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Abstract: Mathability refers to a branch of cognitive infocommunications that investigates 

any combination of artificial and natural cognitive capabilities relevant to mathematics, 

including a wide spectrum of areas ranging from low-level arithmetic operations to high-

level symbolic reasoning. In connection with investigations related to mathability and to 

applications of computer-assisted methods for studying mathematical problems, in this 

paper, animation of the planar hyperconvex sets of radius r is presented. This animation 

helps us understand some properties of hyperconvex sets and to see the differences between 

convexity and hyperconvexity. 
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1 Introduction 

Mathability refers to a branch of cognitive infocommunications that investigates 

any combination of artificial and natural human cognitive capabilities relevant to 

mathematics, including a wide spectrum of areas ranging from low-level arithmetic 

operations to high-level symbolic reasoning. The concept was introduced in the 

paper [1] related to the 4th IEEE International Conference on Cognitive 

Infocommunications (CogInfoCom) in 2013. Mathability refers to devices with 

high mathematical and logical potential and is defined as human mathematical 

ability [8]. Mathability mainly discusses what new assimilation methods are used 

to process information and how people use this ability to build their knowledge 

using problem-solving and experiences as well as high-level mathematics 
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applications [8]. Its educational aspects were investigated, among others, in [5]-

[13], while [14]-[18] papers focus on human cognitive related aspects of 

CogInfoCom and how people can communicate with machines to possess new 

knowledge. Questions related to mathability and to computer-based methods for 

investigations of mathematical problems have been studied by several authors 

during recent years [19]-[23]. Computer-aided solutions of mathematical problems 

were presented in [22], [26] and some of its further general properties were 

described in the papers [2] and [3] and in the book [4]. In this paper, we also would 

like to contribute to these investigations. We present a computer-assisted method 

for a visualization related to the so-called hyperconvex discs of radius 𝑟. 

Although convexity is one of the oldest concepts in geometry, it is used to 

investigate some modern phenomena in mathematics, i.e. this property is used in 

the qualitative theory of differential equations as well [24], [25]. 

The students meet the convexity several times during the education. In this paper, 

the basics of convexity and some generalizations of convexity will be introduced. 

The paper [26] motivated us to write an animation of hyperconvex discs of radius 

𝑟. The animation is developed in GeoGebra available at https://www.geogebra.org/. 

The hyperconvexity is a generalisation of convexity. Such kinds of generalisation 

of convexity shoves us the deeper attributes of convexity. The presented animation 

helps us understand some properties of hyperconvex sets and to see the differences 

between convexity and hyperconvexity. 

2 The Convexity 

The n-dimensional Euclidean space is denoted by ℝ𝑛. The notation ∩ means the 

intersection of sets. The points and vectors are identified in a natural way. In this 

paper, 𝑥𝑦 will also denote the length of the segment 𝑥𝑦. 

In this section we write the basic concepts of convexity. 

In the school of geometry, a figure is called convex if it contains all segments if the 

endpoints of the segments lie in the figure. The next definition is the same. 

Definition 2.1. The set 𝐶 is convex if 𝑥, 𝑦 ∈ 𝐶 implies that for any 𝜆 ∈ [0,1] we 

have 

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶. (1) 

Definition 2.2. The set 𝑁 is non-convex if it is not convex, i.e. there are at least two 

points 𝑥, 𝑦 ∈ 𝑁, and a 𝜆 number (𝜆 ∈ [0,1]) such that 

𝜆𝑥 + (1 − 𝜆)𝑦 ∉ 𝑁. (2) 

https://www.geogebra.org/
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Example 2.1. In Figure 1 we can see a convex set (left) and a non-convex set (right). 

Indeed, the right set is not convex, the midpoint 𝑚 of the segment 𝑝𝑞 does not lie 

in the set. 

 

Figure 1 

A convex set (left) and a non-convex set (right) 

Example 2.2. The empty set is convex. The straight line segment is convex.            

The whole plane is convex. 

The convex combination of the two points 𝑥 and 𝑦 is the set 𝜆𝑥 + (1 − 𝜆)𝑦 for all 

𝜆 ∈ [0,1] which is the straight line segment connecting the points 𝑥 and 𝑦.              

The convex combination of finitely many points is the following. 

Definition 2.3. The convex combination of the points 𝑥1, … , 𝑥𝑘 ∈ ℝ𝑛 is the linear 

combination 

𝜆1𝑥1 +⋯+ 𝜆𝑘𝑥𝑘 (3) 

for 

𝜆1 ≥ 0,… , 𝜆𝑘 ≥ 0  and 𝜆1 +⋯+ 𝜆𝑘 = 1. (4) 

Example 2.3. The set of all convex combinations of two different points is a straight 

line segment. The set of all convex combinations of three non-collinear points is a 

triangle. 

Remark 2.1. The set 𝐶 is convex if and only if all the convex combinations of the 

points 𝑥1, … , 𝑥𝑘 ∈ ℝ𝑛 lie in the set 𝐶. 

Theorem 2.1. The intersection of convex sets is convex. 

This implies the next definition. 

Definition 2.4. The convex hull of the set 𝑆 ∈ ℝ𝑛 is the intersection of all convex 

sets containing 𝑆. 

Remark 2.2. The convex hull of a set is convex. 

Example 2.4. The convex hull of a convex set 𝐶 is 𝐶. 
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Example 2.5. The convex hull of three different non-collinear points 𝑥1, 𝑥2, 𝑥3 is 

the triangle of vertices 𝑥1, 𝑥2, 𝑥3. 

Definition 2.5. The Minkowski sum of the sets 𝑆1, 𝑆2 ∈ ℝ𝑛 is the set 

{𝑠1 + 𝑠2: 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}. (5) 

Notation: 𝑆1 + 𝑆2. 

Example 2.6. The Minkowski sum of two non-parallel segments is a parallelogram. 

Theorem 2.2. Let 𝐶1 and 𝐶2 be two convex sets in 𝑅𝑛. The translation 𝐶1 + 𝑝 is 

convex. The scaling 𝛼𝐶1 is convex. The orthogonal projection of the set 𝐶1 is 

convex. The Minkowski sum 𝐶1 + 𝐶2 is convex. 

3 Some Generalizations of Convexity 

3.1 The m-convexity 

Toader [27] introduced the m-convexity in the following way. 

Definition 3.1.1. Let 𝑚 ∈ [0,1] be a fixed number. The set 𝐶 ∈ 𝑅𝑛 is m-convex if 

𝑡𝑥 + 𝑚(1 − 𝑡)𝑦 ∈ 𝐶 (6) 

for all elements 𝑥, 𝑦 ∈ 𝐶 and for each 𝑡 ∈ [0,1]. 

Example 3.1.1. If 𝑚 = 1, then the definitions convex and m-convex are the same. 

It is a consequence of the definition, that if 𝑚 ≠ 1, then it is necessary to consider 

the origin as well. 

Example 3.1.2. If 𝑚 = 0.5, then the m-convex set containing the points 𝑥 and 𝑦 

contains the point 
𝑚

𝑚+1
(𝑥 + 𝑦) as well (see, e.g. [26]) 
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Figure 2 

The line connecting the points 𝑥 and 𝑦 in an m-convex set 

Definition 3.1.2. The m-convex combination of the points 𝑥1, … , 𝑥𝑘 ∈ ℝ𝑛 is the 

linear combination 

𝜆1𝑥1 +𝑚(𝜆2𝑥2 +⋯+ 𝜆𝑘𝑥𝑘) (7) 

for 

𝜆1 ≥ 0,… , 𝜆𝑘 ≥ 0  and 0 < 𝜆1 +⋯+ 𝜆𝑘 ≤ 1. (8) 

Definition 3.1.3. The m-convex hull of the set 𝑆 ∈ ℝ𝑛 is the intersection of all         

m-convex sets containing 𝑆. 

Theorem 3.1.1 [28] The set 𝑆 is m-convex if and only if 𝑆 is the set of all m-convex 

combinations of points lying in 𝑆. 

Theorem 3.1.2 [28] The m-convex hull of the set 𝑆 is the set of all m-convex 

combinations of points lying in 𝑆. 

Theorem 3.1.3 [28] Let 𝑆 be a set containing the origin 𝑜. The set 𝑆 is m-convex if 

and only if for all 𝑥, 𝑦 ∈ 𝑆 the set 𝑐𝑜𝑛𝑣 (𝑜, 𝑥,
𝑚

𝑚+1
(𝑥 + 𝑦)) − {𝑜} is contained in 𝑆. 

Example 3.1.3. The m-convex hull of the two different points 𝑥, 𝑦 and the origin 𝑜 

is the (degenerate) quadrangle 𝑜𝑥
𝑚

𝑚+1
(𝑥 + 𝑦)𝑦 (Figure 2). 

In [21] and [25] we can find an animation of m-convex hull of finitely many points 

if m is varied. This paper motivated us to produce a similar animation for 

hyperconvex sets of radius 𝑟. 
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3.2 The Hyperconvex Sets of Radius 𝒓 

Definition 3.2.1. The n-dimensional ball (or shortly n-ball) of radius 𝑟 and center 

𝑐 in 𝑅𝑛, denoted by 𝐵(𝑟, 𝑐), is {𝑥 ∈ 𝑅𝑛: 𝑥𝑐 ≤ 𝑟}. If 𝑛 = 2, then the ball is called 

disc. 

Definition 3.2.2. The n-dimensional sphere (or shortly n-sphere) of radius 𝑟 and 

center 𝑐 in 𝑅𝑛 is {𝑥 ∈ 𝑅𝑛: 𝑥𝑐 = 𝑟}. If 𝑛 = 2, then the sphere is called circle. 

Definition 3.2.3. Let 𝑥, 𝑦 ∈ 𝑅𝑛. If 𝑥𝑦 < 2𝑟, then the spindle of radius 𝑟 (or shortly 

spindle) of 𝑥 and 𝑦 is defined as the union of circular arcs with endpoints 𝑥 and 𝑦 

that are of radii at least 𝑟 and shorter than a semicircle of radius 𝑟. If 𝑥𝑦 = 2𝑟, then 

the spindle of 𝑥 and 𝑦 is defined as the disc of radius r and center (𝑥 + 𝑦)/2.              

If 𝑥𝑦 > 2𝑟, then the spindle of 𝑥 and 𝑦 is defined as ∅. 

Remark 3.2.1. The spindle of 𝑥 and 𝑦 is the intersection of the balls of radii  𝑟 and 

containing 𝑥 and 𝑦. 

Example 3.2.1. In Figure 3 can be found a spindle of radius 1 of 𝑥 and 𝑦 on the 

plane if 𝑥𝑦 < 2. 

 

Figure 3 

The spindle of 𝑥 and 𝑦 

Definition 3.2.4. Let 𝐶 be the set such that the diameter of 𝐶 is less than or equal to 

2𝑟. The set 𝐶 is spindle convex (of radius 𝑟) if 𝑥, 𝑦 ∈ 𝐶 implies that the spindle of 

𝑥 and 𝑦 is a subset of 𝐶. 

Definition 3.2.5. The circumradius, denoted by 𝑐𝑟(𝐶) of a bounded set C in 𝑅𝑛 is 

defined as the radius of the unique smallest ball that contains 𝐶. If 𝐶 is unbounded, 

then 𝑐𝑟(𝐶) = ∞. 
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Definition 3.2.6. A set 𝐶 in 𝑅𝑛 is hyperconvex of radius 𝑟 (or shortly hyperconvex) 

if is the intersection of n-balls of radius 𝑟. 

Remark 3.2.2. Observe if we consider half-spaces as balls of infinite radius, then 

the hyperconvexity of radius 𝑟 and (linear) convexity are the same. 

Definition 3.2.7. Let 𝐶 be a finite set in 𝑅𝑛 such that 𝑐𝑟(𝐶) ≤ 𝑟. The ball-

polyhedron of radius 𝑟 (or shortly ball-polyhedron) (generated by 𝐶) is the 

intersection of the balls for radii 𝑟 and centers of points in 𝐶.  If 𝑛 = 2, then a ball-

polyhedron is called a disk-polygon. 

Observe the ball-polyhedron of radius 𝑟 generated by 𝐶 is 

𝑃 = ⋂ 𝐵(𝑟, 𝑐)𝑐∈𝐶 . (9) 

First Mayer [29] considered ball-polyhedra in 1935 and called this property 

“überkonvex”. Mayer’s paper inspired several researchers in the first half of the 20th 

Century e.g. [30]-[36]. 1980’s we can find this property as 𝑟-convex or spindle 

convex of hyperconvex of radius 𝑟 see, e.g. [37]-[47]. 

Definition 3.2.8. If a ball 𝐵 contains a set 𝐶 in 𝑅𝑛 and a point 𝑥 lies on the boundary 

of 𝐵 and the boundary of 𝐶 at the same time, then 𝐵 supports 𝐶 at 𝑥. 

Theorem 3.2.1. Let 𝐶 be a closed convex set in 𝑅𝑛 such that 𝑐𝑟(𝐶) ≤ 𝑟.                   

The following are equivalent. 

1) The set 𝐶 is spindle convex of radius 𝑟. 

2) The set 𝐶 is the intersection of unit balls of radius 𝑟 containing 𝐶. 

3) For every boundary point of 𝐶, there is a ball of radius 𝑟 that supports 𝐶 at 

that point. 

Definition 3.2.9. The hyperconvex hull of radius 𝑟 of the set 𝑆 ∈ ℝ𝑛 is the 

intersection of all hyperconvex sets of radius 𝑟 containing 𝑆. 

4 The Description of Animation 

We use the dynamic free software GeoGebra, which can be downloaded from 

https://www.geogebra.org/. 

To have a GeoGebra file, which can be easily modified, we use scripts under 

buttons. 

The first GeoGebra script under button1 in On Click is the input of points, a list 

which consists of the points, the default value of  𝑟, and a text. In this special case, 

we use six points. 

https://www.geogebra.org/
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1 P1=(20,5); P2=(13,6.5); P3=(17,13); P4=(12,16); P5=(7,17); P6=(0.5,7) 

2 L={P1,P2,P3,P4,P5,P6} 

3 r=1 

4 text1= "The diameter is larger than 2r." 

The JavaScript under button2 in On Click is the drawing of the hyperconvex set of 

radius 𝑟 generated by the points in the list L. The code is the following. 

1 D=ggbApplet.getValue("length(L)"); 

2 ggbApplet.evalCommand("LSegm_{0}={}"); k=1;  

3 for(var i =1;i<D+1;i++) for(var j=i+1;j<D+1;j++) { 

4 ggbApplet.evalCommand("LSegm_{"+k+"}=Append(LSegm_{"+(k-

1)+"},Segment(L("+i+"),L("+j+")))"); 

5 k=k+1; } 

6 ggbApplet.evalCommand("Diam=Max(LSegm_{"+(k-1)+"})"); 

7 ggbApplet.evalCommand("Conv=ConvexHull(L)"); 

8 ggbApplet.evalCommand("ShowLabel(Conv,False)"); 

9 for(var i =1;i<D+1;i++) { 

10 ggbApplet.evalCommand("C_{"+i+"}=Circle[L("+i+"),r]"); 

11 ggbApplet.evalCommand("SetVisibleInView(C_{"+i+"},1,False)"); } 

12 for(var i =1;i<D+1;i++) for(var j =i+1;j<D+1;j++) { 

13 ggbApplet.evalCommand("Center_{"+i+","+j+",1}=Intersect[C_{"+i+"}, C_{"+j+"},1]"); 

14 ggbApplet.evalCommand("SetVisibleInView(Center_{"+i+","+j+",1},1, False)"); 

15 ggbApplet.evalCommand("Center_{"+i+","+j+",2}=Intersect[C_{"+i+"}, C_{"+j+"},2]"); 

16 ggbApplet.evalCommand("SetVisibleInView(Center_{"+i+","+j+",2},1, False)"); 

17 ggbApplet.evalCommand("ineq_{"+i+","+j+",1}=(x-x(Center_{"+i+","+j+",1}))^2+(y-

y(Center_{"+i+","+j+",1}))^2-r^2<=0"); 

18 ggbApplet.evalCommand("SetVisibleInView(ineq_{"+i+","+j+",1},1, False)"); 

19 ggbApplet.evalCommand("ineq_{"+i+","+j+",2}=(x-x(Center_{"+i+","+j+",2}))^2+(y-

y(Center_{"+i+","+j+",2}))^2-r^2<=0"); 

20 ggbApplet.evalCommand("SetVisibleInView(ineq_{"+i+","+j+",2},1, False)"); 

21 ggbApplet.evalCommand("ineq_{"+i+","+j+"}=ineq_{"+i+","+j+",1}&& 

ineq_{"+i+","+j+",2}"); 

22 ggbApplet.evalCommand("SetLineThickness(ineq_{"+i+","+j+"},0)"); 

23 ggbApplet.evalCommand('SetColor(ineq_{'+i+','+j+'},"#000000")'); 

24 ggbApplet.evalCommand("ShowLabel(ineq_{"+i+","+j+"},False)"); 

25 ggbApplet.evalCommand("Delete(eq1)"); 

26 ggbApplet.evalCommand("Delete(eq2)"); }; 

27 ggbApplet.evalCommand("If(Diam>2*r,SetVisibleInView(text1,1, 

True),SetVisibleInView(text1,1,False))"); 

This is a rough algorithm. Our aim was visualization and not effectiveness. The first 

line adds the value of the length of the list L to the JavaScript code. Lines 2-6 

determine the diameter of the point set lying in the list L. Since GeoGebra is a 

dynamic language the modification of the points lying in L implies the modification 

of the diameter calculated by this code in real-time. Lines 7-8 produce the convex 
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hull of the point set lying in the list L. Lines 9-26 define the spindles of the pairs of 

points in the list L. Line 27 hides the text text1 if the diameter of L is less than or 

equal to 2r. The result is the hyperconvex hull of radius 𝑟 generated by the points 

in L. If we let show the object 𝑟 as a slide between 0.01 and 5, then we can vary the 

radius 𝑟 in the hyperconvex set. If we switch on the animation of 𝑟, then in Figures 

4 and 5 we can see a selection of six stages of the hyperconvex hull of radius 𝑟 of 

the list of points given for the values 𝑟 = 1, 1.2, 1.4, 1.6, 1.8 and 5. 

 

Figure 4 

Some stages from the animation 

Conclusion 

The results presented here are connected to the investigations of mathability (cf. [1] 

and [4].) Nowadays hyperconvexity is a popular generalisation of convexity in the 

literature of discrete and convex geometry (see e.g. [43]). 

Convexity is a wide range applicable concept in mathematics. The first step 

considering hyperconvex sets is drawing such a set on a piece of paper.                    

This dynamic animation enables us to draw this figure. In order to imagine a 

hyperconvex set in higher dimensions we have to understand the planar case.      
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Since a generalization of convexity can be challenging to imagine or understand, it 

is important to visualize hyperconvexity. We can find serious theorems in the 

literature considering the difference between linear convexity and a generalization 

of convexity. If we use such simple animations, then we can make conjecture about 

new theorems and about the difference between the two kinds of convexity easier. 

The presented method inspires us to visualize geometric properties of point sets in 

GeoGebra. GeoGebra supports the script commands as we can see in this paper.      

It could be a different opportunity to create a new tool in GepGebra to visualize the 

hyperconvex hull of a finite point set. 
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