Magyar Állami Eötvös Loránd Geofizikai Intézet GEOFIZIKAI KÖZLEMÉNYEK XIX. kötet, 1-2. szám.

AZ OPTIMÁLIS TERÍTÉSI GEOMETRIA MEGHATÁROZÁSA KÖZÖS MÉLYSÉGPONTOS ÉSZLELÉSI-RENDSZEREKBEN

BODOKY TAMÁS-GREUTTER ANTAL*

Т. БОДОКИ-А. ГРЕЙТТЕР

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ГЕОМЕТРИИ УСТАНОВОК В СИСТЕМАХ НАБЛЮДЕНИЯ ПО МЕТОДУ ОГТ

Излагается метод модельных вычислений для проектирования систем наблюдения по методу *ОГТ*. В качестве примера приводится вычисление и сопоставление степени подавления кратных отражений для некоторых известных систем *ОГТ*.

T. BODOKY-A. GREUTTER

THE DETERMINATION OF OPTIMUM SPREAD-GEOMETRY IN CDP SYSTEMS

A model-computation method for planning CDP systems is suggested. As an application of the method, the properties of some better known CDP systems in eliminating multiples have been calculated and compared.

A közös mélységpontos észlelési-rendszerekkel (a továbbiakban a rövidség kedvéért: KMR) a zajok egyik legkárosabb típusát, a többszörös reflexiókat (a továbbiakban néha: többszörösöket) szűrni tudjuk. Az egyes rendszerek jóságát abból a hatásfokból ítélhetjük meg, amellyel a többszörösöket csillapítják. Ezt a hatásfokot a következő arány jellemzi:

$$\Phi = \frac{\varepsilon_{ki}}{\varepsilon_{be}},$$

ahol ε_{be} a beérkező többszörös hullám energiája, ε_{ki} pedig a KMR-ben észlelt felvételen (tehát a rendszer kimenetén) jelentkező többszörös hullám energiája. Φ meghatározása előtt foglaljuk röviden össze a KMR elvét.

A kézirat beérkezése: 1969 március 23.

^{*} M. Áll. Eötvös Loránd Geofizikai Intézet, Budapest.

Vizsgáljunk meg egy $\overline{V}(t_o)$ -lal (a vertikális beérkezési idő függvényében megadott átlagsebesség függvénnyel) jellemzett területet. A robbantóponttól x távolságban a h mélységű vízszintes reflektáló szintről érkező reflexió geometriai időkésése

$$\Delta t(t_0, x) = \frac{\sqrt{t_0^2 \overline{V}(t_0)^2 + x^2}}{\overline{V}(t_0)} - t_0;$$

ebből kapjuk a dinamikus korrekciót.

Egy többszörös reflexió útja több egyszeres útra bontható. Minden egyszeres úthoz egy $\varDelta t$ érték tartozik és ezek összege lesz a többszörös $\varDelta t_T$ értéke. Ez azonban – ha $\overline{V}(t_o)$ növekvő függvény (ami gyakorlatilag mindig teljesül) – nagyobb, mint a többszörös beérkezési idejéhez és a többszöröst észlelő geofon helyéhez tartozó $\varDelta t(t_o, x)$ érték. A többszörös tehát még a korrekció után is a kettő különbségének megfelelő értékkel, az ún. "maradék időkéséssel" ($\delta \varDelta t$ -vel) korrigálatlan marad.

$$\Delta t_T(t_0, x) - \Delta t(t_0, x) = \delta \Delta(t_0, x) > 0.$$

A $\delta \Delta t$ konkrét alakjából és a $\overline{V}(t_o)$ függvény növekvő voltából következik, hogy a $\delta \Delta t(t_o, x)$ is az x függvényében növekvő.

Ezt használják ki a többszörös fedésű észlelési rendszerek, amelyeknek lényege, hogy azonos mélybeli reflektáló pontokról, különböző x távolságok használatával kapott beérkezéseket tartalmazó csatornákat – dinamikus korrekció után – összegeznek. Így az egyszeres utat megtett reflexiók fázishelyesen, a többszörösök viszont, helyesen beállított $\delta \Delta t$ értékek mellett fázistolással, vagyis egymást gyengítve (esetleg kioltva) összegződnek.

A közös mélységpontos észlelési rendszerek leírt elvének gyakorlati megvalósítására sokféle terítési rendszer dolgozható ki. Ezek mindegyikére jellemző azonban a több különböző típusú összegcsatorna szabályos ismétlődése (öszszegcsatorna típuson a robbantópont-geofon távolságok arányának egy bizonvos – a fedésszámtól függő – sorozatát értjük).

Ezután visszatérhetünk a csillapítás-függvény számítására. A Φ a következő többváltozós függvény:

$$\Phi\{\overline{V}(t_0), W(\omega), t_0, \alpha, T, d, R\},\$$

ahol $\overline{V}(t_o)$ a hullám vertikális terjedési átlagsebessége az észlelési idő függvényében;

 $W(\omega)$ a kiszűrendő többszörös reflexió spektruma;

 t_o kiszűrendő többszörös reflexió robbantóponti ideje;

d a geofontávolság;

R a használt közös mélységpontos észlelési rendszer jellemzőit, a fedések számát is magában foglaló mennyiség;

T a többszörös típusa;

 α a reflektáló felületnek a vízszintessel bezárt szöge.

Ezen mennyiségek közül $V(t_o)$, $W(\omega)$, t_o , α és T a mérési terület jellemzői és adottak, ezért, ha ezeket a változókat a gyakorlatban gyakorinak megismert

értékeknél, illetve függvényalakban rögzítjük, akkor Φ a következő alakúra egyszerűsödik:

 $\Phi(R, d).$

Ezt a függvénykapcsolatot R paraméterű görbeseregként ábrázolhatjuk. A görbesereg szemléletes képet ad a közös mélységpontos rendszerek csillapítási viszonyairól azon változók függvényében, amelyeket szabadon választhatunk meg, tehát amelyek helyes beállításával az adott viszonyok között legkedvezőbbé tehetjük a csillapítást.

i ábra. A számításokhoz használt sebességfüggvény
Фиг. 1. Скоростная функция, применявшаяся для вычислений
Fig. 1 The velocity function used in the computations

Legyen $\overline{V}(t_o)$ az 1. ábrán megadott sebességfüggvény. Az elemi hullám spektruma

$$W(\omega) = \frac{\omega^4}{k} e^{-\frac{1}{2}\left(\frac{\omega}{k}\right)^2},$$

ahol $k = \pi n;$ n = 47,5 Hz,

amely egy 47,5 Hz csúcsfrekvenciájú Ricker waveletnek felel meg. A waveletet és spektrumát a 2. és 3. ábra mutatja.

Válasszuk α -t 0-nak, t_o pedig legyen 2 sec. Többszörösünk legyen olyan kétszeres, amely a felszínről verődik vissza (ez ugyanis a legszámottevőbb vagy esetleg az egyetlen számottevő energiával rendelkező többszörös). Ebben az esetben

$$\varepsilon_{be} = \int \frac{1}{2} \left(f \frac{dS(t)}{dt} \right)^2 dt = \frac{f^2 \varrho}{2} \int w(t)^2 dt,$$

2 Geofizikai Közlemények XIX. kötet, 1.-2. sz.

2. ábra. A Ricker wavelet alakja

Фиг. 2. Вид волны (wavlet) Рикера

Fig. 2 The shape of the Ricker-wavelet

3. ábra. A Ricker wavelet spektruma Фги. 3. Спектр волны (wavlet) Рикера Fig. 3 The spectrum of the Ricker-wavelet

ahol f a fedések száma,

w(t) a Ricker wavelet,

e a rezgő pont tömege,

S a rezgő pont kitérése;

$$\varepsilon_{ki} = \int \frac{1}{2} \varrho \left(\sum_{i=1}^{f} \frac{dS(t-\tau_i)}{dt} \right)^2 dt = \frac{\varrho}{2} \int \left(\sum_{i=1}^{f} w(t-\tau_i) \right)^2 dt;$$

ahol $\tau_i = \tau_i \ (d,R)$ a terítési geometriától függő késleltetés az összegezésben résztvevő egyes csatornák között. Értékeit az adott $\overline{V}(t_o)$ sebességfüggvény és a t_o be
érkezési idő segítségével az adott Ttípusú többszörös
re számított $\delta \varDelta t$ görbéből nyerjük.

A számítandó függvényt ezzel felírtuk. Azt kell még eldöntenünk, hogy a független változók milyen értékei mellett akarjuk a függvény értékét megismerni.

A számtalan lehetséges terítési rendszer közül azzal a szemponttal próbáltuk a számítandókat kiválasztani, hogy tartalmazzák mindazon lehetőségeket, amelyek egy új rendszer felépítésénél felhasználhatók, és emellett a gyakorlatból, vagy az irodalomból ismertek legyenek. Így választottuk ki a következő négy rendszert:

A típus: egyszerű középlövéses rendszer, hatszoros fedéssel (4. ábra).

B típus: egyszerű végpontlövéses rendszer hatszoros fedéssel (5. ábra). Használata különösen a tengeri szeizmikában terjedt el.

C típus: "roll along" rendszer hatszoros fedéssel (6. ábra).

D típus: Mayne-féle (1962) rendszer hatszoros fedéssel (7. ábra).

A négy rendszer 4×24 csatornája $\alpha = 0$ -nál 26 különböző összegcsatorna típust, azaz 26 R értéksort szolgáltat ($\alpha \neq 0$ -nál ennél jóval többet). Erre a 26 R-re számítottuk ki a Φ értékeket úgy, hogy a geofonközt 0-tól 250 m-ig változtattuk.

Az egyes rendszerekre vonatkozóan a bennük szereplő összegcsatornák átlagát számítva kaptuk a $\Phi(d)$ függvényt.

4. ábra. Az A típusú K	MR		1 x	
terítési vázlata hatszoros f $1 = \text{geofon}, 2 = \text{robbantó } \mu$	edésre, pont		2 🖓	
Фиг. 4. Схема стоянки ОГ А для шестикратног	Г типа о	* * * * * * * * * *	* * * ⁷ * * * * * * * * * * * *	×
1 –сейсмоприемники; 2 – пункт	взрыва	× / × × × × ×	× × × × × [¬] × × × × × × × × × ×	×××
Fig. 4 Spread diagram of A-type CDP for sixfold sta 1 = seismometer, 2 = shot p	f the ocking point	× × × × × ×	× × × × × × × × × × × × × ×	* * * * *
7		~ ~ ~ × ×	5. ábra. A B típusú végy terítési vázlata hatszor	pont KMR os fedésre
· · · · · · · · · · · · · · · · · · ·	× × × × × × ×		Фиг. 5. Схема стоянки	ОГТ типа
$\nabla \times \times$	* * * * * * *	< × × × × × ×	В с пунктом взрыва стоянки, для шестик перекрытия	в конце ратного
$\nabla \times \times$	* * * * * * *	* * * * * * * * * *	Fig. 5 Spread-diagram end-shooting CDP for stacking	of B-type sixfold
	6. ábra. A	$\times \times $	$\forall x \forall x \forall x x x x x x x x x x$ along"	
	KMR terites	si vaziata natszoro	s iedesre	
,,r0	Фиг. б. ll along" для	Схема стоянки О а шестикратного і	ГГС перекрытия	
80-0	Fig. 6 Sp alled ,,roll-al	read-diagram of Cong" CDP for sixf	type, old stacking	
	< x x x x x x x x x x x x x x x x x x x	* * * * * * * * * * * *	× × × × × × × ^V × ×	
	r x x x ;	* * * * * * * * * * * * * * * * * * *	× × × × ^V × × × × × ×	
7. ábra. A D típusú Mayne-	>		7	
féle (1962) KMR terítési vázlata hatszoros fedésre	× × :	× × × × × × × × × × × × × ×	× x ^v x × × × × × × × × × ×	
Фиг. 7. Схема стоянки	,	× × × × × × × × × × × × × × × × × × ×	* * * * * * * * * * * * * * * *	
ОГТ типа D Майна (1962) для шестикратного перекрытия		× × × × × × × × × × × ×	* * * * * * * * * * * * * * * * * *	×
Fig. 7 Spread-diagram of the D-type CDP of Mayne (1962)		$\times \times \nabla \times \times \times \times$	* * * * * * * * * * * * * * * * *	× × ×
for sixfold stacking		× × × × ×	* ^ ^ * * * * * * * * * * * * * * *	0.0.0.0

Az eredményeket a 8-11. ábrák olymódon szemléltetik, hogy az egyes rendszerekben együtt szereplő összegcsatorna típusokat közös koordinátarendszerben ábrázoltuk. A 12. ábrán a négy rendszer csillapítás-függvénye egymás mellett ábrázolva látható.

19

8. ábra. Az A rendszerben szereplő a és b típusú összegcsatornák \varPhi függvénye. A rendszer 12 a és 12 b típusú összegcsatornából áll

Фиг. 8. Функция Φ суммо-трасс типа а и b системы AFig. 8 The Φ -function of the a and b type sum channels in system A

9. ábra. A B rendszerben szereplő c, d, e és f típusú összegcsatornák Φ függvénye. A rendszer 6 c, 6 d, 6 e és 6 f típusú összegcsatornából áll

Фиг. 9. Функция Ф суммо-трасс типа c, d, e и f системы В

Fig. 9 The Φ -function of the c, d, e and f type sum channels in system B

11. ábra. A D rendszerben szereplő $o,\,p,\,q,\,r,\,s,\,t,\,u,\,v,\,w,\,x,\,y$ és z típusú összegcsatornák \varPhi függvénye

Фиг. 11. ФУНКЦИЯ Φ суммо-трасс типа o, p, q, r, s, t, u, v, w, x, y и z системы D Fig. 11 The Φ -function of the o, p, q, r, s, t, u, v, w, x, y and z type sum channels in system D

12. ábra. A négy vizsgált rendszer Φ függvénye közös koordináta-rendszerben

 Φ иг. 12. Функция Φ четырех рассмотренных систем в общей системе координат

Fig. 12 The Φ -function of the four systems investigated, in a common system of coordinates

A csillapítás-viszonyok meghatározása után kísérletet tehetünk a felvetett kérdés megválaszolására, azaz, hogy melyik típusú rendszer használata a legelőnyösebb?

A számítások szcrint kétségkívül a B rendszer mutatja a legelőnyösebb tulajdonságokat, mert

a) a többszörösöket a legjobban csillapítja,

b) hatásfokmaximumát a legrövidebb geofontávolságoknál éri el,

c) az egyes csatornák között e rendszernél legkisebb a szórás.

Eredményeink egy konkrét esetre vonatkoznak, ahol – amint említettük – a terület jellemzői adottak.

A leírtakkal eljárást javasolunk a KMR jellemzőinek tervezésére.

IRODALOM

GÁLFI J. – MARTON P. – MESKÓ A. – STEGENA L., 1967: Geofizikai kutatási módszerek I. Egyetemi tankönyv, Budapest.

MAYNE, W., 1962: Common Reflexion Point Horizontal Data Stacking Techniques, Part II. Geophysics, XXVII. 6.

MESKÓ A – RÁDLER B., 1968: Modellszámítások alkalmazása a szeizmikus adatfeldolgozás és értelmezés előkészítésében. Magyar Geofizika, 1X. 4-5.

NEITZEL, E. A., 1958: Seismic Reflexion Records Obtained by Dropping a Weight; Geophysics, XXIII. 1.

PICKLES, E., 1967: A szeizmikus digitális feldolgozás matematikai alapjai. Előadás a Texas Instruments Inc. zágrábi tanfolyamán (eredetije angolul).

SCHNEIDER, W. A., 1965: A New Data Processing Technique for Multiple Attenuation Exploiting Differential Normal Move-out. Geophysics, XXX. 3.

SHOCK, L., 1962: Roll-along and Drop-along Seismic Techniques. Geophysics, XXVII. 5.