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Introduction

The physical principles of the induced polarization method were known as 
early as in the 19th century but the idea that this phenomenon might be applied 
as a geophysical prospecting tool first occurred in the late forties. The method was 
soon found to be a powerful technique for ore and—to a certain extent—ground- 
water prospecting and it has been further developed since then in two main direc­
tions. Recently two different versions of the induced polarization (IP, for short) 
methods are common: the “time-domain” and the “frequency-domain” methods.

While IP  measurements proved to be highly efficient in ore prospecting they 
are still inferior to other techniques in certain respects. Namely, a serious disadvantage 
of the method is that it does not yield exact rock-physical parameters only anomalies, 
i.e. relative values which do not express actual physical properties of the rocks 
but depend on the parameters of the instrument used. If we perform repeated 
measurements with different instruments at the same site then all of them would 
correctly localize the individual anomalies, but with quite different amplitudes, 
as a rule.

To make this clear let us recall the basic difference between the measurement 
of the specific resistivity (SR) and that of the IP. The apparent SR is computed 
from the formula

where we have adopted (trougliout these pages) standard notations. Assuming ideal 
conditions the Qa value measured is independent of the parameters of the instrument. 
Inspecting, on the other hand, a similar formula of the time-domain method (Nilsso n . 
1971)

where tx, t2 are limits of integration with respect to the decay curve, rP(t) is the 
potential measured at time t, and t0 is the moment when the current is interrupted, 
it is instantly clear that t, and t2 are instrumental parameters and there is no obvious 
argument to think the IP values themselves as being independent of t} and t2. As 
a matter of fact we would have come to the same conclusion if we had analyzed 
any other formula of the IP method. *
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All in all, it can be said that when measuring SR the value of ga is uniquely 
given by a quantitative relation while in IP  measurements we have to restrict our­
selves to empirical formulae which inherently depend on the instrument used. 
The question naturally arises whether there could be found an instrument- 
independent value measurable by IP methods which would already directly charac­
terize certain physical properties—e.g. ore-content—of the rocks.

In the present paper we shall address ourselves to the solution of this problem. 
To have a convenient footing to start with we shall first review Maxwell’s equations.

Theoretical difficulties of the description of the IP effect

Let us assume that in the rock investigated the inducing current is DC or a low- 
frequency AC (of some tens cps) and that the rock is electrically conductive. Under 
these circumstances the resulting electromagnetic field is described by the quasi- 
stationary Maxwell equations which read, in the MKS system of units, as follows:

curl H  = aE  a), 1 г  а яcurl E  = — a -----
' dt b),

(1 )
div E  = 0 c), div Я  = 0 d),

where E  and H  are the usual field-strengths, a is conductivity and /1  the magnetic 
permeability. Obviously, it cannot be expected that Eqs. (1) should give any in­
formation as regards the induced polarization since these equations do not contain 
quantities corresponding to the polarization of the rock. But, as a matter of fact, 
the existence of IP has been repeatedly checked by experiments and also Maxwell’s 
equations are of general validity, so there must exist a general enough setting of 
these equations which would describe the IP effect and yet it would include the 
system of equations (1 ) as a sjiecial case.

If we wish to preserve the general validity of Maxwell’s equations care must 
be taken that after any modification or extension of their range of validity the 
correctness of the resulting equations be rigorously checked. It is, of course, a sound 
generalization if we substitute the resultant of different specific conductivities into 
Eqs. (1). An extension of this kind was advocated by W ait (1959) in his theoretical 
work on the foundation of the frequency-domain measurements and this has been 
applied eversince by many authors.

Starting out from theoretical considerations W ait (1959) introduced the concept 
of complex impedance defined by the formula

o = a  + ia>E (2)

where œ denotes circular frequency and e is the dielectric constant of the rock. 
For alternating currents the magnetic field strength is
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Substituting Eqs. (2 ) and (3) into the system of equations (1) we obtain Max­
well’s equations as given by Wait:

curl H  = (a + icoe)E a),

div eE = S  c),

where S  denotes volumetric charge density. Eqs. (4b) and (4d) agree with the corre­
sponding formulae of Eq. (1), Eq. (4a) needs no special explanation but several com­
ments should be made about Eq. (4c). The volumetric charge density S  figuring 
on the right-hand side of the above equation inevitably arises which means that 
a displacement current occurs in connection with the dielectric rock medium. So, 
in such a field, Ohm’s law is violated since the conditions of a closed circuit are not 
met. This assumption, however, is ojaen to serious objections especially if лее perform, 
in thought, the following experiment.

Let us prepare a rock model by impregnating quartz sand with highly conductive 
electrolyte. It has been many times experienced with resistivity measurements 
that in such a field the current is divergence-free. If we mix metal filings into this 
model there immediately appears an induced potential which is probably due to 
the volumetric charge density S  figuring in Eq. (4). This, however, would imply 
that the postulations assuring the validity of Ohm’s law are not obeyed. So we are 
faced with a paradox situation. If the highly conductive rock-model and the metal 
filings both satisfy Ohm’s law there seems to be no rational explanation why their 
mixture would fail in this respect.

We shall try to resolve this contradiction, in what follows.

curl E  = -  iuo)H b),

div if  = 0 d),

An electrodynamical rock-model for the IP effect

To begin with, we propose a simple physical pattern of the phenomenon without 
going too deep into the intricacies of a complete electro-chemical treatment. We 
shall use the rock-model described above.

Suppose that we measure, first of all, the specific resistivity of a pure quartz 
sand with some DC-method after a sufficiently long time from the initiation of the 
measuring current. We introduce then metal filings into the rock as to ensure a 
maeroseopically homogeneous sample and repeat the previous measurement under 
identical conditions. Because of the introduction of the metal filings it would be 
natural to expect that the specific resistivity of the model should decrease, but we 
shall soon learn the very opposite if we perform the experiment : i.e. the specific 
resistivity will be found to increase and after interrupting the measuring current 
an induced potential will be detected. To explain these experimental findings we 
refer to Fig. 1.

The great circle in Fig. la. represents 
metal filings of molecular dimensions, say, 
positively charged, situated evenly in the 
above sample. The potential field of the 
positively charged metal filings causes the
negative ions of the electrolyte to move ^
towards the metal filings until they com- ]  ábra
pensa te for its potential field. The resulting Pue. 1
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charge-configuration will be neutral, that is, it will not exert attraction on the 
remaining free ions of the electrolyte. If we deliver voltage to the sample then, 
besides the internal field, an additional external field acts on the configuration of 
Fig. la, and the ions will move further, as in Fig. lb., until equilibrium is reached 
again. The charge-configuration rearranges itself to a dipole whose potential field 
keeps balance with the external field.

If the external field is switched off the dipoles gradually lose their charge and 
assume again the shape shown in Fig. la. So, we may propose the following me­
chanism for the increase of specific resistivity in electrically polarizable rocks resp. 
for the voltage-decay in them after the interruption of the inducing current: at the 
initiation of current the arising potential field acts on the totality of ions and the 
rock behaves as if it were non-polarizable. This is due to the fact that the external 
field which acts on those ions which are situated in charge-configuration is many 
times greater than the field pointing towards the centre of the configuration and so, 
not only free ions, but bound ones as well will participate in conduction. The bound 
ions move the slower the farther they get from the centre since, by their movement, 
they create a dipole whose field of force compensates for the external field. After 
some, definite, time bound ions cease to participate in electric conduction and only 
free ions will take part in it what explains why resistivity increases. The greater 
percentage of ions is bound in charge-configurations the greater the increase of 
resisitivity will be.

At the interruption of the inducing current charges inside the dipoles strive 
to their original positions, a current begins to flow inside the dipoles and their 
potential field decreases. The direction of this current is opposed to the inducing 
current, the currents inside the dipoles close at the free ions which are adjacent to 
these dipoles as shown in Fig. 2. The direction of these latter currents is, however, 
identical with the inducing current with a magnitude equal to the dipole-currents. 
It is just this current which maintains the induced polarization after the interruption 
of the inducing current.

Summarizing, the following conclusions can be drawn from what has been 
said above, for further use:

1. In electrically conductive and polarizable rocks only a definite part of the 
inducing current is converted to Joule heat due to ohmic conductivity.

2 . The other part of the inducing current is stored, as in an accumulator, during 
the time of induction and after the interruption of the inducing current it is also

converted to Joule heat through 
losses of resistivity.

3. The ratio of the two currents 
is determined by the number of 
points where dipoles are formed or, 
more exactly, by the ratio of the 
bound- and free ions.

These conclusions will be found 
as decisive in the subsequent theo­
retical considerations. But even now 
they suggest that there must be 

Fig. 2 some kind of relationship between
2 . ábra the polarization parameters and the
Puc. 2  ore-content of the rock. At this

-J-
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point of our exposition, however, it would be too early to make any definite statement 
without a thorough mathematical investigation of the above, physically suggestive, 
pattern.

Mathematical formulation of the theory of IP

To make mathematics as simple as possible, some idealizing assumptions will 
be made. It will be assumed that the investigated rock is macroscopically homo­
geneous, isotropic and of infinite extension and that the dipoles are brought about 
at evenly distributed points throughout the rock.

Suppose, that the inducing current is introduced at some
— ду---- point A  into the rock and that the potential is measured

at M  (Fig. 3). Electrodes N  and В  are placed at infinity. 
The distance between electrodes A and M  is r.

_____, - ' As it is well known, if the rock is not polarizable the
'  current initiated at A is divergence-free at every other

--------  point. Denote the current density by j0. Because of the
dipoles formed also an additional current density, say j pi 

Fig- 3 will occur and these current densities together account for the
3. ábra actual current in the rock. The polarization current density
Puc. 3 j  and the resulting polarization field-strength are both

functions of the volumetric dipole density, denoted by S. 
The polarization field strength P  and the dipole density 8  are in interrelation 

as shown by the function
d iv P =  - S .  (5)

The cuxrent density j p can also be expressed by means of the field-strength 
vector P . Indeed, the dipole momentum of a polarized volume element dr is given 
by P dr. If the average surface of a dipole is ds, its length dl, and the infinitesimal 
charge is e, then

Pds dl — e dl.

Upon simplification, and differentiation with respect to time:

дР 1 де -г
~dt= Ts~dt^Jp'

A further relation, which will be used later, is the electrodynamical equation 
of continuity:

+ div J0 = 0 . (7).

After these preparations we proceed to write down the current which really 
flows in polarizable rocks, i.e. which already satisfies Ohm’s law. On the strength
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of our previous considerations it is plausible to expect that the density of this cur­
rent, say j, is of the form

J=j0- jP• (8)
To prove this, we have to show that the divergence of j  vanishes. Substituting 

Eq. (6) into Eq. (8):
-г г  эр
3 - J o  dt

and taking the divegence of both sides

... -г .. г  d divP  
d i vj = d i  vj0------- —  •

Further, making use of Eqs. (5) and (7), we have

i.e. the charge-density vector j given by Eq. 8 is divergence-free and so the potential 
of point M  is uniquely determined by this current. Equation (8) is already suitable 
to determine the direction of the current-density j namely that it acts against the 
inducing current, but it contains no information as to the magnitude of this density.

It has been recently found in a number of laboratory measurements that the 
density of the induced current is proportional to that of the inducing current, i.e.

\jp\ —x \Jo\ • (9)

Some comments should be made about this relation. In the first place we note 
that Eq. (9) is an approximate relation, valid as long as the inducing current is 
small. For a sufficiently large inducing current the dipoles developed might disin­
tegrate and Eq. (9) is no longer valid. As a matter of fact in actual field work we 
never encounter such extreme current densities (except in the immediate vicinity 
of electrodes) since the current-density decreases with the reciprocal of the second 
power of distance and we know from Dakhxov  (1959) that for current-densities 
of the order of 0.1 mA/cm2 Eq. (9) already holds.

A second comment is that besides the disintegration of dipoles any deviation 
from idealized conditions might affect the validity of Eq. (9).

In field conditions the energy of the inducing current introduced into the soil 
will partly be consumed due to resistivity losses, another part will be spent for 
bringing dipoles about, but there always remains a piece of energy which may 
cause, through physico-chemical transformations, a permanent potential field. 
Within the scope of the present paper this phenomenon will be considered as a small 
perturbation which contributes to the noise-background of the measurement, 
and the validity of Eq. (9) will be taken for granted. It seems likely that a proper 
combination of time-domain and frequency-domain methods would be an efficient 
tool for suppressing this type of noise.

Returning to Eq. (8), we multiply both sides by the specific resistivity q0 of 
the rock:
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The dimensions of both sides are that of field-strength, the terms on the right- 
hand side are the inducing-, resp. polarization field-strenghts. Upon comparing 
this with the electrodynamic equation

D = E + P

and taking into account Eq. (9) we get

0=Q of, K = p j f) and P = - q J p. (11)

Since q0, the specific resistivity of the rock, is constant, the divergence of vector 
D is zero everywhere i.e. this field-strength vector obeys the postulate required 
by Ohm’s law. So, to arrive at the desired form of Maxwell’s equations which would 
already describe the polarization effect in conductive media we have to change 
E  into D  in Eq. (1). Before doing this, however, it will be profitable to write down 
a further relation, from Eqs. (10) —(11):

D = Ê-xÊ=Ë{\-x). (12)
According to our previous considerations x may be called polarization sus­

ceptibility. Its numerical value expresses that from all ions participating in electro­
lytic conduction in a conductive rock medium, what amount (i.e. how many per 
cent) does contribute to dipole formation, x, as a physical parameter is of paramount 
importance since it gives account of the density of those points (metal-filings 
in the above example) where dipoles arise.

If we divide Eq. (12) by q0 and introduce the notation

then, making use of the electrodynamical relation D = eE  Eq. (12) can be rewritten
as

(13)
Q

whence

(14)
в

and, further, from Eq. (13)

х - в ~ д». (15)
о

Here we must stop again to explain the physical meaning of q and e. As we 
have just seen, the polarization susceptibility x is a measure of the volumetric 
density of those points where dipoles are brought about. If there are no such points, 
x = 0, i.e. from Eq. (13) n = p0. For x greater than zero, p > q0 which is plausible since 
certain ions do not take part in conduction. Here, q is the specific resistivity given 
by DC methods after the formation of dipoles while p0 is the resistivity which would 
have been measured if all ions had participated in conduction. The case x = 1 
never occurs in practice since this would imply that all ions are situated in charge-

Geofizikai Közlemények XX I. 1—4.
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configurations, i.e. £ = «>. As for s, we know that in conductive media s = l. From 
Eq. (14) we learn that this could only happen if there is no polarization i.e. if g = p0. 
In case of polarization e<  1 : in a conductor just opposite to insulators, the dielectric 
constant may be less than unity. Conductors which have a disposition for polarization 
show a behaviour which is reminescent of diamagnetic materials.

Let us suppose, in what follows, that we can somehow measure the values 
g0 and о at point M  of Fig. 3. Then we know that

q0 =  4 л r  and Q =  4 n r

where 1 is the strength of the inducing current. Making use of Eq. (15)

X = Ф -Ф 0
Ф (16)

already given by Seigel (cf. W ait, 1959). He, as a matter of fact, denoted this value 
by m and termed it “chargeability”. This terminology may be objected since x is 
a well-known electrodynamical constant, identical with the polarization susceptibility, 
as i t  has been correctly termed by B leel  (1933).

Because the polarization susceptibility, x, is less than one, it would be more 
convenient for practical purposes to use its hundredth as a unit (ox, i.e. centikappa) 
•since this would give the percentage of all ions which are bound in dipoles.

Maxwell’s equations in polarizable roeks

After these preparations we can write down Maxwell’s equations for a polariz­
able conductor:

curl H  = o0D

div /5 = 0

a) curl D  = — и-----
' dt b)

c) div H  = 0 d)

(17)

where cr0 is the specific conductivity of the rook (with respect to the totality of ions). 
The system of equations (17) is formally the same as Eq. (1) and in case of no polariz­
ation it evidently regresses to the latter. Eqs. (17c) and (17d) deserve no further 
comment, since (17c) has already been proved and (17d) has remained unchanged. 
The validity of (17a) and (17b) can also be simply checked.

Indeed, for a current of density j  flowing through a surface element ds we have

J j  ds = § H d l
S

i.e., bv Stokes’ theorem

J; ds=  j curl H  ds.
s s
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But, by Eq. (11)

j  = — D =  a0D

and the equality of the above integrals implies that

curl H  = af)D .

To prove Eq. (17b) we follow a similar line of thought. We first express the 
potential by means of the magnetic flux V , as

,  dW
at

Since D  is diverger ee-free, we may write

Ф = фЗ(11.
I

Recalling, that

W ^ f i j É d s
S

we have

s

Applying again Stokes’ theorem and equating the quantities behind the integral 
sign we have, indeed, that

i n  dÊ
‘ dt

The system of equations (17) is already free of those contradictions which have 
been encountered in connection with Eqs. (4a) and (4c), so we are justified in expect­
ing that their solution would yield quantitative relations between the induced polariz­
ation and other physical parameters of the rock.

Differential equation of a homogeneous polarizable conductive field

Since a general treatment of quasi-stationary fields would cause considerable 
mathematical difficulties we shall deal, in what follows, only with such cases where 
stationarity can be assumed as a reasonable approximation. So, we shall drop out 
of our calculations the equations describing the relation between D and H , the dis­
placement current will be neglected either and it will be taken for granted that 
vector D can be expressed as gradient of the potential.

That is, we shall be concerned with a reduced set of equations

dS(r, t) 
dt div j0 = 0, ( 181

div D = 0. (19)
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We first inspect Eq. (18). According to Eqs. (5) and (10)

d iv P =  -  ,S(r, t) = div (~y.Qoj0)=  — y.Q0 div j0 

since y and g0 are constants, i.e. Eq. (18) can be written as

dt Q0y
( 20)

We shall need a further relation between the dipoles’ volumetric charge density 
S(r, t), and the potential measured. We start out from Poisson’s formula which 
asserts that

' divP
Ф(г, t) -

.! J  J  'V
-dr

if there is no charge density on the surface, and R  is the distance from the dipole 
to the point of observation. By Eq. (5)

Ф(г, t) = JJJV d r .

Because of the homogeneity and isotropy of the rock, we can set

S{r, t) =  SA(t)-W{r),

(21)

( 22)

where S A(t) denotes the charge-density occurring at the origin of the system of 
coordinates and W(r) is some factor of proportionality which depends on r. Inserting 
this into Eq. (21)

'W(r)
Ф(г, t) = S A(t)ЯР R

- dr = RA(t)Z(r) + Фй(г) (23)

where Z(r) denotes the result of integration and Ф0(г) is a constant which represents 
the constant field given by Eq. (19). Substituting Eq. (23) into Eq. (22):

i.e.
^ r’ i)= W ^ (r) + 0o(r)

S(r, [ф(г> 0  -  фо(г)] ■

Differentiating with respect to time

dS(r, t) W(r) dФ(r, t)
dt Z(r) dt

(24)

(25)

(26)

Substituting Eqs. (25) and (26) into Eq. (20) we obtain, upon simplifications, the 
differential equation

K Q o + ф (г> f ) =  фо(г) • (27>
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Ф (r) which figures on the right-hand side can be obtained from Eq. (19):

div D = — div grad Ф =A Ф = 0.

The solution of the Laplace equation, АФ = 0, is well known, it is given by

а д :
JQ _
‘kir '

(28)

The quantity g which occurs here is naturally not identical with g0. By Eq. (14)

„ Po

and Eq. (28) takes the form

а д =
h o

4тг re

where 1 is the current flowing in the rock. Putting this into Eq. (27), we get

11Ф(г, t) 1 _ I
x ---~  + — Ф(г, t) =dt o„ 4лте

(29)

(30)

which is a well-known differential equation whose solution is

(31)

Eq. (31) describes the behaviour of the potential in a rock of specific resistivity 
g0 and polarization susceptibility x, if we introduce a constant current I  into it. 
In non-polarizable rocks, e  = 1 and x = 0, and the potential is, as it must be, simply

^ ‘> . Ц

The same formula applies at the moment of initiation of current, i.e. for t = 0, 
since 1 — X = e. Consequently, at the moment of initiation the current also affects 
those ions which are built in the ion-configurations and all of them will participate 
in conduction ; later—when the dipoles will have been brought about—they gradually 
lose their role in conduction and the potential exponentially tends to a limit value 
belonging to i= ~ , i.e. to

Ф (г,*=~) J e0
4tire

which corresponds to the case when only free ions transfer the current. The time- 
constant of the potential rise is given by the product g0x, i.e. the maximum value 
is attained (with a fair approximation) after a time 3g0x. Assuming 10 ohm and 
10 cx this time is 3 sec. This, of course, casts a new light on Eq. (16) in case if Ф0 
is measured at t = 0 and Ф somewhat later at i > 3o0%.
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The differential equation (30) also describes the behaviour of the potential 
after the interruption of the current if we set 1 = 0. In this case the solution of (30) is

Ф(г, t) =
I 0 „У . ——_e
4rcre

(32)

i.e. at the moment of interruption (t = 0 ) the induced potential decreases to a fraction 
*  of its original value and keeps decreasing to zero, afterwards.

Obviously, if x = 0 also Ф(г, t) = 0, i.e. in non-polarizable rocks no decay of 
potential will be experienced. It is also evident from (32) that for a large specific 
resistivity and large polarization susceptibility the time-constant could be as large 
as 10 seconds or more. Figure 4 shows potential functions for some values of y.

Puc. 4

Measurement of the polarization susceptibility

Equations (31) and (32) suggest a quantitative method for the estimation of 
the physical parameter y. from the potential values measured at different time 
instants in a homogeneous isotropic medium. We shall use the following notations: 
after a time tg from the initiation of the inducing current the potential measured 
at point M  is Ф„, while after a time tl from the interruption we denote it bjr Фу 
Inserting Фе and tg into Eq. (31) we obtain, after rearrangements and multiplication 
by

47Г re
T

ФАтсге
Qo------ J —  = Qoye

th a t
liL
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From Eq. (32)

I  0 X

and, after some easy algebraic calculus

у —
Ф х - h tQ x  +  ф е ~ tg/Q,*

(33)

In order to eliminate x from the exponent we perform a further measurement at 
a time t., = 2/, after the interruption of the current. Writing down Eq. (32) for the 
new potential value, Ф2, as well, we have

Ф2 e-2il/e«x
Ф 1 — e -h iо»*

'faking the logarithm of both sides

0 1  Q0X

Substituting this into Eq. (33) we get an explicit term for x

where

02

ФеФ2 + Ф\ьи

to . 0 ,
u = — In —

Ф Г

(34)

If also tx = t„ could be ensured у would be given by the simple formula:

3?
0 2(0 ,+  0 1) ‘

It must be noted that Eq. (34) has been derived for homogeneous media, that is, 
it is not necessarily valid under actual field conditions. There are, however, some 
significant conclusions which must be pointed out in connection with this formula. 
We note first that x, as given by Eq. (34), is independent of the electrode con­
figuration i.e. it can be determined under laboratory conditions on rock-samples 
or cores. If the investigated rock pattern is inhomogeneous (e.g. stratified) then 
the volumetric charge density S  and the potential 0 o(r) are complicated functions 
and the differential equation which would replace Eq. (30) could be only solved 
with sophisticated mathematical techniques. We shall not dwell upon this question 
any more in the present paper but we turn our attention to the frequency-domain 
method, in a homogeneous field.
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Solution of the differential equation for AC

Let us consider an AC of circular frequency со and amplitude Iv, i.e. let

I  = Iv sin cot.

Substituting this value into the differential equation (30), it becomes

с1Ф(г, t) 1 J v
к----j— - 4-----Ф(г, t) = —------ sin cot.

at g0 4cjirs
(35)

The time-dependent term on the right-hand side of this equation suggests the use 
of Laplace transformation. Making use of the identities

and

с1Ф
dt

=рФ (р)-Ф ( 0)

. и/
a sin cot] — г*-— j

р 2 + а>2

the Laplace transform of Eq. (35) will be

p x  J Ф(р) -  Ф0
со

p 2 + w2
1 . /„ CO

4----Ф(р) = “T----- - ■ ——— 5-p0 4лте p^ + co2

Multiplying both sides by g0 and substituting the value of Ф0—that is the voltage 
at the initiation of current—into this equation

4л:r(p2 4- со2) 4c7ir(p2 4- со2)

which gives after some easy manipulations and making use of Eq. (14) that

Ф(р) =
I VCO Í Q + QWo Ivw Q + py.pl

Í71 r(p2 4- CO2) \pXQ0+ i  ) 4:7lr p3e(g -  Q0) 4-p2 +pco2e(g -  g0) 4- со2

Finally, adding some further algebra and reference to Eqs. (15), Eq. (14) give

l+pxep0Ф{р )= Ь ш \ ______ i ±
4лте [p :tp()y, + p 2+pcog0x + <xr

which may conveniently be written as

ф (р )= Л ° <L
ínreco

1  4-pxsg0

p  + l)
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Looking up any textbook which contains inversion formulae of the Laplace trans­
form we find that

t

r -i 1  + ap

+ 1 \{Tp+l)

co(T-a)e T 
1 + T-or

со
1  + a2co2 V/2 . .

t w ]  ® n N + T )1 +

with
cp = arctg eco -  arctg Too.

Making the substitutions a —xg0e, T  = y.o0, dividing by со and setting l - e = x  we 
have

Ф(г, t) --
[ ою(р Л г t/BoX 14- y2e~œrç %

4z7ire [ 1 +  д 0х 2со2 1ч 1 +  k  'co2Qo 

To determine the phase angle cp, we shall use the identity

sin (cot + cp) (36)

arctg X - arctg y  = arctg
x - y

1 + x y

which gives, for xy > -  I, that

cp = — arctg
g0cox*

1 • eK2QC02
(37)

Equations (36) and (37) are the basic formulae of the frequency domain method. 
Before a detailed study of these equations let us discuss the first term in Eq. 36. 
Since X < 1, its second power, x2, is small and it will be further diminished by the 
exponential factor e~t/e‘*. So, we shall neglect this term in our subsequent con­
siderations, i.e. we shall assume that the measurement is started after the lapse 
of a definite time (corresponding to two- or three times the time-constant g0x) 
after the initiation of the inducing current. With this simplification Eq. (36) becomes

.. . JvoJl + x2co2e2po)1/2 . . .  .
ф ( г > * ) = л , л-------- ,  2 2 U /2  ' S m  M  +  'P)-inre  (1 + x2£q'jo2)112

(38)

Consider now the behaviour of Ф(г, t) for high frequencies. If д0сох»  1 then the 
second terms dominate inside the brackets, in Eq. (38), and, approximately

ф(г, t) = — sin cot. 
4лт

(39)

The pase angle, cp, is zero to a very good approximation. Thus, for very high 
frequencies the rock behaves as if it were non-polarizable, i.e. we simply measure 
the specific resistivity g0 of the rock. This might be due to the fact that the ions 
taking part in ion-configurations will follow the changes of the inducing current 
and in the dipole the forces acting toward the centre are negligible as compared 
to the external field.

On the other extreme, if the measuring frequency is very low, i.e. o(lojz<< 1, 
we have

lyQaФ(г, t) ■-
4 j i r e

sin cot. (40)
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The phase shift q> can be neglected also in this case, since g0o>x2 = (д0огх) x, i.e. 
Q0ojx2 <  Q0o)X  because of x < l .

From Eq. (40) we conclude that for very low frequencies the value of the po­
tential depends, besides the specific resistivity g0, on the dielectric constant e as 
well, i.e. an apparent specific resistivity greater than g0 will be found. This can be 
explained by the fact that the ions bound in charge-configurations practically do 
not participate in conduction, they are in dipole state for the best part of the period.

The third case to be discussed is when

Then

and

g0u>x — 1 .

Ф(г, t)
5.6 лте

(1 + f)1/2sin (wt + cp)

1  -  e
ч = ~ arctgT 7 7  • (41)

That is, for xg0a) = 1 both an increase of potential and a phase-shift will be ex­
perienced. It is worth noting that in this special case cp does not depend on specific 
resistivity.

We shall seek now the maximum of the phase-shift <f. We have already seen 
that for very low and very high frequencies there is practically no phase shift. 
Differentiating the quantity in the argument of the arctg function in Eq. (37) and 
making the derivative equal with zero:

gQx 2_________2 fo y 4fO)2
1 + ex2ÇqO>2 ( 1 + e.x2c о« 2)2

The root of this equation is given by

XO0(O (42)

Since e is near to one even for well-polarizable rocks, the phase shift <p attains its 
maximum for a value xq0cor; 1.

We proced now to express x in case of the frequency-domain method. Substitut­
ing the values of Ф(г, t) and I  to the formula describing resistivity one gets, upon 
simplifications

из,
s sin cut

where
1  + e2x2Ço'o2 

1 +  x 2q0co2

This equation contains two unknown quantities, g0 and e. For large enough measuring 
frequencies Eq. (43) can be simplified as

Sft = g0 sin 0 )t
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while for very low frequencies we have

5/ = — sin o)l.
e

From these formulae x is readily expressed:

Qi~ Qh 
Qt

This formula works well under laboratory conditions and gives an expedient for 
the determination of x. In field work, however, we cannot neglect the interaction 
of D and H  in Eq. (17) in the high-frequency case and the use of very low frequencies 
would be also problematic from a purely technical point of view. In routine mea-

Fig. 5 
5. ábra 
Рис. 5

sucements one has to use Eq. (43) and determine y. from this formula by means 
of nomograms or other computational techniques.

Figure 5 gives a few illustrative examples of the change of specific resistivity 
and the phase angle in function of frequency.

Summarizing, it can be concluded that in homogeneous media the induced 
potential allows a quantitative description and the rock-physical parameter y. 
can be determined. Equations (31), (32), (3G) and (37) give a fair estimation for the 
order of magnitude of the induced potential and the shape of the curves shown 
in Figs. 4 and 5 are in accordance with experimental findings.
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Experimental verification of our theoretical conclusions

In order to check numerically the formulae proposed we shall make use of the 
results of Nilsso n ’s (1971) laboratory measurements. Nilsson investigated the 
behaviour of the electrode-potential by a technique assuring nearly ideal conditions 
(see Fig. 6). The metals investigated were nickel and silver. The metal sheet gathers 
around itself the ions of opposite charge, these cluster in dipoles since the field is 
homogeneous—the only non-vanishing component of the current-density vector 
is the normal one—and the phenomenon of electric polarization can be quantitatively 
studied. Nilsson measured the real- and imaginary parts of the complex impedance

,current gen current gen..
V

H20 * 001 N H2 S0A e ® NICKEL OR SÍLVER
©
©

Fig. 6 
6. ábra 
Рис. 6

and presented their plots in his paper. We note that the graph of the real component 
resembles g{œ) and that of the imaginary component 99(01) of our Fig. 5.

We have utilized Nilsson’s measured valued as follows. First, the values of 
q0 and g could be determined from the real component since

q(co) -* q if œ -*■ 0
e(°>)-*Qo if

and the phase-shift, is zero. Making use of Eq. (15) we obtain x from g and g0 

for nickel for silver
Q-+JI =2.3  kohm R  = 1.6  kohm

q0-*R0 = 0.9 kohm Rn = 0.9 kohm
и = 0.61 к = 0.44

According to Eq. (42) the phase angle has its maximum at g0xco ^ 1, further, 
by Eq. (41), this maximum value of 99 solely depends on x. But this phase-angle 
can be obtained from the measured values as well, since, per definitionem

99 = arctg
Im(z)
Re(z)

and its maximum occurs for the maximum of Im(z). The phase angles, determined 
by the different methods, show a fair agreement :

for nickel 
calculated 25' 
measured 23'

for silver 
16° 
14°
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This computation deserves a further comment. It lias been indicated above that 
the value of y. inreases with the ore-content of the rock. In Nilsson’s experiment, 
however, the measurements were performed under identical conditions and the 
computed y. values still differed. This shows that not only the ore-content but its 
quality as well might influence the value of y., that is the equivalence principle 
also holds for the measurements of y.

An equivalent electric circuit for the II* effect

Figure 7 presents the equivalent electric circuit for IP. The equation governing 
the circuit agree with our previous equations if we set

c = 4tire,

P —
1 4лт ’ 4яг

This model corresponds to the electrode configuration shown in Fig. 3.

7. ábra 
Рис. 7

IP in a layered half-space

In this section we shall briefly sketch how our principal equations should 
be modified for the case of an inhomogeneous (layered) medium.

As a matter of fact, for the time-domain method even the two-layered case 
would raise considerable difficulties. For, in order to describe the potential functions 
we had to determine the functional form of the charge-density S  (x , y, z, t) and the 
value of the constant potential field, construct differential equations from these 
functions and, finally, extract the time constans from the solution of these equations. 
This program, however, remains a task of future research.

The frequency-domain method in itself allows a simple interpretation: let us 
consider two successive layers. If the layers are non-polarizable, the normal component 
of current density satisfies the equation

Jo in  _  j02n — 0
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where the indices refer to the respective layers. Letting p01 and g02 denote the specific 
resistivities, we have

In case of polarization the normal component of current density satisfies

jin Згп — 0

because of div; = 0. Introducing specific resistivities p, and o2:

1

Qi

that is, the normal component of the charge-density vector continuously changes 
at the boundary of specific resistivities. Consequently, for very low frequencies 
polarizable rocks show an increased resistivity while in the high frequency limit 
they reveal the real values of resistivities no matter whether the rocks are layered 
or not.

This conclusion might give a significant hint for future research since it seems 
to suggest that the familiar sets of curves used for SR interpretation could be appli­
cable for the calculation of families of curves for the measurement of polarization 
susceptibility.

Conclusions

VVe have reviewed the basic physical ideas underlying the IF  method and have 
shown that within the scope of a consistent electrodynamical treatment quantitative 
relations could be established between the polarization constants—я and e—and 
the parameters of measurement (voltage, frequency, etc.). The orders of magnitude 
and the time- and amplitude-behaviour predicted by our theory show excellent 
agreement with recent experimental findings (Zonge et ah, 1970; Nilsson, 1971).

We consider Eq. (17) as the principal result of our paper since it makes possible 
a quantitative treatment of the induced potential and we can expect that a number 
of important problems which have arisen about the IP  method in recent years 
will be tackled by means of these techniques.
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D A N K H Ä Z I G Y U LA

A  G E R JE S Z T E T T  P O T E N C IÁ L  E L M É L E T I  A L A P JA I

A dolgozat egy anyagi modellből kiindulva tárg yalja  a  gerjesztett potenciál jelen­
ségét. A  modell szerint a  pozitív vag y  n egatív  töltéssel rendelkező anyagi részecskék  
m aguk köré gyűjtik  a  környezetükben tartózkodó ellentétes töltésű  szabad elektronokat 
vagy ionokat, így kifelé semleges viselkedést m u tató  töltéskonfigurációk jönnek létre. 
A gerjesztő áram  h atására  ezek a  töltéskonfigurációk polarizálódnak, dipólusokká a la ­
kulnak. A gerjesztő áram  bekapcsolása pillanatában az elektrom osan vezető közegben  
minden ion — te h á t a  konfigurációkban levő is — részt vesz az elektrom os vezetésben, 
a dipólusok kialakulása u tán  azonban m ár csak a  konfigurációkban le nem k ö tö tt elek tro­
nok vagy ionok közvetítik az áram ot. A vezető közeg ellenállása te h á t a  dipólusok ki­
alakulásával párhuzam osan növekszik, m ajd  a  dipólusok kialakulása után  egy m eg­
növekedett érték et vesz fel. A gerjesztő áram  kikapcsolása u tán  a  dipólusok fokozatosan  
elvesztik töltésüket, a  környezetükben elhelyezkedő elektronokon vagy ionokon kisülnek, 
így a  gerjesztő áram  irányával azonos irán yú  fokozatosan csökkenő áram ot tartan ak  fenn.

A modell szerint a  kőzetben ténylegesen folyó divergenciam entes áram  a gerjesztő  
áram  és a  polarizációs áram  különbsége. E z t  a  m egállapítást a  dolgozat bizonyítja és 
ebből kiindulva m egadja a  M axw ell-egyenleteknek azok at az alak jait, am elyek a  po­
larizációra hajlam os elektrom osan vezető közegekben is helyesen írják  le az elektro­
mágneses té r viselkedését. Ilyen közegekben a  dielektromos állandó értéke egynél kisebb.

A M axwell-egyenletek birtokában, a  kontinuitási egyenlet felhasználásával, a  to ­
vábbiakban a  dolgozat a  homogén, végtelen kiterjedésű közeget (kőzeteket) vizsgálja, 
felírja a  potenciálra vonatkozó differenciálegyenletet, m ajd ezt a  gerjesztő áram  bekap­
csolásakor és kikapcsolásakor, továbbá szinuszos váltakozó áram ú gerjesztésre is m eg­
oldja. A k apott eredmények a  gyakorlatban  szerzett tap asztalatok k al igen jó egyezést 
m utatnak, sőt Nilsson (1971) ideális feltételek között végzett méréseivel kielégítő szám ­
szerű egyezést is adnak.

A dolgozat befejezésül a  frequency-dom ain  m érések kiértékelésére vonatkozóan tesz  
néhány m egjegyzést.

ДБ. ДАНКХАЗИ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ВОЗБУЖДЕННОЙ ПОЛЯРИЗАЦИИ

В работе рассматривается явление возбужденной поляризации исходя из вещественной 
модели. По модели вещественные частицы, имеющие положительный или отрицательный 
заряд, собирают вокруг себя свободные электроны или ионы, имеющиеся в их окружности, 
в связи с чем создаются конфигурации заряда с нейтральным поведением смотря снаружи. 
На воздействие возбуждающего тока эти конфигурации зарядов поляризуются и превра­
щаются в диполи. В момент включения возбуждающего тока в электрически проводящей 
среде все ионы — следовательно и те, которые находятся в конфигурациях — участвуют 
в электрическом ведении, но после образования диполей ток передается только электронами 
или ионами, не связанными в конфигурациях. Следовательно, сопротивление проводящей 
среды увеличивается параллельно с образованием диполей, а затем оно приобретает опре­
деленное увеличенное значение. После выключения возбуждающего тока диполи постепенно 
теряют свой заряд, располагающиеся в окружности электроны или ионы разряжаются, 
в связи с чем они сохраняют ток, сила которого постепенно уменьшается и направление 
которого аналогично направлению возбуждающего тока.

Исследования на модели показывают, что бездивергентный ток, фактически протекаю­
щий в горных породах, представлен разностью между возбуждающим и поляризующим 
током. Это заключение подтверждается в настоящей работе. Исходя из этого получаются 
формы уравнения Максвелла, правильно описывающие поведение электромагнитного поля 
даже в электрически проводящих средах, склонных к поляризации. В подобных средах вели­
чина диэлектрической постоянной меньше единицы.

Опираясь на уравнения Максвелла, с использованием уравнения непрерывности, в работе 
рассматриваются однородные среды бесконечного протяжения (горные породы), записы­
вается дифференциальное уравнение, касающееся потенциала, а затем это уравнение решается 
для случая включения и выключения возбуждающего тока, а также для случая возбуждения 
синусоидального переменного тока. Полученные результаты хорошо согласются с получен­
ными на практике данными, и дают удовлетворительное численное совпадение с результа­
тами измерений Н и л ь с о н а  (1971), проведенными при идеальных условиях.

В заключение в работе излагаются некоторые замечания относительно интерпретации 
измерения области частот.




