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Abstract: Parallel robots possess a characteristic type of singularities, called type II or 

drive singularities, inside their workspace. In the neighborhood of these singularities, the 

inverse dynamics solution grows unboundedly and the robot becomes uncontrollable.   

There is growing literature on methods that enable parallel robots to pass through drive 

singularities. Most of this literature relies on dynamic models that presume rigid joints. 

However, the flexibility of the drive train elements should also be taken into account for 

high accuracy. In this paper, we propose a systematic trajectory planning method for 

enabling flexible-joint parallel robots to pass through drive singular configurations.      

Our method generates admissible polynomial trajectories of degree eleven. Four conditions 

are derived and incorporated into the method to prevent undesired back-and-forth motion 

of the endpoint. This ensures not only an efficient operation of the robot but also the 

avoidance of unintended multiple occurrences of the same singularity. The boundedness of 

the inverse dynamics solution is also guaranteed. 

Keywords: flexible-joint parallel robot; drive train flexibility; drive singularity; singularity 

removal; trajectory planning 

1 Introduction 

Parallel robots are used in a wide variety of applications and promise many more. 

For this reason, numerous studies have been devoted to the design and 

improvement of various parallel robots. Some recent works in this regard are     

[1-4]. However, “type II singularities” [5] or “drive singularities” [6] constitute a 
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challenging issue in the use of parallel robots. The inverse dynamics solution is 

unbounded near these singularities, which results in saturation of the actuators and 

loss of control over the robot. Since such singularities lie generally in the interior 

of the workspace [5], a considerable amount of research has been conducted to 

develop trajectory planning methods for enabling parallel robots to pass through 

them with bounded actuator efforts. Ider [6] derived the “consistency conditions” 

in terms of the generalized accelerations as necessary conditions to be satisfied at 

the singular positions. Jui and Sun [7] introduced an approach that considers the 

bounds of the actuators. Briot and Arakelian [8] formulated an equivalent 

condition for consistency in terms of the forces and moments exerted on the 

moving platform. Özdemir [9] proved that although the consistency of the robot’s 

dynamic equations at singular configurations is necessary, it is not sufficient to 

guarantee the boundedness of actuator efforts, and derived the additional 

necessary conditions in this respect by taking into account the time derivatives of 

the associated vanishing determinant at the instant of singularity. The conditions 

under which a planar 5R parallel robot experiences “high-order singularities” were 

derived in [10]. As remarked in [11], a trajectory planned to achieve the 

consistency of the dynamic model at the singularity may result in unintended 

back-and-forth motion of the endpoint. A method was proposed in [12] to prevent 

the possibility of such an undesirable motion. 

All the above-mentioned studies on the trajectory planning of parallel robots are 

based on the assumption of nonredundant actuation. But when the effects of 

flexibility arising at the actuated joints due to the elasticity and structural damping 

of the drive train elements are significant, the robot should be treated as an 

underactuated system with doubled number of degrees of freedom [13, 14]. 

Indeed, the issues related to the dynamics, trajectory planning, and control of such 

a system are quite different from those of its counterpart with rigid drive trains. 

Spong [13] proposed to model the elasticity of the joint as a linear torsional 

spring. Structural damping can be taken into account by adding a linear torsional 

damper in parallel to the model [15]. Although there are several studies [16-18] on 

the control and optimization of flexible-joint parallel robots, the motion is 

confined to be singularity-free in these studies and the literature is very limited on 

their trajectory planning for passing through drive singularities. Considering the 

torsional elasticity of the actuated joints, it was suggested in [19] that the degree 

of the trajectory polynomial must be at least twelve to pass through a singularity. 

In the present paper, a novel trajectory planning method is proposed for 

desingularization of flexible-joint parallel robots, by which an admissible 

trajectory can be systematically generated using an eleventh-degree polynomial, 

that is, using a polynomial of a lower degree than that required in the related 

literature [19]. This degree reduction from twelve to eleven is particularly 

important since it also enables to solve the problem of avoiding any undesired 

reverse motion of the endpoint. Such a back-and-forth motion is obviously 

undesirable from an efficiency perspective. However, more importantly, it may 
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lead to some additional unintended occurrences of the same singularity, as shown 

for the first time in the present paper. Although a singularity is removed at the 

intended time of passing through its corresponding configuration, the dynamic 

equations will be, in general, inconsistent at the times of its unplanned additional 

occurrences, yielding an unrealizable trajectory. Hence, such occurrences should 

be avoided, and when an eleventh-degree polynomial is used, the avoidance of 

reverse motion is guaranteed by ensuring the nonnegativity of a second-degree 

time polynomial over the task duration. The boundedness of the inverse dynamics 

solutions is also guaranteed by taking into account the first-order time derivative 

of the associated vanishing determinant, in accordance with [9, 10]. 

2 Dynamic Modelling of Flexible-Joint Parallel 

Robots 

Consider a rigid-link flexible-joint parallel robot with n  rigid degrees of freedom 

and n  motors at the actuated joints. The polar mass moment of inertia of the rotor 

of the i th motor ( 1, ,i n ) is represented by 
iJ . Suppose that the rotors have 

symmetric mass distributions about their rotation axes [13]. The gear ratio of the 

speed reducer of the i th motor is 
iR . The angular displacement and torque of the 

output shaft of the speed reducer of the i th motor are denoted by 
i  and 

i , 

respectively. Define two 1n  vectors θ  and τ  as  
T

1 n θ  and 

 
T

1 n τ . Notice that i , 1, ,i n , are the input torques of the robot. 

The elasticity and structural damping of the coupling between the output shaft of 

the speed reducer of the i th motor and the corresponding driven link is modeled 

by a parallel arrangement of a linear torsional spring with a spring constant ik  and 

a linear torsional damper with a damping coefficient ic  [15]. Notice that there are 

n  additional degrees of freedom due to the flexibility at the actuated joints. Let a

iq  

represent the angular displacement of the link that is coupled to the output shaft of 

the speed reducer of the i th motor, the angular deflection of this coupling being 
a

i i iq   . Define the vector of actuated joint variables, 
a

q  as 

T
a a a

1 nq q   q . 

It is convenient to study first the dynamics of the rigid-joint counterpart of the 

robot, where each motor (including its rotor and gears) is treated as a point mass 

fixed to the link on which the stator is attached [13, 15]. This closed-loop 

mechanism can be converted into an open-tree system by virtually cutting a 

sufficient number of unactuated joints. Let this open system have m  degrees of 
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freedom, with a vector of joint variables  
T

1 mq qq . Without loss of 

generality, the elements of the vector q  are assumed to be ordered such that 

a

u

 
  
 

q
q

q
 (1) 

where 
T

u u u

1 m nq q 
   q  is the vector of unactuated joint variables. If the 

input torques are the only applied nonconservative forces, the equations of motion 

of the open system can be written using the Lagrangian method as 

 Mq N Q  (2) 

where  M M q  is the m m  inertia matrix,  ,N N q q  is the 1m  vector of 

Coriolis, centrifugal and gravitational forces, and Q  is the 1m  vector of 

nonconservative generalized forces given by 

 
  
 

τ
Q

0
 (3) 

The m n  loop-closure constraint equations can be written in the form 

  0, 1, ,jg j m n  q  (4) 

where jg ’s are scalar functions. The equations of motion of the fully rigid 

parallel robot can then be expressed as 

  Mq N Q Aλ  (5) 

where  
T

1 m n  λ  is the vector of Lagrange multipliers, and A  is 

 m m n   matrix whose elements are given by 

, 1, , , 1, ,
j

kj

k

g
A j m n k m

q


   


 (6) 

Now consider the flexible-joint parallel robot. The gear ratios 
iR  are assumed to 

be large enough so that the rotational kinetic energy of each rotor is approximately 

due only to its own spin [13]. By this assumption, the coupling terms between the 

joint and actuator accelerations disappear and the equations of motion of the 

flexible-joint parallel robot can be obtained as [16, 17] 

   a a    τ Jθ C θ q K θ q  (7) 

d s   Mq N T T Aλ  (8) 
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where  2 2

1 1diag , , n nJ R J RJ  is the n n  diagonal matrix of effective polar 

mass moments of inertia of the rotors at the output shafts of their connected 

gearboxes, and  1diag , , nc cC  and  1diag , , nk kK  are, respectively, the 

n n  damping and stiffness matrices of the actuated joints. The 1m  vectors of 

torques transmitted to the links through the dampers and springs are given in order 

as follows: 

 a

d
 

  
  

C θ q
T

0
 (9) 

 a

s
 

  
  

K θ q
T

0
 (10) 

3 Computation of Input Torques and their 

Boundedness near Drive Singularities 

The inverse kinematic analysis of a flexible-joint robot is performed in the same 

manner as of its rigid-joint counterpart [16, 20]. Given a task, assume that the 

inverse kinematic solution for it does not contain any singularities, and the time 

histories of the link variables 
1, , mq q  and their first- and second-order time 

derivatives are obtained for the prescribed vector of task variables 

     
T

1 nt x t x t   x . Here t  denotes the time variable. The inverse 

kinematic singularities of closed-loop chains are in general encountered at the 

boundaries of the workspace [5]. For this reason, they are not a major concern and 

are left out of the scope of this study. Now partition the matrices M  and A  and 

the vector N  as 

 

a

u

n m

m n m



 

 
  
  

M
M

M
 (11) 

 

   

a

u

n m n

m n m n

 

  

 
 
  

A
A

A
 (12) 

 

a

1

u

1

n

m n



 

 
  
  

N
N

N
 (13) 
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Equation (8) can then be expressed as the following two equations: 

   a a a a a     C θ q K θ q M q N A λ  (14) 

u u u A λ M q N  (15) 

Having q , q  and q  obtained as explained above, unless the square submatrix 

u
A  is singular, the Lagrange multipliers can be computed by rearranging equation 

(15) as 

   
1

u u u


 λ A M q N  (16) 

If all damping coefficients are nonzero, then matrix C  is invertible and equation 

(14) is a system of n  first-order differential equations for the variable θ  of the 

form 

 a 1 a a a a       
 

θ q C M q N A λ K θ q  (17) 

Thus, θ  can be calculated by numerically integrating equation (17), and θ  can be 

obtained by numerical differentiation. Finally, the time history of the vector τ  can 

be computed from equation (7). 

If some of the damping coefficients are negligibly small and taken as zero in the 

dynamic model, then matrix C  is singular and equation (14) is a system of 

differential-algebraic equations for the variable θ . However, these equations are 

uncoupled since the off-diagonal elements of the matrices C  and K  are all zero. 

Therefore, a nonzero damping coefficient c  leads to a first-order differential 

equation of the form 

 a a a a a

1 1

1 m m n

k k j j

k j

q M q N A k q
c

       



  


 

 
      

 
   (18) 

A zero damping coefficient c , on the other hand, leads to an algebraic equation 

which can be solved for   as follows: 

a a a a

1 1

1 m m n

k k j j

k j

q M q N A
k

    



 


 

 
    

 
   (19) 

If all of the damping coefficients are assumed to be zero, then equation (14) is a 

system of algebraic equations whose solution is 

 a 1 a a a   θ q K M q N A λ  (20) 

We present below also a generalized alternative method that can be used for any 

case of structural damping. 



Acta Polytechnica Hungarica Vol. 18, No. 6, 2021 

 – 91 – 

Writing equation (14) at time 
1vt 
 and rearranging yields 

            

         

a a a

1 1 1 1 1 1

a a

1 1 1 1,

v v v v v v

v v v v

t t t t t t

t t t t

     

   

   

 

Cθ Kθ Cq Kq M q q

N q q A q λ
 (21) 

By using the backward-difference method, we have 

     1 1

1
v v vt t t

h
    θ θ θ  (22) 

or solving for  1vt θ , 

     1 1v v vt t h t  θ θ θ  (23) 

Here, h  is the time-step size. Substituting equation (23) into equation (21) and 

solving for  1vt θ  gives 

          
         

    

1 a a

1 1 1 1

a a

1 1 1 1

a

1

,

v v v v

v v v v

v v

t h t t t

t t t t

t t



   

   



  

 

   

θ C K Cq M q q

N q q A q λ

K θ q

 (24) 

Drive singularities are the configurations where the matrix 
u

A  is not of full rank. 

Near these configurations, the Lagrange multipliers, and hence the required input 

torques for realizing the prescribed task, are in general unbounded. In order to 

have a bounded inverse dynamics solution, the Lagrange multipliers should all 

have finite limits as the singularity is approached. Let it be assumed that 
u

A  is 

rank-deficient by one at the singularity time st , which is generally the case [6, 7]. 

Equation (16) can be rewritten in terms of the adjoint and determinant of 
u

A  as 

 
  u u u

u

1
adj

det
 λ A M q N

A
 (25) 

When the robot is away from a drive singularity, the matrix 
u

A  and its adjoint 

matrix have full rank, and its determinant is nonzero. Therefore, the Lagrange 

multipliers can be regularly determined from equation (25). But when the 

determinant of 
u

A  vanishes at time st t , equation (25) results in divisions by 

zero. Thus, at least one of the limits  
s

lim j
t t

t


, 1, ,j m n  , is not finite unless 

the following condition is satisfied at the singular position: 

  u u uadj  A M q N 0  (26) 
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Satisfaction of equation (26) ensures that the set of equations given by equation 

(15) is consistent at the singularity time. If equation (26) holds and additionally 

the first-order time derivative of the determinant of 
u

A  does not vanish at time 

st , then all limits  
s

lim j
t t

t


 are finite and can be evaluated using l’Hôpital’s Rule. 

This implies that the required motor torques will remain bounded in the 

neighborhood of the singularity. However, although having finite limits as 
st t , 

the Lagrange multipliers are not defined at 
st t . These discontinuities can be 

removed by redefining λ  at 
st t  such that    

s
s lim

t t
t t


λ λ . The differentiability 

of the functions required in the application of l’Hôpital’s Rule can be ensured by 

using a smooth trajectory generated with a polynomial function of time. Before 

concluding this section, it is worth mentioning that although equation (26) gives 

m n  equations to be satisfied at the singular configuration, 1m n   of them are 

redundant. This is because the rank of the adjoint matrix of a square matrix P  is 1 

if P  is rank-deficient by one [21]. Consequently, when 
u

A  loses one rank, all the 

individual equations in matrix equation (26) equivalently describe the same 

unique consistency condition. In the next section, we propose a novel method for 

planning a trajectory satisfying this condition. Our method also features two 

distinct tests: one for the nonzeroness of the first-order time derivative of the 

determinant of 
u

A  at the singularity time, and one for preventing undesired back-

and-forth motion of the endpoint. For the latter test, four additional conditions are 

derived, and in this manner, the possibility of unintended multiple occurrences of 

the same singularity is avoided. 

4 A Novel Trajectory Planning Method 

The previous section deals with the problem of removability of drive singularities 

of parallel robots in the presence of joint flexibility. It may be useful to note that 

drive singularities and the conditions under which they become removable would 

be identical for a flexible-joint parallel robot and its fully rigid counterpart since 

equation (15) does not contain any element of θ , or of its time derivatives. 

However, trajectory planning of flexible-joint parallel robots is quite different 

from and more complex than that of fully rigid parallel robots. This is because due 

to the elastic media at the transmission, the motors cannot instantaneously change 

the accelerations of the end-effector [15, 16]. Motivated by this fact, in this 

section, we propose a new method of planning singularity-removed trajectories for 

flexible-joint parallel robots. 

In the absence of obstacles, the optimal path between two points is the straight line 

joining these points. For this reason, we will focus here on tasks where the 

endpoint E  of the robot has to perform a rest-to-rest motion along a straight line 
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from an initial position  , ,E E Ex y z    to a final position  , ,E E Ex y z    in a 

prescribed time 
ft . Such tasks constitute the majority of pick-and-place 

applications. The endpoint trajectory can be expressed as 

     E E E Ex t x x x f t      (27) 

     E E E Ey t y y y f t      (28) 

     E E E Ez t z z z f t      (29) 

where  f t  is a timing function such that 

 0 0f   (30) 

 f 1f t   (31) 

when the initial time is taken to be 0t  . For a flexible-joint robot, the input 

torques instantaneously affect the snaps of the end-effector rather than its 

accelerations [15, 16]. Hence, for the manipulator to be at rest at the start and end 

of the motion, the following eight conditions are required: 

         4
0 0 0 0 0f f f f     (32) 

         4

f f f f 0f t f t f t f t     (33) 

Let the drive singular configuration to be passed through during the execution of 

the trajectory correspond to a value of f  equal to sf . So we have 

 s sf t f  (34) 

where st  is the singularity time, which will be set to an appropriate value in the 

interval  f0, t . Notice that s0 1f  , and recall our assumption that 

  u

srank 1t m n  A . Since the consistency condition that should be satisfied 

at the singular configuration of interest contains first-order acceleration and 

second-order velocity terms, it can be written as 

   
2

1 s 2 s 3 0f t f t         (35) 

where 
1 , 

2  and 
3  are constants which can be determined using the values of 

the robot parameters together with the values of the link position variables at that 

singular configuration. 

Since there are totally 12 equations to be satisfied, the timing function is selected 

to be an eleventh-degree polynomial function of the form 
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 
11

0

p

p

p

f t a t


  (36) 

It follows from equations (30) and (32) that the first five coefficients 
0a , 

1a , 
2a , 

3a  and 
4a  are all equal to zero. Thus, the polynomial f  can be factored as 

   5 2 3 4 5 6

5 6 7 8 9 10 11f t t a a t a t a t a t a t a t        (37) 

For a chosen value of 
st , equations (31), (33), and (34) constitute a system of 6 

equations that are linear in the remaining 7 unknowns 
5a , 

6a , 
7a , 

8a , 
9a , 

10a  

and 
11a . By treating 

11a  as a parameter, the solution of this system can be 

expressed as 

 

 4 3 2 2 3 45
s s f s f s f f sf s

5 5 5 5

s ff s

5

s f 11

126 560 945 720 2101 t t t t t t t t tt f
a

t tt t

t t a

    
  
   



 (38) 

 

 

5 4 3 2 2 3 5 4

s s f s f s f f f s

6 5 6 5

f sf s

6 5 4 2 3 3 2 4 6 4

s s f s f s f s f f f 11

84 350 525 300 425

5 24 45 40 15

5

t t t t t t t t t f
a

t tt t

t t t t t t t t t t t a

    
 

 

    



 (39) 

 

 

3 5 4 3 2 4 5

f s s s f s f s f f

7 5 5 7

s ff s

6 5 4 2 3 3 5 6 3

s s f s f s f s f f f 11

54 200 225 150 7210

2 9 15 10 3

2

t f t t t t t t t t
a

t tt t

t t t t t t t t t t t a

    
 

 

    



 (40) 

 

 

5 4 2 3 4 5 2

s s f s f s f f f s

8 5 8 5

f sf s

6 5 4 2 2 4 5 6 2

s s f s f s f s f f f 11

63 175 450 525 189 25

2 4 5 5 4

t t t t t t t t t f
a

t tt t

t t t t t t t t t t t a

    
 

 

     


 (41) 

 

 

5 3 2 2 3 4 5

f s s s f s f s f f

9 5 5 9

s ff s

6 5 3 3 2 4 5 6

s s f s f s f s f f f 11

14 175 400 350 1125

3 10 15 9 2

t f t t t t t t t t
a

t tt t

t t t t t t t t t t t a

    
 

 

     


 (42) 
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 

 

4 3 2 2 3 4

s s f s f s f f s

10 5 9 5

f sf s

6 4 2 3 3 2 4 5 6

s s f s f s f s f f 11

70 315 540 420 1261

15 40 45 24 5

t t t t t t t t f
a

t tt t

t t t t t t t t t t a

    
 

 

     


 (43) 

By substituting these coefficients into the expressions for the first two time 

derivatives of f  and rearranging, equation (35) can be simplified to 

2

2 11 1 11 0 0a a      (44) 

where 

 
12 12 18

2 f s s f 1t t t t    (45) 

   

  

6 6 9 4 3 2 2 3 4 6

1 f s s f s s f s f s f f 1 s

9

1 s 2 f s f

10 14 70 135 120 42

2

t t t t t t t t t t t t t

f t t t

 

 

      


   

 (46) 

   

   

   

   

2 2 20 2 2 19

0 1 s 2 s 3 s f 1 s 2 s 3 s s f

2 2 2 18 6 14

1 s 2 s 3 s s f 1 s 2 s f

7 13 8 12

1 s 2 s f 1 s 2 s f

9 11

1 s 2 s f 1 s 2 s

25 20 100 90 2

100 90 2100 2100

10200 9540 18750 17100

17000 15350 7700 6930

f f t t f f t t t

f f t t t f t t

f t t f t t

f t t f t

      

    

   

   

     

    

   

   

  



10 10

f

11 9 8 7

1 s 2 s f f s f

2 6 3 5 4 4 5 3

s f s f s f s f

6 2 7 8 12

s f s f s 1 s

1400 1260 44100 252000

643500 957000 905025 556500

217000 49000 4900

t

f t t t t t

t t t t t t t t

t t t t t t

 



   

   

  

 (47) 

The solution of the quadratic equation (44) is 

1 1

11

22
a





  
  (48) 

where 

2

1 1 0 24      (49) 

It is obvious that in order for the roots given by equation (48) to be real, the 

discriminant 
1  must be nonnegative. Now, we propose the following method to 

obtain the coefficients of a rest-to-rest polynomial of the form of equation (37) 

that ensures the consistency of the robot’s dynamic equations at a user-selected 

singularity crossing time: 

Step 1)  Select a  s f0,t t  such that 
1 0  . 

Step 2)  Compute the two 
11a ’s from equation (48). 
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Step 3)  If 
1 0  , select and proceed with any one of the two distinct 

11a ’s. 

Step 4)  Compute 
5a , 

6a , 
7a , 

8a , 
9a  and 

10a  from equations (38)-(43). 

If in addition to the consistency, the first-order time derivative of  udet A  is 

nonzero at 
st , then the inverse dynamics solution is bounded as 

st t . Therefore, 

after the trajectory polynomial is obtained using the above method, this second 

condition should be checked to guarantee the boundedness of the required input 

torques near 
st . 

Another important consideration in trajectory planning is the prevention of any 

undesired back-and-forth motion of the endpoint [11]. This is important not only 

for the efficiency of the robot [12], but also for avoiding possible additional 

occurrences of the same singularity at times other than the selected 
st . Such 

unintended occurrences make it, in general, impossible to realize the trajectory 

since at these times the dynamic equations will be, in general, inconsistent. It is a 

fact that if  f t  is negative during a time interval, then the endpoint performs a 

backward motion in that interval. It follows from this fact that avoidance of any 

undesired backward motion requires the nonnegativity of  f t  over the time 

interval  f0, t . Time differentiation of equation (37) gives 

   4 2 3 4 5 6

5 6 7 8 9 10 115 6 7 8 9 10 11f t t a a t a t a t a t a t a t        (50) 

As seen in equation (50), 4t  is a factor of the tenth-degree polynomial  f t . This 

could also be deduced directly from equation (32). Similarly, it follows from 

equation (33) that  
4

ft t  is another factor of  f t . Thus, we have 

     
44

ff t t t t b t   (51) 

where  b t  is a second-degree polynomial of the form 

  2

0 1 2b t b b t b t    (52) 

A term-by-term comparison of equations (50) and (51) yields 

2

0 9 f 10 f 119 40 110b a t a t a    (53) 

1 10 f 1110 44b a t a   (54) 

2 1111b a  (55) 
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The factors 4t  and  
4

ft t  are positive in the interval  f0, t , which implies that 

     sgn sgnf t b t  for all t  in that interval. The discriminant of the 

quadratic polynomial  b t  is 

2

2 1 0 24b b b    (56) 

It can then be concluded that  b t , and hence also  f t , is nonnegative 

 f0,t t   if and only if one of the following four statements holds: 

(i) 
2 0b   and 

2 0  ; 

(ii) 
2 0b  , 

2 0   and 
1 2

2

0
2

b

b

  
 ; 

(iii) 
2 0b  , 

2 0   and 
1 2

f

22

b
t

b

  
 ; 

(iv) 
2 0b  , 

2 0  , 
1 2

2

0
2

b

b

  
  and 

1 2

f

22

b
t

b

  
 . 

Consequently, once the polynomial coefficients pa  are computed using the 

proposed method, another check, which is for preventing any undesired back-and-

forth motion of the endpoint, is to ensure that one of the above statements (i)-(iv) 

is true. If one or both of the two aforementioned checks is not satisfied, then a new 

trajectory can be planned by restarting from Step 3 with the other distinct 
11a  

value (if exists) that has not been used yet, or from Step 1 with a new choice of 
st . 

5 Case Study 

Let us consider a planar 5R parallel robot, as shown in Figure 1, where R denotes 

revolute joint. Each moving link w  ( 1,2,3,4w  ) is modeled as a uniform 

homogeneous slender rod of length wr  and mass wm . The origin of the fixed 

rectangular Cartesian coordinate system with axes x  and y  is located at joint A , 

and joint C  is at  0 ,0r . The gravitational acceleration vector is normal to the 

xy -plane. The robot has two rigid degrees of freedom. Thus, there are two 

motors, the first of which is located at joint A  and the second at joint C . 

However, due to the flexibility of the actuated joints, the total number of degrees 
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of freedom is equal to 4. The vector of angular positions of the output shafts of the 

motor gearboxes is  
T

1 2 θ  and the vector of link variables is 

   
T

T T
a u 

  
q q q  with  

Ta

1 2 q  and  
Tu

1 2 q . The numerical 

values of the model parameters are as follows: 
1 2 3 4 12 kgm m m m    , 

0 1 2 3 4 5 mr r r r r     , 5 2

1 2 5 10  kg mJ J     , 
1 2 100R R  , 

1 2 3.6 N m s radc c    , 
1 2 3600 N m radk k   . 

The desired task requires the endpoint E  to move along a straight line that is 

parallel to the y -axis, starting from rest at time 0t   at position 

 2.5 m,6.33 mE  (with 
1 115.6   , 

2 64.4   , 
1 21.3    and 

2 158.7   ) 

and ending at rest at time 
f 1 st   at position  2.5 m,2.33 mE . The prescribed 

path of the endpoint intersects the drive singularity locus at point 

   2.5,4., 3  m3x y   with 
1 120   , 

2 60   , 
1 0    and 

2 180   . This 

intersection point is the midpoint of the path, that is, 
s 0.5f  . It follows from 

equation (26) that the unique consistency condition which should be satisfied at 

this drive singular configuration is 

   

   

2 2

4 3 1 3 1 1 1 3 3 1 3 1 3 1 1 1

2 2

3 4 2 4 2 2 2 4 4 2 4 2 4 2 2 2

1 1 1
cos sin

2 3 2

1 1 1
cos sin 0

2 3 2

r m r r m r m r r

r m r r m r m r r

      

      

 
     

 

 
     

 

 (57) 

If this equation holds and, in addition, the first-order time derivative of 

   u

3 4 1 2det sinr r   A  is nonzero at 
st , then the Lagrange multipliers 

1  and 

2  will both have finite limits as t  goes to 
st . After some manipulations and 

substitution of the numerical values into equation (57), the condition to be 

satisfied by f  for consistency at the aforementioned encountered singular 

configuration is obtained in the form of equation (35) as 

   
2

s s

320 3
800 0

3
f t f t      (58) 

Figure 2 shows the real roots of the quadratic equation (44) for different choices 

of 
st  for the given task of the robot. 
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Figure 1 

A planar 5R parallel robot 
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Figure 2 

Values of 
11a  calculated with different selections of 

st  for the prescribed task of the robot 

5.1 Case 1: A Consistent Trajectory Yielding a Determinant 

That Has Flatness 2 at the Singularity Time 

In this first case, a consistent trajectory is planned by selecting st  equal to 0.5 s , 

which is half of the total task duration. This selection yields 
1 0  . Therefore, 

there is only one real value for 11a , which is 11 2520a  . The remaining nonzero 

coefficients are then determined as: 5 1386a  , 6 9240a   , 7 25740a  , 
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8 38115a   , 
9 31570a  , 

10 13860a   . These give 
2 27720 0b    and 

2 0  . Thus, statement (i) holds true and there will be no back-and-forth motion 

of the endpoint. However, the first and second derivatives of the resulting f  

function are both zero at the time 
s 0.5 st t   (see Figure 3). For this reason, the 

determinant of 
u

A  vanishes at this time together with its first two time 

derivatives. To the best knowledge of the authors, this is the first time that such a 

high-order drive singularity is exemplified for a flexible-joint parallel robot.     

The motor torques are not bounded near 
st t , as can be seen in Figure 4, 

although the consistency condition is satisfied. 
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Figure 3 

Timing function f  in Case 1 
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Figure 4 

Motor torques required in Case 1 
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5.2 Case 2: A Consistent Trajectory That Results in Multiple 

Occurrences of the Same Singularity 

To overcome the problem encountered in Case 1, 
st  is slightly changed to 

0.5005 s , and a new consistent trajectory is planned. With the new value of 
st , 

we have 
4

1 2.4229 10 0    . Hence, there are two distinct real solutions for 

11a , namely 
11 3315.47555494455a   and 

11 1901.94295206846a  . Choosing 

the first root 
11 3315.47555494455a   leads to the following coefficients: 

5 1784.13551062975a  , 
6 12026.1531080933a   , 

7 33698.7328810201a  , 

8 50051.1106557429a   , 
9 41515.4331025939a  , 

10 18235.5132853524a   . 
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Figure 5 

Timing function f  in Case 2 

By examining the resulting polynomial function (Figure 5), it can be seen that the 

singularity corresponding to 0.5f   happens to occur at two additional times 

( 0.3668 st   and 0.6328 st  ) other than the intended time of passing through 

its corresponding configuration ( 0.5005 st  ). This is because we have 

2 36470.2311 0b    and 
7

2 2.9011 10 0    , but 
1 2

2

0.5739 0
2

b

b

  
   and 

1 2

f

2

0.4262 1
2

b
t

b

  
   , which means that none of the statements (i)-(iv) 

holds true. Such a possibility of multiple occurrences of the same singularity was 

not considered before in the literature. The consistency condition is satisfied, 

while  udet A  has a nonzero first-order time derivative at the intended 
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singularity time 0.5005 st  . Thus, the inverse dynamics solution is bounded 

near this time. However, it is unbounded near the unintended singularity times 

0.3668 st   and 0.6328 st   since the consistency condition is not fulfilled at 

these instants. The time histories of the required motor torques are shown in 

Figure 6. 
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Figure 6 

Motor torques required in Case 2 

5.3 Case 3: An Admissible Trajectory 

It is seen in Case 2 that when 
st  is set to 0.5005 s , there are two distinct real 

solutions for 11a . The consistent trajectory that is planned by choosing the first of 

them results in additional unintended occurrences of the same singular point.       

In this last case, this problem is resolved by choosing the second root, that is 

11 1901.94295206846a  , and planning another consistent trajectory. The other 

nonzero coefficients are accordingly calculated as follows: 

5 1076.66244289026a  , 6 7075.25516651967a   , 
7 19556.3391892448a  , 

8 28841.053949587a   , 9 23842.7417351358a  , 10 10460.3772032326a   . 

The so-obtained polynomial is plotted against time in Figure 7. The determinant of 
u

A  vanishes while its first-order time derivative is nonzero at the intended 

singularity time s 0.5005 st  . Moreover, there is no additional unintended 

occurrence of the singularity since statement (i) holds true with 

2 20921.3725 0b    and 
7

2 1.2931 10 0     . As a result, the necessary motor 

torques are continuous and bounded (see Figure 8). 
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Figure 7 

Timing function f  in Case 3 
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Figure 8 

Motor torques required in Case 3 

Conclusions 

This paper contributes to the literature in the following ways: 

 We develop a systematic step-by-step trajectory planning method for 

flexible-joint parallel robots passing through drive singular 

configurations. 

 Our method generates a consistent trajectory with an eleventh-degree 

time polynomial, that is, with a time polynomial of a lower degree than 

that required in the related literature [19]. The importance of this 
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achievement is that it enables transforming the problem of preventing 

unintentional reversal of the endpoint motion into the nonnegativity of a 

quadratic polynomial of time over the duration of the task. 

 Although it is known that a trajectory, which is planned to be consistent 

at a drive singularity may result in undesired back-and-forth motion of 

the endpoint [11], we show here for the first time that this can lead to 

unintended multiple occurrences of that singularity, which should indeed 

be avoided. 

 Four conditions are derived within the framework of the method to avoid 

undesired back-and-forth motion of the endpoint. Hence, the possibility 

of unintended multiple occurrences of the same singularity is prevented 

by the satisfaction of one of these four conditions. 

 As previously shown in [9] for fully rigid parallel robots, we show in the 

present paper that the consistency requirement is also not sufficient for 

desingularization of flexible-joint parallel robots. 

 The boundedness of the inverse dynamics solution is guaranteed by 

incorporating into the method a check for nonzeroness of the first time 

derivative of the vanishing determinant at the instant of singularity, in 

accordance with [9, 10]. 

In order to show the effectiveness of our approach, we also present a detailed case 

study considering the planar 5R parallel robot with joint flexibility. In Case 1, the 

occurrence of a high-order drive singularity is demonstrated for the first time for a 

flexible-joint parallel robot. Case 2 illustrates, again for the first time, undesirable 

additional occurrences of the same singularity. Finally, all these problems are 

overcome in Case 3 by using our developed trajectory planning method. 

The practical importance of this study is that it provides an efficient way of 

enabling the utilization of the entire workspace of flexible-joint parallel robots.   

In applications, this joint flexibility can be due to inevitable structural elasticity 

and damping of drive transmission elements or can be intentionally introduced for 

avoiding damage to the motors in case of unexpected impact loads. The method 

developed in this study can be employed in all these possible situations. 
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