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Abstract: Many Reinforcement Learning methods start the learning phase from an empty, 

or randomly filled knowledge-base. Having some a priori knowledge about the way as the 

studied system could be controlled, e.g. in the form of some state-action control rules, the 

convergence speed of the learning process can be significantly improved. In this case, the 

learning stage could start from a sketch, from a knowledge-base formed based upon the 

already existing knowledge. In this paper. the a priori (expert) knowledge is considered to 

be given in the form state-action fuzzy control rules of a Fuzzy Rule Interpolation (FRI) 

reasoning model and the studied reinforcement learning method is restricted to be a Fuzzy 

Rule Interpolation-based Q-Learning (FRIQ-Learning) method. The main goal of this 

paper is the introduction of a methodology, which is suitable for merging the a priori state-

action fuzzy control rule-base to the initial state-action-value function (Q-function) 

representation. For demonstrating the benefits of the suggested methodology, the a priori 

knowledge-base accelerated FRIQ-Learning solution of the “mountain car” benchmark is 

also discussed briefly in the paper. 

Keywords: Reinforcement Learning; Heuristically Accelerated Reinforcement Learning; 
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1 Introduction 

The reinforcement learning (RL) (originally introduced in [22]), is still a popular 

machine learning algorithm among the devices of the computational intelligence. 

The RL methods are kind of trial-and-error type algorithms, solving problems 

without the explicit knowledge about the solution, but based on rewards leading to 

the targeted behaviour of the system. The rewards (reinforcements) are given by 

the environment, according to the observed and targeted behaviour, independently 

from the inner states of the RL agent. The original Q-learning [31] and the Fuzzy 

Q-learning (FQ-learning) [10], [4], [7] algorithms are starting with an empty 

knowledge-base and building their approximated Q-function during iterations 

based on the gained reward values. The Q-function representation in the case of 
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Q-learning is a Q-table. In the case of FQ-learning it is a fuzzy rule-base 

describing the Q-function in continuous state and action universes. These RL 

algorithms automatically build their knowledge-base during the learning process. 

Therefore, they can be applied in such situations, where there is no initial 

knowledge about the system to be controlled. These methods are starting from an 

empty knowledge-base at the beginning of the learning process, and their Q-

function approximation is built through iterations. On the other hand, if there is an 

initial knowledge-base about the operating process may exist, this knowledge 

could form a draft for the initial RL model. 

There are existing solutions for combining the RL methods with an initial expert 

knowledge-base, which is noted in this case as “heuristic”. These methods can be 

used in such systems, where the knowledge, or a portion of the knowledge about 

the system operation already exists, but the full control needs to be extended and 

adjusted based of the feedback of the working environment. One of these methods 

is the Heuristically Accelerated Reinforcement Learning, HARL [5]. In the HARL 

the heuristic is given in a form of a heuristic function (Ht(st,at)). It defines for the 

agent, which “at” action should be selected in the state “st”, at the time “t”. The 

combination of the HARL model with the traditional Q-learning, is called 

Heuristically Accelerated Q-learning (HAQL) [5]. Another possible solution for 

describing the heuristic is the formal knowledge representation with a declarative 

language. The “GOAL” is an agent programming language, which is defining the 

action selection for the agent by a set of “if then” type conditions [8]. In fuzzy 

rule-based Q-learning [10] the Q-function is represented by a fuzzy rule-base. In 

this case, it is straightforward that the a priori information of the expert should be 

also represented as a fuzzy rule-base. In [21] Pourhassan et al. are proposing a 

way to incorporate the expert knowledge in the Q-learning by means of fuzzy 

rules. 

The main goal of this paper is to suggest a way for extending the Fuzzy Rule 

Interpolation (FRI) model-based Reinforcement Learning (FRIQ-Learning) 

methods to be able to adopt a priori expert knowledge about the problem solution 

in the form of fuzzy rules. 

2 The FRIQ-Learning 

The Fuzzy Rule Interpolation-based Q-learning (FRIQ-learning) [26][9] is an 

extension of the traditional Q-learning with continuous state and action space, 

represented by a FRI model. For Fuzzy Q-learning (FQ-learning) techniques, 

usually, the classical 0-order Takagi-Sugeno Fuzzy Inference model is adopted 

(see, e.g. [1], [3] and [11] for more details). In case of FRIQ-learning adapting 

FRI methods (see e.g. [2] for a short overview of FRI methods) for the FQ-

learning can reduce the size of the fuzzy rule-base, by permitting the use of sparse 
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fuzzy rule-bases for fuzzy knowledge representation. The sparse rule-base built 

for the FRI can represent the same or nearly the same approximated Q-function as 

the complete fuzzy rule-base with the classical (e.g. CRI [18]) fuzzy reasoning. 

One of the available FRI techniques is the Fuzzy Rule Interpolation based on 

Vague Environment (FIVE) FRI, which was originally introduced in [13], [14] 

and [15]. The FIVE is a multidimensional, application-oriented FRI technique, 

which is based on the Vague Environment (VE) [12] concept. According to the 

VE concept, the fuzzy partitions of the antecedent and consequent universes can 

be represented by scaling functions [12]. The similarities of fuzzy sets can be 

calculated as the scaled distances of crisp points. Therefore, the FIVE can give a 

crisp conclusion directly without any additional defuzzification step. The 

combination of the FQ-learning with the FIVE FRI is called FRIQ-learning [26]. 

In the FRIQ-learning the state-action-value function is described by a sparse fuzzy 

rule-base and the Q-function is approximated by the FIVE FRI. The form of the 

ith,  ri ,1  fuzzy rule in the Q-function rule-base is the following: 

If s1 is Si
1 And s2 is Si

2 And … And sn is Si
n And a is Ai

 Then  a,Q s
~

 = qi
  (1) 

where Si
j  nj ,1  is a label of a fuzzy set in the jth dimension of the n dimensional 

state space S, Ss  is the n dimensional state observation, sj is the jth dimension 

of the state observation s , Ai is the label of a fuzzy set in the one-dimensional 

action space U, Ua  is the selected action,  a,Q s
~ is the approximated Q-

function, qi is the singleton conclusion of the ith fuzzy rule. Applying the FIVE 

FRI model for the Q-function representation, according to [16], we get the 

following formulas: 
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where qi is the consequent of the ith rule,  a,s  is the crisp observation, λ is the 

Shepard parameter and r is the number of the rules in the rule-base. The i

v  is the 

scaled distance of the actual observed state, selected action  a,s  value and the ith 

fuzzy rule antecedent according to the scaling function v of the corresponding 

vague environment [12]: 
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where  a,s  is the actual state and action,  ii a,s  is the antecedent part of the ith 

rule, js  is the jth dimension of the n dimensional state universe,  jj sv  is the 
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scaling function of the js  state universe,  av  is the scaling function of the 

action universe U. 

Substituting the formulas of the FIVE FRI (2) to the update form of the Q-

learning, we get the 
iq  rule consequent of the ith fuzzy rule in the (k+1)th 

iteration in the following form: 
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where  aQk ,
~ 1

s
  is the (k+1)th update value of the Q-function in  a,s : 
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In this form, as in the original Q-learning [31], γ is the discount factor and  0,1α  

is the step size parameter. The 1+k

iq is the k+1 iteration of the singleton conclusion 

of the ith fuzzy rule, taking action a in state s , s  is the new observed state, 

 ss ,,ag  is the observed reward completing the ss   state-transition. The 

kQ
~ and the 1~ kQ  are the kth and the (k+1)th iteration of the Q-function 

approximated by the FIVE FRI (2). 

For the action selection policy, the FRIQ-learning applies the greedy policy (or 

optionally the ε-greedy policy) [27], which is always selecting the action having 

the greatest Q value (or in case of ε-greedy, the greatest with ε probability) in the 

corresponding state. The greedy policy can be described by the following form: 

),(maxarg)( aQs
Ua

s



       (7) 

The FRIQ-learning was also extended with an automatic incremental rule-base 

creation method [27]. In this technique, based on reinforcements, the Q-function 

rule-base can be built automatically through iterations. The method starts from an 

“empty” rule-base, in which the rules are at the corners of the (n+1)-dimensional 

action-state space hypercube (this is required because of the definition of the 

interpolation, where n is the dimension of the state). In the further iteration steps, 

the initial rule-base grows according to the values of the updating rule (4). A new 

rule is inserted to the rule-base if the updating value of the state-action-value 

function ( Q
~

 ) is greater than a predefined limit and the existing rules are farther 

than a given distance. The position of the newly inserted rule is the closest 

possible (enabled) rule position (see [27] for more details). In case if the update 
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value is smaller than the predefined limit or the given state-action point is close to 

an existing rule, then only the existing fuzzy rules consequents are updated. 

The method has rule-base reduction strategies too. They are based on the 

approach, that for approximating the Q-function there is no need for all the rules 

created in the incremental phase. Some of the (redundant) rules could be removed 

without a relevant change in the Q-function representation. Applying the reduction 

strategies, these rules can be omitted from the rule-base. There are four different 

reduction strategies defined in [24], [28] and [29]. Three of them are based on the 

differences in the close rule consequences (Q-values) [28] [29] and one is based 

on rule clustering [24]. 

3 Expert Heuristic as a Priori Knowledge for 

Defining the Initial Rule-Base of the FRIQ-

Learning 

In case if there are some a priori knowledge about the system to be controlled, e.g. 

some kind of expert rules exist, the convergence speed of the Q-learning could be 

improved by their adoption. In this paper, the suggested way of this adoption is 

the merging of the expert knowledge to the initial rule-base of the FRIQ-learning. 

The expert knowledge, as an a priori information, is defined by a human expert 

before the learning process. In this paper, the suggested way of the expert 

knowledge expression is in the form of fuzzy rules. This case the a priori rule-base 

can be directly adapted to the initial fuzzy rule-based Q-function representation of 

the FRIQ-learning. During the learning process this initial knowledge 

representation will be tuned and modified (extended or reduced), then at the end 

of the process the expert rules can also be fetched back e.g. for expert rule 

validating purposes. 

For merging the expert rules to the initial rule-base of the FRIQ-learning, the 

problem of the different rule representations must be solved. In the case of the 

FRIQ-learning, the fuzzy rules are state-action-value rules according to form (1), 

while the expert knowledge is usually expressed in the form of state-action 

production rules (8). The fuzzy rule consequences of the state-action-value Q-

function representation in FRIQ-learning are the Q-values. On the other hand, the 

fuzzy rule consequences of the state-action production rules are expert-defined 

actions. The suggested form of the ith,  ri ,1  expert-defined production fuzzy 

rule is the following: 

If s1 is iS1
ˆ And s2 is iS2

ˆ  And … And sn is i

nŜ  Then a = iÂ    (8) 
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In structure, the form of (8) is very similar to (1), except the different types of 

consequents and the missing action antecedent in (8). The ith rule consequent iÂ  

is the expert-defined rule action for a given n dimensional state 

 i

n

iii SSS ˆ,...,ˆ,ˆˆ
21S . 

For adapting the expert rules (8) in the initial rule-base of the Q-function 

representation, the missing Q-values must be determined. Considering the initial 

expert rules, as “valuable” decisions about the actions, and taking into account of 

the planned greedy action selection policy, the Q-values of the expert rules must 

be set to relatively higher initial values. 

Having a different action selection policy than a greedy one, the given expert rules 

can be also considered to be a heuristic policy modifier [5]. Considering the expert 

rules to be always and unquestionably true, the greedy policy of the FRIQ-

learning can be turned into a heuristic policy, which obeys the expert rules in the 

following form: 
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where i
Ŝ and iÂ  are the state and action fetched from the ith expert rule, and s is 

the actual state observation. If the actual observation s matches the state i
Ŝ  of one 

of the expert state-action rules, then the selected action will be the corresponding 

action iÂ . Otherwise, the greedy action selection of the FRIQ-learning will be 

followed. 

Considering the expert rules to be always and unquestionably true, with the greedy 

policy for the rest of the state-action space, the FRIQ-learning can only extend the 

initial rule-base of the expert by additional rules. In this case, the goal of the 

suggested FRIQ-learning-based methodology is the extension of the expert-

defined state-action rules by additional state-action rules for the state space area 

uncovered by the expert rules. 

In case of supposing that the expert rules may be false, or incorrect, the goal of 

FRIQ-learning-based methodology can be extended by the tuning of the initial 

expert rule-base (moving, removing, or updating the expert rules). 

It is also important to note that because of the incremental manner of the rule-base 

construction during the learning phase, there is no need for defining state-action 

expert rules for all the possible states (like an optimal policy), but it is sufficient to 

give the expert rules only in any states, where the expert has knowledge about the 

system. Therefore, the expert might define any number of state-action pairs. Thus, 

if the tuning of the initial expert rule-base is permitted during the learning phase, 

the quality of the expert-defined a priori information effects only the convergence 

rate of the FRIQ-learning. 
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4 Adaptation of the Expert Rule-Base 

The suggested expert rule-base adaptation method of the FRIQ-learning is built 

upon two phases. In the first phase, the Q-value determination method calculates 

the initial approximated Q-values for the expert-defined rules. In the second phase 

the rule-base adaptation method combines the expert-defined state-action a priori 

rule-base (6) with the FRIQ-learning initial rule-base (1). Thereafter the combined 

rule-base will serve as the initial Q-function approximation rule-base of the FRIQ-

learning process. 

4.1 Determining the Initial Q-Values of the Expert Rules 

The consequents of the expert rules are actions (defining a states-action function). 

Therefore, the rules of the expert knowledge representation have no Q-values. On 

the other hand, the rule representation of the FRIQ-learning describes a state-

action-quality function (Q-function), where the quality of the state-action pairs 

must be determined. Therefore, to adopt the a priori expert rules to the Q-function 

rule representation, the corresponding Q-values must be determined. It must be 

done before the learning phase as an initialization step of the Q-function rule-base 

generation. 

The goal of the proposed Q-function rule-base initialization method is to 

determine the initial, estimated Q-value ( init
~
Q ) for each expert-defined state-action 

rules before the learning phase. According to the proposed concept, the rule Q-

values should be initialized with an expert-defined quality ( initQ̂ ) value. I.e. the Q-

values of the expert rules, together with the state reward value definitions are an 

inherent part of the expert knowledge representation. With full confidence, these 

values can not be determined independently from the corresponding expert rules. 

On the other hand, it could happen, that the expert heuristic contains only the 

worthy production rules, without any additional information related to the initial 

Q, or reward values. In this case it can be supposed, that the expert knowledge 

representation contains only the most important correct rules, and if the expert rule 

Q-values are missing, the initial Q-values of the expert rules can be approximated 

by a relatively “high” Q-value. The relatively “high” Q-value is an estimation. As 

a first straightforward estimate, if the initial Q-values definition is missing from 

the expert knowledge representation, this paper suggests setting the initial Q-value 

to be the same for all the rules, as a fraction of the estimated maximal achievable 

Q-value ( max
~
Q ). Where max

~
Q  can be approximated based on the maximal reward 

can be given by the environment. The initial Q-value init

~
Q  can estimated by the 

following formula: 

maxinit

~~
QQ                     (10) 
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~ max
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g
Q , in case if 1                  (12) 

where 
max

~
Q  is the estimated maximal achievable Q-value having 

maxg  being the 

maximal reinforcement could be given by the environment.  1,0  is the discount 

factor of the 
init

~
Q  estimation. 

There are other initial Q-values approximation methods can be found in the 

literature, e.g. for discrete state Q-learning in [19] the initial Q-values are 

determined based on the reward value of the goal state applying a binary reward 

function, for fuzzy Q-learning in [21] the initial Q-values are determined based on 

expert knowledge related to the estimated Q values of some states. 

4.2 Merging the Expert Rules with the Initial Rule-Base of the 

FRIQ-Learning 

Being in interpolated Q function representation, the initial rules of the FRIQ-

learning has to hold the corners (corner rules) of the  1n -dimensional state-

action space [27]. Therefore, the number of the initial fuzzy rules are 12 n . E.g. in 

case of two states and one action, it is 82 12  . If the number of the expert rules 

is r̂ , the size of the initial merged rule-base has rn ˆ2 1   rules. According to the 

FRIQ-learning initial rule definition suggested in [27], the initial rule consequent 

values of the corner rules are 0iq . Therefore, the ith corner rule r□i has the 

following format: 

If s1 is S1
□i And s2 is S2

□i And…And sn is Sn
□i And a is A□i  Then  a,Q s

~
=0 (13) 

where Sl
□i   liSS ll ,,)max(),min(  , A□i   iAA  ,)max(),min( are the corner 

state and action values and see Eq. (1) for the rest of the notation. 

For the expert rules, the initial rule consequent values are init
~
Qqi  ,  ri ˆ,1  hence 

the ith expert rule, r̂
i has the following format: 

If s1 is iS
1

ˆ And s2 is iS
2

ˆ And…And sn is Si
n And a is iÂ  Then  a,Q s

~
= init

~
Q  (14) 
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where see Eq. (8) for the notation. 

In case if there is an expert rule, which hit the position of the initial corner rules, 

the overlapping expert rule will replace the corresponding initial corner rule. 

The main steps of the suggested Q-function rule-base initialization are 

summarized on Figure 1. 

 

Figure 1 

The suggested FRIQ-learning rule-base initialization 

5 FRIQ-Learning and the Mountain Car Problem 

The goal of this section is to give an application example for the suggested 

merging of the a priori state-action expert rules with the initial corner rule-base of 

the FRIQ-learning (i.e. for the suggested rule-base initialization) in a standard RL 

task. 

The chosen example is the well-known “mountain car” RL benchmark example. 

The mountain car problem is the task of a car for getting out of a deep valley. 

Initially, the car is situated in the center of the valley. The goal is to get out of the 

valley by going to the top of the hill within a given time frame. In this example the 

problem is considered to be solved if the car gets out of the valley in less than 

1000 iteration steps. If the car reached the goal or the 1000 iteration steps elapsed, 

then an episode is completed. The full learning phase will be done if the Q-update 

values are smaller to a predefined Q-update limit (e.g. 0.05) through some 

episodes and if the size of the rule-base is not changed (not adding a new rule). 

The problem has two states and one action variable. The states descriptors are the 

velocity and the position of the car and the action variable is the left, right, or 

neutral movement of the car: 

 s1: velocity of the car 

 s2: position of the car 

 a: movement of the car (left, right, neutral) 

The rule-base initialization is done according to the suggested expert rule-base 

merging discussed in section 4. The benefit of the suggested rule-base 

initialization is measured by the achievable performance gain. 
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In the first example, the performance of the expert rules extended initial rule-base 

will be compared to the empty initial rule-base (according to Eq. 12). The effect of 

the expert rule-base quality will be also studied by comparing a well-formed 

proper initial expert rule-base in the second example to a partially correct and in 

the third example to a randomly generated initial “expert” rule-base. During the 

performance investigation of the well-formed proper initial expert rule-base, the 

effect of the proper initial rule consequent value init
~
Q  selection will be also 

discussed. 

The performance of the FRIQ-learning can be characterized by the convergence 

rate of the learning. In this paper, the convergence rate is calculated as the average 

number of episodes required for adapting the Q-function rule-base to be able to 

solve the mountain car problem. One episode lasts till the car gets out from the 

valley, or 1000 iteration steps without solution. The averages, the convergence 

rate and the number of the required rules, are estimated based on independent runs 

starting from different initial state space positions. The reward given by the 

environment is gmax=100 (an expert suggested value) for the state if the car 

reaches the goal position (top of the valley in less than 1000 iteration steps). 

During the iteration, Eq. (6) was applied for the Q
~

 updates. The learning 

parameters were the followings: 

 learning rate (α): 0.5 

 discount factor (γ): 0.99 

If the system starts from an empty rule-base without the expert-defined initial 

rules (corner rules only), then the average convergence rate of 10 independent run 

became 28.3 episodes, with 91.7 rules (at the end of the incremental rule-base 

creation phase, before the rule-base reduction, see Table 1. for the detailes). 

Table 1 

The results when starting with the empty knowledge-base 

Run case 1 2 3 4 5 6 7 8 9 10 Average 

Convergence 

rate 
23 36 34 35 20 34 25 26 29 21 28.3 

Rule-base 

size 
80 85 82 96 105 90 89 98 99 93 91.7 

The first task of the suggested Q-function rule-base initiation method, is the 

estimation of the init

~
Q values according to Eq. (11). For the init

~
Q values estimation 

we have to determine a suitable value of the   discount factor (see Eq. (11)). The 

effect of the   discount factor is problem dependent. In this paper, we study its 

effect on the mountain car problem in case of having a properly set initial expert 

rule-base. 
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In our example the properly set initial expert rule-base was generated by a single 

run of the automatic incremental rule-base creation technique introduced in [27], 

together with the rule-base reduction strategies III and IV introduced in [28] and 

[24]. The remaining 17 rules (see e.g. on Table 2) became the properly set initial 

expert rule-base of our example. 

Table 2 

Rules of the well-formed proper initial expert rule-base, where the a is the rule consequent 

R# 1 2 3 4 5 6 7 8 9 

s1 -0.5 -0.475 -0.475 -0.27 -0.27 -0.475 -0.065 -0.475 -0.68 

s2 0 -0.014 0.014 0.014 -0.014 0.042 -0.014 -0.042 0.042 

a -1 1 1 1 1 1 0 -1 -1 

 

R# 10 11 12 13 14 15 16 17 

s1 -0.065 -0.065 0.14 -0.27 -0.885 -0.65 -1.09 0.14 

s2 0.042 0.014 -0.014 -0.042 0.042 0.042 0.042 -0.014 

a 1 0 -1 -1 -1 0 -1 0 

The maximal reward value (gmax) is defined by the expert. In this example it is set 

to 100. From the maximal reward value, the suggested init

~
Q  initial Q-value was 

calculated according to Eq. (11). Table 3 contains the initial rule-base (expert 

rules merged with the FRIQ initial rules before the learning phase). 

Table 3 

The initial Q-values rule-base with the well-formed proper initial expert rules, where the Q is the rule 

consequent 

R# 1 2 3 4 5 6 7 8 9 

s1 -0.5 -0.475 -0.475 -0.27 -0.27 -0.475 -0.065 -0.475 -0.68 

s2 0 -0.014 0.014 0.014 -0.014 0.042 -0.014 -0.042 0.042 

a -1 1 1 1 1 1 0 -1 -1 

Q init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

 

R# 10 11 12 13 14 15 16 17 

s1 -0.065 -0.065 0.14 -0.27 -0.885 -0.65 -1.09 0.14 

s2 0.042 0.014 -0.014 -0.042 0.042 0.042 0.042 -0.014 

a 1 0 -1 -1 -1 0 -1 0 

Q init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

init

~
Q  

 

R# 18 19 20 21 22 23 24 25 

s1 -1.5 -1.5 -1.5 -1.5 0.3450 0.3450 0.3450 0.3450 

s2 -0.07 -0.07 0.07 0.07 -0.07 -0.07 0.07 0.07 

a -1 1 -1 1 -1 1 -1 1 

Q 0 0 0 0 0 0 0 0 
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The first 17 rules in Table 3 are the rules of the expert rule-base with the 

suggested 
init

~
Q  values estimation. The last 23=8 rules (18…25) are the initial 

corner rules of the empty Q-function rule-base, according to Eq. 13. 

The next step is the   discount factor estimation (see Eq. (11), (12)) by checking 

its effect to the convergence rate having the properly set initial expert rule-base. 

Table 4 demonstrates the dependency of the convergence rate from the value of 

the   discount factor with the corresponding initial init

~
Q values according to Eq. 

(12). 

Table 4 

The convergence rate in case of different  discount factor values (γ=0.99,
maxg =100) 

  init
~
Q  convergence rate  

(episodes) 

1 10000 23 

0.75 7500 23 

0.6 6000 30 

0.37 3700 29 

0.075 750 25 

0.00015 1.5 27 

 

Figure 2 

The convergence rate in case of different  discount factor values (γ=0.99,
maxg =100) 

According to the results (see Figure 2), in this given mountain car example the 

best convergence rate (23 episodes) can be achieved if the   discount factor is 

between 0.75 and 1 (γ=0.99, 
maxg =100). 

For checking the performance of the suggested merging of the a priori state-action 

expert rules with the initial rule-base of the FRIQ-learning, five tests were 

performed. The first example is the properly defined expert heuristic case, where 

the initial rule-base of the FRIQ-learning is constructed with all the properly given 

initial expert rules having the suggested init
~
Q  values (according to Eq. (12)) 

(Table 5). The second example is a partial lack of knowledge, where the initial 
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rule-base of the FRIQ-learning is constructed from a fragment of the properly 

given initial expert rules (Table 6). The third example is a partially proper expert 

knowledge, where some of the expert given initial rules are incorrect (Table 8). 

The fourth example is a fully incorrect expert knowledge, where all the expert 

given initial rules are incorrect (Table 10). The fifth example is a full lack of 

knowledge, where the initial rule-base of the FRIQ-learning is constructed without 

any expert given initial rules (see the results in Table 1). 

The effect of the properly given initial expert rules is demonstrated on Table 5. In 

this case, the system found the final solution (the car gets out of the valley within 

1000 iteration steps) in 10 episodes with 124.3 rules averagely. The expert rule-

base contains 17 properly given initial expert rules. This rule-base is merged with 

the empty rule-base of the FRIQ-learning, forming the 25 rules of the suggested 

initial rule-base (see Table 3). To reduce the final rule-base size one of the FRIQ-

learning reduction strategies [24], [28], [29] could be applied. 

Table 5 

The results starting with properly given initial expert rules 

Run case 1 2 3 4 5 6 7 8 9 10 Average 

Convergence 

rate 
10 20 17 7 11 10 6 5 6 8 10 

Rule-base 

size 
108 125 139 109 135 129 107 124 133 134 124.3 

The effect of the partial lack of knowledge, where the initial rule-base of the 

FRIQ-learning is constructed from a fragment of the properly given initial expert 

rules, is demonstrated on Table 6. In this case, the system found the final solution 

in 14.4 episodes with 114.3 rules averagely. The expert rule-base contains 10 rules 

from the original 17 properly given initial expert rules. This partial expert rule-

base is merged with the empty rule-base of the FRIQ-learning, forming the 18 

rules of the suggested initial rule-base. 

Table 6 

The results starting with partial lack of initial expert rules 

Run case 1 2 3 4 5 6 7 8 9 10 Average 

Convergence 

rate 
20 13 10 7 7 15 29 15 22 6 14.4 

Rule-base 

size 
107 85 102 85 98 96 111 107 110 98 114.3 

The effect of the partially proper expert knowledge, where some of the expert 

given initial rules are incorrect, is demonstrated on Table 8. In this case, the 

system found the final solution in 11.7 episodes with 120.1 rules averagely. The 

expert rule-base contains 11 rules from the original 17 properly given initial 

expert rules and 6 rules, where the rule consequents are changed to actions (see 

Table 7, rules no. 1, 2, 3, 15, 16, 17) which have an incorrect conclusion. This 
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partially proper expert rule-base is merged with the empty rule-base of the FRIQ-

learning, forming the 25 rules of the suggested initial rule-base. 

Table 7 

The partially correct expert rule-base 

R# 1 2 3 4…14 15 16 17 

s1 -0.5 -0.475 0.475 … -0.68 -1.09 0.14 

s2 0 -0.014 -0.014 … 0.042 0.042 -0.014 

a 0 1 -1 … 0 0 1 

Table 8 

The results when starting with the partially correct expert rules 

Run case 1 2 3 4 5 6 7 8 9 10 Average 

Convergence 

rate 
8 16 8 13 7 16 10 15 16 7 11.7 

Rule-base 

size 
115 134 126 133 135 126 123 135 147 127 120.1 

The effect of the fully improper expert knowledge, where all the expert given 

initial rules are incorrect, is demonstrated in Table 10. In this case, the system 

found the final solution in 26.6 episodes with 124.4 rules averagely. In this 

example, the initial “expert” rule-base is 17 randomly generated rules (see Table 

9). This improper expert rule-base is merged with the empty rule-base of the 

FRIQ-learning, forming the 25 rules of the suggested initial rule-base. 

Table 9 

The randomly generated “expert” rule-base 

R# 1 2 3 4 5 6 7 8 9 

s1 -0.475 -0.5 -0.475 -0.475 -0.27 -0.27 -0.27 -0.475 -0.475 

s2 0 0 -0.014 0.014 0 -0.014 0 -0.042 0 

a 1 -1 -1 0 -1 0 -1 1 1 

 

R# 10 11 12 13 14 15 16 17 

s1 -0.475 -0.065 0.14 -0.27 -0.885 0.885 -0.065 -1.09 

s2 0 0 -0.014 -0.042 0.042 0.042 0.042 0.042 

a -1 0 1 -1 -1 1 0 -1 

Table 10 

The results when starting with the randomly generated “expert” rules 

Run case 1 2 3 4 5 6 7 8 9 10 Average 

Convergence 

rate 
29 56 19 16 24 18 37 29 20 17 26.6 

Rule-base 

size 
122 127 118 124 131 120 130 124 127 121 124.4 
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Table 11 summarizes the results of the five different expert rule-base quality 

cases. 

Table 11 

The effect of the expert rule-base quality upon the convergence rate and the rule-base size 

Expert rule-base type Convergence rate 
Rule-base 

size 

empty 28.3 91.7 

properly given 10 124.3 

properly given fragment 14.4 114.3 

partially incorrect  11.7 120.1 

randomly generated  26.6 124.4 

Conclusions 

In this paper a methodology is suggested, which is suitable for merging an expert 

heuristic (an a priori state-action fuzzy production rule-base) to the initial state-

action-value (Q-function) rule-base of the FRIQ-learning system. The expert-

defined a priori rule-base is a preliminary knowledge about the given RL problem. 

The suggested merging is based on the reformulation of the expert heuristic given 

in the form of production (state - action) rules to the rule format (state, action - Q 

value) of the Q-function representation fuzzy rule-base by adding initial Q-values 

as consequents to them. The proper initial Q-values of the expert rules must be 

defined by the expert together with the rule definition. With full confidence, these 

values cannot be determined independently from the corresponding expert rules. 

For determining the initial Q-values in case if the expert heuristic contains only 

the worthy production rules, without any additional information related to the 

initial Q, or reward values, this paper suggest to set the initial Q-value to be the 

same for all the rules, as a fraction of the estimated maximal achievable Q-value. 

For demonstrating the performance of the suggested initial FRIQ-learning rule-

base construction methodology, the quality effect of the merged a priori expert 

rule-base is discussed. The performance of the FRIQ-learning solution of the 

“mountain car” benchmark example is studied in the case if the a priori state-

action expert rules are fully properly defined, partly properly defined, partly 

improperly defined and fully improperly defined. The results are compared to the 

lack of a priori knowledge in average convergence rate and in rule-base size 

(without rule filtering). The best performer in convergence rate was the initial 

rule-base constructed with the fully properly defined a priori expert rules. The 

fully improperly defined a priori expert rules has similar convergence 

performance as the FRIQ-learning starting from an empty initial rule-base. On the 

other hand because of the unfiltered incremental manner of the rule-base creation, 

in rule-base size, the FRIQ-learning starting from an empty initial rule-base has 

the best performance. 
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The benefits of the suggested expert heuristic injection to the FRIQ-learning are 

twofold. The first is the improvement of the convergence speed, as it was 

discussed in this paper. The second is a way for validating the expert heuristic in 

given situations. Marking the injected expert heuristic rules during the Q-function 

initialization and fetching them back after the learning phase, the change of the 

expert production rules can be determined. Small changes can support, large 

changes or rule disappearance can disapprove the validity of the expert heuristic in 

the given situation defined by the environment of the learning phase. This kind of 

validation of the expert heuristic could be beneficial in application areas, where 

heuristical rule-based models exists, but the collection of vast data has some 

difficulties, like adaptive affective [30], or ethorobotical [20] models applied for 

human-machine interaction. 
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