts. Upon comparing
this with the electrodynamic equation

D=E+P
and taking into account Eqg. (9) we get
0=Qof, K=pjh and P=-qlp (12)

Since ), the specific resistivity of the rock, is constant, the divergence of vector
D is zero everywhere i.e. this field-strength vector obeys the postulate required
by Ohm’s law. So, to arrive at the desired form of Maxwell’s equations which would
already describe the polarization effect in conductive media we have to change
E into D in Eq. (1). Before doing this, however, it will be profitable to write down
a further relation, from Eqs. (10)—(11):

D=E-xE=E{\-x). %)

According to our previous considerations x may be called polarization sus-
ceptibility. Its numerical value expresses that from all ions participating in electro-
lytic conduction in a conductive rock medium, what amount (i.e. how many per
cent) does contribute to dipole formation, x, as a physical parameter is of paramount
importance since it gives account of the density of those points (metal-filings
in the above example) where dipoles arise.

If we divide Eq. (12) by g0and introduce the notation

then, making use of the electrodynamical relation D = eE Eq. (12) can be rewritten
as

(13)
Q
whence
(14)
B
and, further, from Eq. (13)
- B~ I». 15
X - B~ (15)

Here we must stop again to explain the physical meaning of q and e. As we
have just seen, the polarization susceptibility x is a measure of the volumetric
density of those points where dipoles are brought about. If there are no such points,
x=0, i.e. from Eq. (13) n=p0.For x greater than zero, p> g0 which is plausible since
certain ions do not take part in conduction. Here, q is the specific resistivity given
by DC methods after the formation of dipoles while p0is the resistivity which would
have been measured if all ions had participated in conduction. The case x=1
never occurs in practice since this would imply that all ions are situated in charge-

Geofizikai Kézlemények XXI. 1—4.
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configurations, i.e. £=« As for s, we know that in conductive media s=1. From
Eqg. (14) we learn that this could only happen if there is no polarization i.e. if g=p0.
In case of polarization e< 1:in a conductor just opposite to insulators, the dielectric
constant may be less than unity. Conductors which have a disposition for polarization
show a behaviour which is reminescent of diamagnetic materials.

Let us suppose, in what follows, that we can somehow measure the values
g0and o at point M of Fig. 3. Then we know that

q0= 4nr and Q= 4nr
where 1 is the strength of the inducing current. Making use of Eq. (15)
x= P-PO a6

already given by Seigel (cf. Wait, 1959). He, as a matter of fact, denoted this value
by m and termed it “chargeability”. This terminology may be objected since x is
a well-known electrodynamical constant, identical with the polarization susceptibility,
as it has been correctly termed by Bieer (1933).

Because the polarization susceptibility, x, is less than one, it would be more
convenient for practical purposes to use its hundredth as a unit (ox, i.e. centikappa)
=since this would give the percentage of all ions which are bound in dipoles.

Maxwell’s equations in polarizable roeks

After these preparations we can write down Maxwell’s equations for a polariz-
able conductor:

curlH=00D a) curl D = _Md:[ b)

dv/5=0 0 divH =0 d)

where a0is the specific conductivity of the rook (with respect to the totality of ions).
The system of equations (17) is formally the same as Eq. (1) and in case of no polariz-
ation it evidently regresses to the latter. Eqs. (17c) and (17d) deserve no further
comment, since (17c) has already been proved and (17d) has remained unchanged.
The validity of (17a) and (17b) can also be simply checked.

Indeed, for a current of density j flowing through a surface element ds we have

@an

Jj ds=8HdI
S
i.e., bv Stokes’ theorem

J, ds= jcurl H ds.

S S
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But, by Eq. (11)
j=—D=aoDb

and the equality of the above integrals implies that
curlH = afiD .

To prove Eq. (17b) we follow a similar line of thought. We first express the
potential by means of the magnetic flux V, as

, dw
at
Since D is diverger ee-free, we may write
d=cp3(11.
|
Recalling, that
WAFijEds

S

we have

S

Applying again Stokes’ theorem and equating the quantities behind the integral
sigh we have, indeed, that
in dE
¢ dt
The system of equations (17) is already free of those contradictions which have
been encountered in connection with Eqs. (4a) and (4c), so we are justified in expect-
ing that their solution would yield quantitative relations between the induced polariz-
ation and other physical parameters of the rock.

Differential equation of a homogeneous polarizable conductive field

Since a general treatment of quasi-stationary fields would cause considerable
mathematical difficulties we shall deal, in what follows, only with such cases where
stationarity can be assumed as a reasonable approximation. So, we shall drop out
of our calculations the equations describing the relation between D and H, the dis-
placement current will be neglected either and it will be taken for granted that
vector D can be expressed as gradient of the potential.

That is, we shall be concerned with a reduced set of equations

ds(r, 1)
dt

div D = 0. (19)

divjo=o0, (181
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We first inspect Eq. (18). According to Eqgs. (5) and (10)
divP= - S(r, t)=div (~y.Qoj0)= —y@divj0

since y and g0 are constants, i.e. Eq. (18) can be written as

dt Qy 20y

We shall need a further relation between the dipoles’ volumetric charge density
S(r, t), and the potential measured. We start out from Poisson’s formula which
asserts that

"divP
JJ3J Vv

P(r, 1) - dr

if there is no charge density on the surface, and R is the distance from the dipole
to the point of observation. By Eq. (5)

wwo-JJV

Because of the homogeneity and isotropy of the rock, we can set
S{r, t)= SA(t)-W{r), (22

where SA() denotes the charge-density occurring at the origin of the system of
coordinates and W(r) is some factor of proportionality which depends on r. Inserting
this into Eqg. (21)

d(r, 1) = SA) ﬂ F')WFgr) -dr = RA(Y)Z(r) + DiAr) (23)

where Z(r) denotes the result of integration and @0(r) is a constant which represents
the constant field given by Eq. (19). Substituting Eq. (23) into Eq. (22):

(24)
A ri)=wWo N () + 0o(n)
i.e.
s(r, [db(r>0 - chof(r)] m (25)
Differentiating with respect to time
ds(r, t) W(r) do(r, t) 26)

dt  z() dt

Substituting Eqs. (25) and (26) into Eq. (20) we obtain, upon simplifications, the
differential equation

K Q o +a(>)=dof) = (27>
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@ (r) which figures on the right-hand side can be obtained from Eq. (19):
divD = —divgrad ®=Ad=0.
The solution of the Laplace equation, A® =0, is well known, it is given by

JQ_
adh: «ir (@3)

The quantity g which occurs here is naturally not identical with g0. By Eq. (14)

Fo

and Eq. (28) takes the form

ho
— 29
ah = smre (29)

where 1 is the current flowing in the rock. Putting this into Eq. (27), we get

AP, t) 1
= = = 30
dt o,,qj(r’ ) 4nTe (30)
which is a well-known differential equation whose solution is
(1)

Eqg. (31) describes the behaviour of the potential in a rock of specific resistivity
g0 and polarization susceptibility x, if we introduce a constant current | into it.
In non-polarizable rocks, e = 1 and x =0, and the potential is, as it must be, simply

n >

The same formula applies at the moment of initiation of current, i.e. for t=0,
since 1—X=-e. Consequently, at the moment of initiation the current also affects
those ions which are built in the ion-configurations and all of them will participate
in conduction ; later—when the dipoles will have been brought about—they gradually
lose their role in conduction and the potential exponentially tends to a limit value
belonging to i=~, i.e. to

w160
PL=) e
which corresponds to the case when only free ions transfer the current. The time-
constant of the potential rise is given by the product g0x, i.e. the maximum value
is attained (with a fair approximation) after a time 3g0x. Assuming 10 ohm and
10 cx this time is 3 sec. This, of course, casts a new light on Eq. (16) in case if @0
is measured at t=0 and ® somewhat later at i > 300%
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The differential equation (30) also describes the behaviour of the potential
after the interruption of the current if we set 1=0. In this case the solution of (30) is

a(r, 1) :%r%:e _ (32)

i.e. at the moment of interruption (t=0) the induced potential decreases to a fraction
* of its original value and keeps decreasing to zero, afterwards.

Obviously, if x=0 also ®(r, t)=0, i.e. in non-polarizable rocks no decay of
potential will be experienced. It is also evident from (32) that for a large specific
resistivity and large polarization susceptibility the time-constant could be as large
as 10 seconds or more. Figure 4 shows potential functions for some values of y.

Puc. 4

Measurement of the polarization susceptibility

Equations (31) and (32) suggest a quantitative method for the estimation of
the physical parameter y. from the potential values measured at different time
instants in a homogeneous isotropic medium. We shall use the following notations:
after a time tg from the initiation of the inducing current the potential measured
at point M is ®,,, while after a time tl from the interruption we denote it bjr ®y
Inserting ®e and tg into Eq. (31) we obtain, after rearrangements and multiplication

by
4ire

T
that

dATCre L
Q@--d— = Qye
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From Eq. (32)
| 0X
and, after some easy algebraic calculus

(33)

y_m x -htQx + ¢ e ~tg/Q,*

In order to eliminate x from the exponent we perform a further measurement at
a time t,= 2/, after the interruption of the current. Writing down Eq. (32) for the

new potential value, ®2, as well, we have

P2 e-2illex
(0] 1 —e -hio»™

‘faking the logarithm of both sides

01 @X

Substituting this into Eq. (33) we get an explicit term for x

02
Ded?2+ P\si

(34)

where

to 0,
u=—In—
dr

If also tx=t, could be ensured y would be given by the simple formula:

3?
020,+00 *

It must be noted that Eq. (34) has been derived for homogeneous media, that is,
it is not necessarily valid under actual field conditions. There are, however, some
significant conclusions which must be pointed out in connection with this formula.
We note first that x, as given by Eq. (34), is independent of the electrode con-
figuration i.e. it can be determined under laboratory conditions on rock-samples
or cores. If the investigated rock pattern is inhomogeneous (e.g. stratified) then
the volumetric charge density S and the potential 0 o(r) are complicated functions
and the differential equation which would replace Eq. (30) could be only solved
with sophisticated mathematical techniques. We shall not dwell upon this question
any more in the present paper but we turn our attention to the frequency-domain

method, in a homogeneous field.



72 Gy. Dankhazi

Solution of the differential equation for AC
Let us consider an AC of circular frequency co and amplitude lv, i.e. let
I =1vsin oot

Substituting this value into the differential equation (30), it becomes

1 t J
Kg_fb(r )4.---- cp( = ——-_-Y- sin cot (35)
at 4cjirs

The time-dependent term on the right-hand side of this equation suggests the use
of Laplace transformation. Making use of the identities

4 SPPP-®(0)
and
a sinocot] — r*—
p2+ ax

the Laplace transform of Eq. (35) will be

(o0] / @©
JO(p) - PO ¢, ______ n
px JP(p) p2+w2 )= 4/1Te p+ 005'

Multiplying both sides by g0 and substituting the value of ®0—that is the voltage
at the initiation of current—into this equation

4n:r(p24-c02) 4cTir(p24- co2)

which gives after some easy manipulations and making use of Eq. (14) that

®(p) = O TQgrowo  Iw Q* py.pl
7lr(p24-c@ \pXQO+i ) 47Ir p3(g- Q@) 4p2+pcoZe(g - g0)4 o2

Finally, adding some further algebra and reference to Eqs. (15), Eq. (14) give

®{p)=b w \ +pxep0
4nTe[ W+p2+pcong+<xr

which may conveniently be written as

¢ (p)=/1°<L 1 4-pxsg0
inreco
p+lI)
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Looking up any textbook which contains inversion formulae of the Laplace trans-

form we find that
t

l1+ap co(T-a)e T 1+ax02VR . .
1+T-or L 1+4tw ] ®nN+T)
+ 1\{Tp+l)

with
Q= arctg eco- arctg Too.
Making the substitutions a—xgOe, T =y.a0, dividing by o and setting |1 -e=x we
have
NrBX 14 y2e—cerc%
o - LOoRNT YEEED gin oot + ) (36)
4z7ire [ 1+ p0x2c02 H 1+ k 'c02Qo

To determine the phase angle cp, we shall use the identity

arctg x - arctg y = arctg <
1+xy
which gives, for xy > - 1, that
gQcox*

K202

Equations (36) and (37) are the basic formulae of the frequency domain method.
Before a detailed study of these equations let us discuss the first term in Eq. 36.
Since X< 1, its second power, x2 is small and it will be further diminished by the
exponential factor e~te™. So, we shall neglect this term in our subsequent con-
siderations, i.e. we shall assume that the measurement is started after the lapse
of a definite time (corresponding to two- or three times the time-constant gOx)
after the initiation of the inducing current. With this simplification Eq. (36) becomes

NoJl +XaBAOI2 ... . )

() = fnre (TFERYR ST M+ P

Consider now the behaviour of ®(r, t) for high frequencies. If g0cox» 1 then the
second terms dominate inside the brackets, in Eq. (38), and, approximately

p= —arctg : (37)

d(r, = e sin cot (39)

The pase angle, g is zero to a very good approximation. Thus, for very high
frequencies the rock behaves as if it were non-polarizable, i.e. we simply measure
the specific resistivity g0 of the rock. This might be due to the fact that the ions
taking part in ion-configurations will follow the changes of the inducing current
and in the dipole the forces acting toward the centre are negligible as compared
to the external field.

On the other extreme, if the measuring frequency is very low, i.e. ofojz<<1],
we have

o, Hm 4IyQa sin oot (40)
jire
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The phase shift g~ can be neglected also in this case, since g0o>x2= (g0orx) x, i.e.

Qojx2< Qo)X because of x < I.
From Eq. (40) we conclude that for very low frequencies the value of the po-

tential depends, besides the specific resistivity g0, on the dielectric constant e as
well, i.e. an apparent specific resistivity greater than g0 will be found. This can be
explained by the fact that the ions bound in charge-configurations practically do
not participate in conduction, they are in dipole state for the best part of the period.

The third case to be discussed is when

gou>x—1 .
Then

@(r, 1) o (L DUBsIn (wt+ )

5.6

and
1-e€
u=~arctgT77 = (41)

That is, for xg0a) =1 both an increase of potential and a phase-shift will be ex-
perienced. It is worth noting that in this special case g does not depend on specific

resistivity.

We shall seek now the maximum of the phase-shift <. We have already seen
that for very low and very high frequencies there is practically no phase shift.
Differentiating the quantity in the argument of the arctg function in Eq. (37) and

making the derivative equal with zero:

g2 2foy 4f0)2
1+ex2C?2 (1 +exxox 22

The root of this equation is given by

X000 (42)

Since e is near to one even for well-polarizable rocks, the phase shift < attains its

maximum for a value xqOcor; 1.
We proced now to express x in case of the frequency-domain method. Substitut-

ing the values of ®(r, t) and | to the formula describing resistivity one gets, upon
simplifications

. ns,
S sin cut

where
1+ e2X2C0'02
1+ x 2&10:02

This equation contains two unknown quantities, g0and e. For large enough measuring
frequencies Eq. (43) can be simplified as

Stt=g0sino)t
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while for very low frequencies we have

5/ =—sin o)l.
e

From these formulae x is readily expressed:

Qi~
Q

This formula works well under laboratory conditions and gives an expedient for
the determination of x. In field work, however, we cannot neglect the interaction
of D and H in Eq. (17) in the high-frequency case and the use of very low frequencies
would be also problematic from a purely technical point of view. In routine mea-

Fig. 5
5. abra
Puc. 5

sucements one has to use Eq. (43) and determine y from this formula by means
of nomograms or other computational techniques.

Figure 5 gives a few illustrative examples of the change of specific resistivity
and the phase angle in function of frequency.

Summarizing, it can be concluded that in homogeneous media the induced
potential allows a quantitative description and the rock-physical parameter v
can be determined. Equations (31), (32), (3G) and (37) give a fair estimation for the
order of magnitude of the induced potential and the shape of the curves shown
in Figs. 4 and 5 are in accordance with experimental findings.
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Experimental verification of our theoretical conclusions

In order to check numerically the formulae proposed we shall make use of the
results of Nilsson’s (1971) laboratory measurements. Nilsson investigated the
behaviour of the electrode-potential by a technique assuring nearly ideal conditions
(see Fig. 6). The metals investigated were nickel and silver. The metal sheet gathers
around itself the ions of opposite charge, these cluster in dipoles since the field is
homogeneous—the only non-vanishing component of the current-density vector
is the normal one—and the phenomenon of electric polarization can be quantitatively
studied. Nilsson measured the real- and imaginary parts of the complex impedance

,current gen current gen.,

©
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Fig. 6
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and presented their plots in his paper. We note that the graph of the real component
resembles g{e) and that of the imaginary component 901) of our Fig. 5.

We have utilized Nilsson’s measured valued as follows. First, the values of
P and g could be determined from the real component since

g -*q if =m0
e(>)-Qo if

and the phase-shift, is zero. Making use of Eq. (15) we obtain x from g and g0

for nickel for silver
Q-+JI =2.3 kohm R =1.6 kohm
P-*R0=0.9 kohm Rn=0.9 kohm
n=0.61 K=0.44

According to Eq. (42) the phase angle has its maximum at gOxco” 1, further,
by Eq. (41), this maximum value of D solely depends on x. But this phase-angle
can be obtained from the measured values as well, since, per definitionem

Im(z)

®= arctg Re(z)

and its maximum occurs for the maximum of Im(z). The phase angles, determined
by the different methods, show a fair agreement:

for nickel for silver

calculated 25' 16°
measured 23’ 14°
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This computation deserves a further comment. It lias been indicated above that
the value of y inreases with the ore-content of the rock. In Nilsson’s experiment,
however, the measurements were performed under identical conditions and the
computed vy values still differed. This shows that not only the ore-content but its
quality as well might influence the value of y, that is the equivalence principle
also holds for the measurements of y.

An equivalent electric circuit for the II* effect

Figure 7 presents the equivalent electric circuit for IP. The equation governing
the circuit agree with our previous equations if we set

c = 4dre,

P —
1 4nt’ 4ar

This model corresponds to the electrode configuration shown in Fig. 3.

7. abra
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IP in a layered half-space

In this section we shall briefly sketch how our principal equations should
be modified for the case of an inhomogeneous (layered) medium.

As a matter of fact, for the time-domain method even the two-layered case
would raise considerable difficulties. For, in order to describe the potential functions
we had to determine the functional form of the charge-density S (X, y, z, t) and the
value of the constant potential field, construct differential equations from these
functions and, finally, extract the time constans from the solution of these equations.
This program, however, remains a task of future research.

The frequency-domain method in itself allows a simple interpretation: let us
consider two successive layers. I f the layers are non-polarizable, the normal component
of current density satisfies the equation

Join _j02n —0
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where the indices refer to the respective layers. Letting p0l and g® denote the specific
resistivities, we have

In case of polarization the normal component of current density satisfies
jin 3m—o
because of div;=0. Introducing specific resistivities p, and 02:

1
Q

that is, the normal component of the charge-density vector continuously changes
at the boundary of specific resistivities. Consequently, for very low frequencies
polarizable rocks show an increased resistivity while in the high frequency limit
they reveal the real values of resistivities no matter whether the rocks are layered
or not.

This conclusion might give a significant hint for future research since it seems
to suggest that the familiar sets of curves used for SR interpretation could be appli-
cable for the calculation of families of curves for the measurement of polarization

susceptibility.
Conclusions

W& have reviewed the basic physical ideas underlying the IF method and have
shown that within the scope of a consistent electrodynamical treatment quantitative
relations could be established between the polarization constants—s and e—and
the parameters of measurement (voltage, frequency, etc.). The orders of magnitude
and the time- and amplitude-behaviour predicted by our theory show excellent
agreement with recent experimental findings (Zonge et ah, 1970; Nilsson, 1971).

We consider Eq. (17) as the principal result of our paper since it makes possible
a quantitative treatment of the induced potential and we can expect that a number
of important problems which have arisen about the IP method in recent years
will be tackled by means of these techniques.
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DANKHAZI GYULA
A GERJESZTETT POTENCIAL ELMELETI ALAPJAI

A dolgozat egy anyagi modellbdl kiindulva targyalja a gerjesztett potencial jelen-
ségét. A modell szerint a pozitiv vagy negativ toltéssel rendelkez6 anyagi részecskék
maguk koré gydjtik a kornyezetikben tartézkod6 ellentétes toltésl szabad elektronokat
vagy ionokat, igy kifelé semleges viselkedést mutatd téltéskonfiguraciok jonnek létre.
A gerjeszt6 d&ram hatdsara ezek a toltéskonfiguracidk polarizalédnak, dipélusokka ala-
kulnak. A gerjeszt§ d&ram bekapcsolasa pillanataban az elektromosan vezet§ kdzegben
minden ion — tehat a konfiguraciokban levd is — részt vesz az elektromos vezetésben,
a dipdlusok kialakulasa utadn azonban maér csak a konfiguraciokban le nem kotott elektro-
nok vagy ionok kozvetitik az aramot. A vezet§ kozeg ellendlldsa tehat a dip6lusok ki-
alakulasaval parhuzamosan noévekszik, majd a dipdlusok kialakuldsa utdn egy meg-
novekedett értéket vesz fel. A gerjeszté &ram kikapcsoldsa utan a dip6lusok fokozatosan
elvesztik toltéstiket, a kérnyezetikben elhelyezkedé elektronokon vagy ionokon kistlnek,
igy a gerjeszt6 aram iranyaval azonos iranyu fokozatosan csokken6 dramot tartanak fenn.

A modell szerint a k6zetben ténylegesen foly6 divergenciamentes aram a gerjeszté
aram és a polarizaciés dram kulonbsége. Ezt a megéllapitast a dolgozat bizonyitja és
ebbél kiindulva megadja a Maxwell-egyenleteknek azokat az alakjait, amelyek a po-
larizaciéra hajlamos elektromosan vezet§ kozegekben is helyesen irjak le az elektro-
maéagneses tér viselkedését. Ilyen kozegekben a dielektromos &lland6 értéke egynél kisebb.

A Maxwell-egyenletek birtokdban, a kontinuitdsi egyenlet felhasznaldséaval, a to-
vabbiakban a dolgozat a homogén, végtelen Kkiterjedésl kozeget (k6zeteket) vizsgalja,
felirja a potencidlra vonatkoz6 differencidlegyenletet, majd ezt a gerjeszt6 &ram bekap-
csolasakor és kikapcsoldsakor, tovdbba szinuszos valtakoz6 d&ramu gerjesztésre is meg-
oldja. A kapott eredmények a gyakorlatban szerzett tapasztalatokkal igen jo egyezést
mutatnak, s6t Nilsson (1971) ideélis feltételek kozott végzett méréseivel kielégitd szdm-
szerl egyezést is adnak.

A dolgozat befejezésul a frequency-domain mérések kiértékelésére vonatkoz6an tesz

néhany megjegyzést.

[0B. AAHKXA3U

TEOPETUYECKUWE OCHOBbI BO3BY>XAEHHOW MOMAAPU3ALINN

B pab6oTe paccMaTpuBaeTcs sB/leHVE BO3GY>XAEHHOW MonspmsaLnm McxXoas M3 BellecTBeHHOM
Mogenun. Mo mopgenwn BelLeCTBEHHble YacTULbl, MMEIOLLME MOMOXKUTENbHbIV WM OTpuLaTe bHbI
3apsaf, cobmpatoT BOKpYr ce6sl cBOGOAHbIE 3/1EKTPOHbI UM WNOHbI, UMEIOLLMECA B MX OKPY>XXHOCTU,
B CBA3M C YeM CO3/aloTCA KOHUrypaumm 3apsifia ¢ HelATpasibHbIM MOBefjeHEM CMOTPS CHapy>Xu.
Ha Bo3geiicTBMe BO36Y>KAAOLLEro TOKa 3TW KOH(Urypauuun 3apsgoB MonsipusytoTcs U npespa-
walTcs B AMMNONAN. B MOMeHT BK/IIOYEHUSI BO36Y>KAalOLLLEero TOKa B 3/1eKTPUYEeCKM MPOBOAsLLEN
cpefe BCe MOHbl — CfiefjoBaTe/lbHO U Te, KOTOPble HaxOAATCA B KOH(UIypauusx — y4qacTBYHOT
B 3/1EKTPUYECKOM BeAEeHUN, HO Mnocsie 06pa3oBaHUsA AUMOSei TOK nepefaeTcst TO/IbKO 3/1eKTPOHaMU
WM MOHaMW, He CBA3aHHbIMU B KOHUrypauusx. CnefoBaTesibHO, COMpPOTUB/EHME MPOBOASLLEN
cpeAbl yBennumBaeTcs napassiesisHO ¢ o6pasoBaHMEM AWMoOnel, a 3aTeM OHO Mpuo6GpeTaeT orpe-
feneHHoe yBesindeHHoe 3HadeHMe. Mocne BbIKIOYEHNS BO30Y>KAatoLLero Toka AMMoan nocTerneHHo
TepsAlOT CBOM 3apsf, pacrofiaraloLinecs B OKPY>KHOCTM 3/1EKTPOHbI WM MOHbI  pa3psiXKatoTes,
B CBSI3W C YeM OHU COXPaHSAIOT TOK, Cuia KOTOPOro MOCTEMEHHO YMeHbLUAeTCs U HarpaBfieHue
KOTOPOro aHa/IoNMYHO Harpas/ieHMIo BO36Y>KAaloLLero Toka.

VccnepoBaHMA Ha Mofeniv MOKasbiBalOT, UTO 6e3anBepreHTHbIM TOK, (hakTUudecku npoTeKato-
WM B TOPHbIX Mopogax, MpeAcTaB/ieH PasHOCTbIO MeXAy BO30Y>KAAloLWUM U MONAAPU3YIOLLIM
TOKOM. OTO 3aK/IloYeHVEe MOATBEPXKAAeTcA B HacToswell paboTe. McxoAs w3 aToro rnosy4aroTces
hopMbl ypaBHeHUs MakcBesinia, NpaBUbHO OMUCbIBalOLLME MOBeAEHWE 3/1eKTPOMarHUTHOro Mons
[JaXe B 3/1EKTPUYECKU MPOBOAALLUX cpefax, CKNOHHbIX K rnonspusaumn. B nogo6HbIX cpegax Benu-
UMHa AVSNEKTPUYECKOM MOCTOAHHOM MeHblUe eAnHULbI.

Onupasch Ha ypaBHeHUsi MaKcBesina, ¢ UCrNosib30BaHWEM ypaBHEHMS HeMnpepbIBHOCTY, B paboTe
paccmaTpuBalOTCA OAHOPOAHbIE CpeAbl GECKOHEYHOro MNPOTSHXKEHUA (FOpHble MOPOAbl), 3anuchbl-
BaeTca AudcepeHUmanbHoe ypaBHeHWe, KacatoLleecs NoTeHUMana, a 3aTeM 3TO ypaBHeHWe peLuaeTcs
ANSA c/yyas BK/IOUYEHUS U BbIK/OYEHUS BO36Y>KAatoLLLero Toka, a Takxke [/ c/ly4dast Bo36y>KaeHUs
CUHYCOMAAIbHOTO MepeMeHHOro Toka. MonyyeHHble pe3ysibTaTbl XOPOLLIO COr/actoTCs ¢ MosyyeH-
HbIMM Ha MPaKTWKe AaHHbIMW, U AaloT YAOB/IeTBOPUTE/IbHOE YMC/IEHHOe COBMajeHue ¢ pesysbTa-
Tamn nsmepeHn HunbobcoHa (1971), NnpoBegeHHbIMU NPU UAEANTbHbBIX YC/TOBUSX.

B 3ak/toyeHve B paboTe M3naraldTcs HEKOTOpble 3aMeYaHWsi OTHOCUTE/IbHO WHTeprpeTaumnm
M3MepeHns 06/1aCcTM YacToT.






