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Introduction

It is well known that optimum filter theory has found a wide application in
many stages of seismic data processing (S/S +N filters, deconvolution filters and, in
special problems, OVS or OHS filters). In the actual design of filters various appro-
ximations must be made and in most cases the necessary filter parameters are
estimated from the recorded data (by means, e.g., of correlation analysis). The filter
is only optimum if all approximations made are justified and even then only with
respect to the parameters used. The filter finally applied to a given channel is,
even in the best case, a good approximation.

In the usual derivation of S/S +N filters, for example, it is assumed that signal
and noise are non-correlated and both are realizations of stationary stochastic pro-
cesses. Power spectra are estimated from the autocorrelation functions. It is well-
known, however, that the frequency content of the seismic signal changes during
propagation, i.e. stationarity which is assumed may hold only within reasonable
short time gates. The coefficients figuring in the correlation functions are random
variables and if one estimates them from a small number of samples, the cor-
responding confidence intervals become rather wide. Consequently, the estimation of
correlation functions becomes the less reliable the narrower is the time gate. If we
strive at the fulfilment of one of the criteria (stationarity), the indeterminacy of the
estimation of the parameters will be increased and vice versa.

Similar difficulties are encountered in case of other problems of optimum fil-
tering. These problems do not make the computation of optimum filters superfluous
since their application results in much clearer seismic sections. It is, however,
reasonable to try to design sub-optimum filters if these lead to an ease in the com-
putations or a substantial saving in computer time.

The methods of sub-optimum filter design can be classified in two large groups.
In the first of them the design model is chosen in such a way that the determination
of the transfer function or weight function of the filter be simple. Investigations of
this kind were reported by Foster and Sengbush (1965). But, in reality, also the
OILS and OVS filters—although they are termed as optimum by the authors
(Schneider et al. 1964, 1965)—were designed under such assumptions on the input
channels which were meant to make the filters suitable for computation.
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Anothertype of sub-oirtimum filters is obtained if we approximate in the frequ-
ency domain some filter which had been designed according to the theory of
optimum filters. The approximating function (i.e. the transfer function of the sub-
optimum filter) has only a few parameters. Its form assures that the corresponding
weight-function be computable with a closed formula from the parameters given.
The actual values of the parameters can be determined by fitting the sub-optimum
transfer function to the optimum one.

The computation of sub-optimum filters is justified, among others, by the con-
venient properties of the weight functions: smoothness, shortness. Consequently,
the otherwise necessary smoothing and truncation may be omitted.

This paper will treat a special group of sub-optimum filters of the second type.
,dAfttler a_llaqrief discussion of the algorithm of design, a concrete application will be

ealt with.

Determination of the transfer function of the sub-optimum
filter

Let us denote by SQ(f) the transfer function of some optimum filter and by
S(f, yv a2 ..., sn)that of the suboptimum filter, where a,, a2 . .., a,, are parameters
which are to be determined.

In order to fit the transfer function we determine the series of parameters for

which
E
Jp \] ISQ(f)-S(f, og, a2, .. ., yn)2df= minimum. @)
-F
In practical cases instead of SQ(f) its sampled version
3fo0) (i=0,£1,22,. ..tn)

is given and instead of integral (1) the sum
7=2N+1 2720 W ~ 8N@>yi>y2> eee>«*)2 )

must be minimum. If the transfer functions of the optimum filter and of the appro-
ximating sub-optimum filters are real, the modulus sign can be omitted. In what
follows, we shall be concerned with this simpler case.

By virtue of the condition of optimality the partial derivatives with respect
to the parameters yk are zero:

aT

ok

After performing differentiation we obtain a system of equations for the un-
known parameters oqg, a2, ..., a.,:

=0; (k=1,2, €)

i=2_N [34)-BAo' *1’a2> meo*,)] ==, )
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This system of equations is generally non-linear. We shall attempt to solve it
after linearization, by an iterative procedure. Let us introduce for sake of simplicity

the notations:
S(if0, og. «m f)—S(if0, a),

grada8 =

The order of approximations in the course of the iteration will be shown by
the upper index of the parameters. Let the initial ©tuple of parameters be

229) Y2 f‘lO)f
while in the j-th step
ai), &2 ..., o).

The (j+1)-st approximation can be constructed from the j-th one as follows.

Let us introduce the notation A for the differences (corrections) between successive®
approximations, i.e.

©)

Developing the function S(f, aol+l), ..., a,,+)) in a Taylor-series at the
neighbourhood of crp:

S(if0, N +)) =s(if0, dP) + (A@ gradaS) +0O[(zI")Z (6).

—where the components of vector /A(* are the \-aiues defined by (5);
the arguments of vector grada8 are the parameters of the ~'-th approximation.

Assuming that the terms which are of the second order in the corrections 2*
are sufficiently small:

y-1+1))=S{if0, xP) + (AQ\ grada8) )

Substituting this to Eq. (2) and differentiating with respect to the corrections 2"
we obtain that

i:2_N Ne fo) - ail)) - (4 gradets (8)

This last system of equations is already hnear in the corrections Ap. After solving
it, the (j+ I)-st approximation of the parameters are obtained by means of Eq. (5).

We have not established the convergence of the procedure theoretically. It was
found in practice, however, that for an appropriate initial n-tuple of parameters,
the corrections Ap become small after a few iterative steps. The choice of initial
parairlneters has a crucial role since it has been always assumed that corrections are
small.

The brief description of the above iterative method was thought appropriate
since this algorithm had been used throughout our investigations. Analyses of other
methods and a detailed investigation of the convergence problems involved will be
subject matters of our further research work.
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An application example

We shall proceed to approximate the transfer function illustrated by Fig. la
The corresponding weight function is also given, Fig. Ib.

f[Hz]

Fig. 1 Transfer function (a) and weight function
(b) of the optimum filter

1. cibra. A kozelitend6 optimumszlrd atviteli figg-
vénye (a) és sulyfiggvénye (b)

Pue. 1. Xapaktepuctuka (5) u BecoBas (yHKUua ()
annpoKCMMMPYEMOro ONMTUMANbLHOro (unbTpa

Considering the shape of the transfer function which is to be approximated it
seems appropriate to seek for an approximating function of the form

S(f, af= +e- Q+a]; ©

that is, the transfer function of the sub-optimum filter consists of two Gaussian
curves, placed symmetrically to the origin of the co-ordinate system. Parameter ax
determines the amplitude, and a2the distance of the centres from the origin. Para-
meter a3is in connection with the slope of cut-off. (The transfer function of the opti-
mum filters has the same properties. The imaginary part is identically zero).

The inverse Fourier transform of (9) is given by a closed formula:

_t
S(t, yk)=a, e <cos 2ny.J. (10)
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It is evident that the weight-function is smooth and automatically truncated.
The initial choice of parameters for the iterative procedure described above was

ai0)=(0.7; 0.005; 10.0).

The change of parameters in course of the iterative procedure and the mean square
deviation between the transfer functions of the optimum and sub-optimum filters
are shown in Table I. The values of the parameters remain practically unchanged
after the first iterative step. The mean square deviation decreases with a jump in the
first step and attains nearly the same value afterwards.

Table 1.
Change of the values of the parameters and of the mean square
error in course of the iterations
Iteration X a2 3 Mean square deviation
0 0.7 0.00500 10,00000 169.201
1 0.87057 0.00635 10.29375 0.121
2 0.87755 0.00631 10.21597 0.119
3 0.88065 0.00642 10.20840 0.119
4 0.87827 0.00633 10.21633 0.119
5 0.87947 0.00637 10.21249 0.119
6 0.87829 0.00633 10.21648 0.119
7 0.87829 0.00633 10.21659 0.119
Table 11.
Values of optimum filter SQ(if0) and of the sub-optimum filter
<f0=4 eps)

i S..(if.) S(if.) i sqife) Sow

0 0.00001 0.00004
1 0.00000 0.00016 1 0.92376 0.82540
2 0.00000 0.00095 12 0.73508 0.63654
3 0.00005 0.00451 13 0.28234 0.40095
4  0.01496 0.01757 14 0.12135 0.20626

5 0.04185 0.05590
6 0.09131 0.14524 16 0.02846 0.02974
7 0.34375 0.30820 17 0.00019 0.00834
8 0.53016 0.53415 18 0.00008 0.00191
9 0.85302 0.75609 19 0.00015 0.00036
10  0.68332 0.87413 2 0.00000 0.00005
21 0.00000 0.00001
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The values of the original (optimum) and of the approximating (sub-optimum)
transfer function are given in Table I1. Figure 2aillustrates the transfer function of
the sub-optimum filter while Fig. 2b the corresponding weight function. The transfer
function and weight function approximated are plotted in these same Figures by

Fig. 2 Transfer function (a) and weight function (b) of

the sub-optimum filter. Curves plotted with dotted lines

are the transfer resp. weight functions of the optimum
filter

2. dbra. A szuboptimumszird atviteli fuggvénye (a) és

sulyfiiggvénye (b). A szaggatott vonallal rajzolt gorbék

az optimumsz(rd atvileti fliggvényét illetve sulyfligg-
vényét abrazoljak

Puc. 2. XapakTepuctmka (5) n BecoBas (yHKumsa (&) cy6on-

TUManbHOro unbTpa. Kpueble, NpoBefeeHHbIE MYHKTUPOM,

COOTBETCTBYIOT XapaKTepUCTVWKe W BECOBOW (YHKUAM ONTM-
ManbHOro uLTpa

dotted lines. We emphasize again the fact that the approximating weight function
is automatically truncated due to the proper choice of the form of approximation (9);
the weight-function of the sub-optimurn filter is some two and a half times shorter
than the original one.
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MESKO ATTILA—ZSELLER PETER

A DIGITALIS SZEIZMIKUS ADATFELDOLGOZASBAN ALKALMAZOTT
OPTIMUMSZUROK KOZELITESEROL

Az optimumsz(rék tervezésének korlatai (az alkalmazott elhanyagolasok és para-
meéterbecslések hibai) indokoltta teszik kozelitések alkalmazasat. A szuboptimumsz(irg
hasznalatanak tovabbi el6nye, hogy eltavolitja az eredeti atviteli fliggvénybdl a stochasz-
tikus ingadozasokat. A dolgozat az optimumsz(rd atviteli figgvényéhez néhany para-
méteres szuboptimumsz(r6 illesztését javasolja. A szuboptimumszlrdt agy valasztjuk,
hogy a hozza tartozd sulyfliggvény zart alakban el6allithaté, simitott és csonkitott
legyen.

Az eredeti, és a szuboptimumsz(ré atviteli fliggvénye kozotti atlagnégyzetes
kilonbséget irjuk fel. Az atlagnégyzetes eltérés minimalizalasaval a szuboptimumsz(ird
meghatarozand6 paramétereire nem-linedris egyenletrendszert kapunk. Az egyenletrend-
szert iteracios modszerrel oldjuk meg. A javasolt eljaras szerint a szlirétervezés az illesz-
tésben alkalmazott iteraciés algoritmussal b&vil; a numerikus inverz Fourier transz-
formécié-szamitas és csonkitds elmarad.

Az eljaras alkalmazasat szuboptimalis simit6sz(ir6 tervezésével illusztraljuk.

A. MELWWKO—T1. XXENJEP

Ob AMMPOKCUMALMN ONTUMAJIbHbIX ®WUMbTPOB, MPUMEHAEMbIX
MPN LMN®POBON OBPABOTKE CEMCMMWYECKUX OAHHbBIX

B cBSi3W C OrpaHUYeHUs MW, XapaKTepHbIMK 18 pPa3paboTKu ONTUMaNbHbIX (GUALTPOB (Mo-
PELIHOCTM NPUMEHSIEMbIX NMPEHEBPEXEHMIA N OLLEHKM NapaMeTpoB) 060CHOBAHO NPUMEHSTbL annpokK-
cumauumn. [ononHWTeNbHOe AOCTOMHCTBO Cy6ONTUMabHbIX (UALTPOB 3aK/1YaeTcsl B BO3MOX-
HOCTU UCKMOUEHUS CTOXacTUUECKMX KonebaHuiA M3 nepBoHaYasbHOW MepexofHol XapakTepucTUKK.
B pa6oTe npegnaraetcs paspa6otaTb CyGONTUMasbHbIA (QUALTP C HECKONbKUMU MapameTpamu
ANA NepexoAHOW XapaKTEpPUCTUKM OMTMManbHOro ¢unbtpa. CybonTuManbHbll (UALTP BbIOU-
paeTcsa C TaKUM pacyeToM, YTOGbl COOTBETCTBYHOLLAA BeCcOBas PYHKUMSA Gblia NofnyyeHa B 3aMKHY-
TOW, BbIPaBHEHHOI W YCEYEHHOW (hopMe.

3*
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3anucblBaeTcs CPpefHEKBaAPaTUUYHAs pasHMLA MEXAy MepBOHAYaNbHOW NepexofHOi XapakTe-
PUCTUKON W MEepPexofHON XapakTepUCTUKOW CyGONTUManbHOro ¢unbtpa. [MocpeACTBOM MUHU-
Masm3auumn CpefHeKBaApaTUYHOTO PACXOXAEHUs MO/YYaeTcsi CUCTEMA HEeNMHEeNHbIX YpaBHEHU
AN onpeAeneHns napaMeTpoB Cy6ONTUMabHOrO (unbTpa. CuUcTeMa ypaBHEHWIA peluaeTcs uTe-
pauMoHHbIM MeTofoM. Mo mpeanaraeMomy crnocoby paspaGoTka (uAbTpa pacluuMpsieTcs uTepa-
LIMOHHbIM anropuTMOM, MPUMEHSIEMbIM f/15 COT/IAaCOBaHWs; 0TNajaloT BbIpaBHUBAHUE W YCEUEHUE
YMCNEHHOI 06paTHOl TpaHchopMaumeli dypbe.

MprMeHeHWe MeTofa UNNOCTPUPYETCS Ha MpuMepe PaspaGoTKu cy6oNnTUMaIbHOTO Bblpas-

HUMBalOLLEro (uUnbTPa.





