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Abstract: In this paper, we solve some special types of linear and non-linear Boolean 

programming problems. We present a method for transforming the used linear 0-1 

inequalities into a weighted directed graph. Allowing equalities our conditions are non-

linear, but the transformation to weighted directed graphs works also in these cases. In 

graph representations, the “critical edges” are used to represent the non-linear conditions. 

Basic, modified and extended Boolean programming problems are investigated. Linear 

goal-functions are used in optimization. The presented algorithm, similarly as algorithms 

for knapsack-problems, gives a relatively good solution, moreover, the algorithm extended 

by the backtrack graph-search strategy, guarantees optimal solutions for the considered 

problems. 
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1 Introduction 

There are some special integer-valued programming problems in which the values 

of variables must be in the set {0,1}. These Boolean programming (BP) problems 

are well known in the literature. We refer to [7] as a classical textbook on the topic 

related to optimization and Boolean programming. BP problems are ubiquitous in 

Artificial Intelligence. Planning with resource constraints, satisfiability testing and 

winner determination in combinatorial auctions are all belonging to this type of 

problems [18, 21]. The knapsack problems [9, 19, 22] are also in this class. In 

many logical problems, e.g., in some logic puzzles, the same or nearly similar 

conditions occur [10-17, 20]. In [3] special redundancy criteria were used to 

produce minimal number of extended clauses for transforming problems to 

equivalent ones. 

In this paper, we continue the work that has been started in [11-14]. The 

conditions of a basic BP problem have a translation to a set of linear-programming 

conditions such that in each condition two variables occur. This is a key issue for 

representing such problems with graphs. The conditions of a modified BP problem 

can also be translated to linear conditions, however these conditions, in general, 
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cannot be written as a set of conditions such that each condition contains only two 

variables. Despite this, we show how these conditions can still be represented by 

graphs. In the extended BP problems, the conditions are more general than in the 

basic or modified problems. Graph-representation [2] of the conditions will be 

used, where the so-called critical-edges refer to the conditions where some of 

them are considered together in the linear programming model in cases of 

modified and extended BP problems. There is a goal-function to do optimization. 

We search the possible solution(s) under the criteria that the goal-function has 

maximal (or minimal) value. Based on our graph representation we use local steps 

(comparing variables) to infer more knowledge about their relations. The 

algorithm is extended with a greedy and with a backtracking part to ensure to 

obtain the solution(s). We use a greedy algorithm to find a reasonable solution 

and, if it is not enough, backtracking to find a better, or even, the best solution. 

Our algorithm is based on the algorithms of [12-14]. The algorithm uses the graph 

representation. It can modify the graph of conditions in such a way that the 

solutions for the new graph are exactly the same as for the original problem. Using 

the fact that the value of every variable must be in {0,1} and using some other 

observations, we can conclude a unique possible value for some variables. 

Consequently, the steps of the algorithm are the graph modifications and assigning 

values to variables. We solve the mentioned types of BP problems by our 

algorithm. 

2 Conditions of BP 

In this research, we solve problems where each variable can have a value of the 

set {0, 1}. Now we give formal definitions of various types of BP problems we 

are working with. Capital letters (sometimes with indices) are used to denote the 

variables of the problem. 

First, the definitions of basic and modified BP problems are given. Then, we 

define the general case which are called extended BP problems and, in fact, they 

are generalizations of the modified Boolean programming problems. 

In this paper, we will solve the generalized problem, and we will show that the 

basic and modified problems are its special subcases. 

Definition 1. (Basic-, Modified- and Extended BP problem) Let Bi denote the 

variables of the problem for i n where n denotes the number of variables.  

If every condition has the form      

(1) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1-Bpk) 

then our conditions are of basic BP type.  
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If every condition is written in one of the following forms 

(1) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1-Bpk) 

(2) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1Bpk) 

and every Bi appears on the left-hand side of at most one condition of type (2), 

then the conditions of the problem are of modified BP type.  

If each condition has one of the following four forms: 

(1) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1-Bpk) 

(2) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1Bpk) 

(3a) Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1Bpk) 

(3b) 1 – Bi  Br1  Br2  ...  Brm Bp1Bp2 ...  (1Bpk) 

and every Bi appears on the left-hand side of at most one condition of type (2), 

then, these conditions are of extended Boolean programming type.  

Let our goal-function be in the form 

(4) Z = a1B1 + a2B2 + ... + anBn, where the values ai are fixed real numbers. 

If our goal is to minimize or maximize the function Z and our conditions are of 

type basic, modified or extended Boolean programming, then our problem is 

basic, modified or extended Boolean problem (BP), respectively.     ▄ 

We have no restriction on the occurrences of the variables in basic BP and we 

have only one restriction in case of modified and extended BP. While the main 

difference between the basic and the modified BP is the possibility of equations, 

the difference between the modified and the extended BP is the possibility of strict 

inequalities. Sometimes it happens that our conditions are not in the form as we 

have defined above, but we can use graph representation and we can still use our 

method. It may occur in the case when there are more than one conditions of type 

(2) with the same variable on the left hand side. If we have special type (2) 

conditions such that only one variable appears in both sides, then we may 

interchange the variables on the left and on the right hand side, it may help to 

transform our conditions to the defined form. If some of our conditions look like 

(3a) but in the left hand side there is not only one variable, but the sum of more 

than one variables, we can separate the condition to more than one conditions of 

type (3a) in which the left hand side contains only one variable and the right hand 

side is the same as in the original condition. If some of our conditions look like 

(3b) but in the left hand side there is not only one variable, but the number of the 

variables minus the sum of these variables, then we can write several conditions of 

type (3a) such that in each of them the left hand side contains exactly one variable 

and the right hand side is the same as in the original condition. 

All basic BP problems have possible solutions, for example, each Bi 0 is a trivial 

possible solution. Opposite to this, there are some modified and extended BP 
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conditions which have no solution. A simple example is as follows. Let the only 

one variable be B. Let our unique condition be B = 1B. It is easy to see that there 

is no possible solution in the set {0,1}. 

Now, we will define the basis of our graph theoretic approach. We will use 

directed graphs to represent the conditions of a BP problem, to do this, we need 

the conditions to be written as a set of conditions containing at most two variables. 

Lemma 1. We can write the type (1) conditions of a BP-problem in the form: 

(5a)    Bi  Brj   

(5b)    Bi  Bpl  

Proof. If Bi = 0, then the conditions trivially hold in both in the original and in the 

stated cases. If Bi = 1, then at each condition the equality holds.    ▄ 

The conditions in any of the forms (5a) and (5b) are called atomic conditions. 

Observe that they are, in fact, linear. Now we show that the conditions of not only 

the basic type, but the modified and extended BP problems can also be written in 

linear programming form. The corresponding type (5a) and (5b) conditions are 

also satisfied for a type (2) condition, but using these new forms, the new 

conditions are not equivalent to the original condition in form (2). 

Lemma 2. The conditions (2), (3a) and (3b) can be written in linear form.  

A condition of type (2) can be written as the set of corresponding conditions in the 

form (5a) and (5b) and an additional condition 

(2*) 1Bi ≤ (1Br1) Br2) + ... + (1BrmBp1Bp2 ... + Bpk 

Moreover, conditions of the form (3a) can be written as a set of conditions 

(3a*) Bi ≤ 0   1 ≤ Brj     1 ≤ 1Bpl   

while conditions of the form (3b) are equivalent to a set of conditions 

(3b*) 1 ≤ Bi   1 ≤ Brj     1 ≤ 1Bpl   

Proof. Let a type (2) condition be given. Then, in case Bi = 1, all corresponding 

type (5a) and (5b) conditions are equalities and (2*) does not mean any further 

restrictions. In case Bi = 0, however, (2*) takes care about the equality of (2) by 

forcing either at least one Brj to be 0 or at least one Bpl to have value 1.  

Considering type (3a) or (3b) conditions, the strict inequality hold only if the left 

hand side has value 0 and the right hand side contains a product of only 1’s. 

Moreover, all the formulae of (3a*) and (3b*) are representing equalities.   ▄ 

In the graph we represent the atomic conditions. We will use weighted arrows as 

edges in the graph according to the types of the conditions. We use abbreviations 

LHS and RHS for left hand side and right hand side, respectively. We call a 

relation critical if it is based on an original type (2) relation. It is easy to show that 

if the variable of the LHS of a type (2) condition has value 1, then the conditions 
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in forms (5) are equivalent to the original condition. However, in case the value of 

the variable on the LHS is 0, the conditions are not the same, we must pay 

attention that at least one element of the product in the RHS must be 0. The 

critical edges are used to represent these kinds of possible equalities. 

Definition 2. (Critical condition) If an atomic condition may represent an equality 

of type 0 = 0, which comes directly from a type (2) condition of the BP problem, 

then this atomic condition is critical.       ▄ 

We use various weights (labels) to represent the possible conditions between any 

two variables:   

If the value is not a multiplier of 3, then it means that the condition (5a) is true for 

these variables. If the value is not less than 3, then it means that the condition (5b) 

is true. The possible weights with their meanings are shown in Table 1. 

Table 1 

Edge weights and their meaning 

weight relation between the variables 

0 we have not any information (not yet) 

1       critical condition (5a)  

2 not critical condition (5a)  

3  critical condition (5b) 

4       critical condition (5a)            and critical condition (5b) 

5 not critical condition (5a)            and critical condition (5b) 

6  not critical condition (5b) 

7       critical condition (5a)            and not critical condition (5b) 

8 not critical condition (5a)            and not critical condition (5b) 

Definition 3. (Associated graph of conditions) Let a basic or a modified or an 

extended BP programming problem be given. Let the number of the vertices of 

graph G be n, the same as the number of variables in the BP problem. Assign the 

variables of the BP problem to the vertices of the graph G. If variable A is on the 

left side of a condition of type (1) or type (2), then we will use arrows from A to 

the nodes representing variables on right hand side of that condition. The weights 

of these arrows depend on the condition. First we draw all edges that are needed. 

Then we will calculate their weights in the following way. Let all weights be 0 

initially (we can draw all possible arrows in the graph with weight 0). After this, 

we read each condition one by one, and modify the weights according to the next 

steps: 

 If variable A is on the LHS of a type (2) condition and variable B appears as a 

member of the product on the RHS and the weight of the corresponding arrow 

is not 1 mod 3, then the weight is increased or decreased by 1 such that it will 

be 1 mod 3. 
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 If variable A is on the LHS of a type (2) condition and variable B appears in 

the product written as (1 – B) on the RHS and the weight of the corresponding 

arrow is not between 3 and 5 (inclusively), then the weight is increased or 

decreased by 3 such that it becomes between 3 and 5. 

 If variable A is on the LHS of a type (1) condition and variable B appears as a 

member of the product on the RHS and the weight of the corresponding arrow 

is divisible by 3 then its value is increased by 2. 

 If variable A is on the LHS of a type (1) condition and variable B appears in 

the product on the RHS written in the form (1 – B) and the weight of the 

corresponding arrow is less than 3 then 6 is added to its value. 

And now, using the type (3) conditions, we can assign values to some nodes from 

the set {0,1}. If variable A appears on the LHS of a condition of type (3a), then 

we assign 0 to it. If it occurs on the LHS of a condition of type (3b), then we 

assign the value 1 to it. If a variable is a member of the product of a type (3) 

condition (either 3a or 3b) on the right hand side, then we assign 1 to it, if A 

appears as (1–A) in the product on the RHS of any condition of type (3), then we 

assign 0 to it.  

Then G is the (initial) graph of the BP problem. 

We say that an assignment of the values {0,1} to the variables is a solution of the 

graph if it is compatible with all the conditions represented, i.e., all conditions are 

satisfied.          ▄ 

By Lemmas 1 and 2, Definition 2 and Table 1, one can see that all information 

about the conditions of the problem is encoded in the graph, and thus, the 

solution(s) of the graph and the BP problem coincide. 

3 Manipulation of the Graph 

In this section we give and explain the graph modifying steps. They are defined in 

such a way that the possible solutions do not change, hence, first, we define the 

equivalence among graphs. 

Definition 4. (Graph-Equivalence) We say that two graphs are equivalent if the 

sets of the possible solutions of them (i.e. the possible solutions of the BP 

problems which are represented by these graphs) are the same.    ▄ 

In this part some possible steps for modifying the graph are shown. We will use 

some kinds of changing steps as node-evaluating and arrow-adding or changing. 

There are two types of node-evaluating steps, let us see them first. We start with 

those that are used in some cases with an already known value of a node. They are 

called valuable arrows and listed in the following list. 
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Let A and B be two distinct vertices. 

a) If A has value 1 and the arrow from A to B has a weight that is not a 

multiplier of 3, then let the value of B be 1.  

b) If A has value 1 and the arrow from A to B has a weight that is larger 

than 2, then assign 0 to B. 

c) If A has value 1 and the arrow starting at B and ending at A has a weight 

that is not less than 3, then assign 0 to B. 

d) If A has value 0 and each arrow starting at A has a weight different from 

4 and there is exactly one edge starting at A with odd weight, and its 

weight is either 1 or 7, and it goes to B, then let the value of B be 0.  

e) If B has value 1 and each edge from A has a weight different from 4 and 

there is a unique edge starting at A with odd weight, and its weight is 

either 1 or 7 and it goes to B, then let 1 be assigned to A. 

f) If B has value 0 and the arrow starting at A and ending at B has a weight 

that is not a multiplier of 3, then let the value of A be 0. 

g) If B has value 0 and each arrow from A has a weight different from 4 and 

there is a unique arrow from A with odd weight, and its weight is either 3 

or 5 and it goes to B, then assign 1 to A. 

h) If B has value 0 and each arrow from B has a weight different from 4 and 

there is a unique edge starting at B with odd weight, and its weight is 

either 3 or 5 and this arrow ends at A, then let A have a value of 1. 

The other types of node-evaluating steps are the so-called basic schemes. They 

work without any known values. 

) If a loop arrow occurs at vertex A such that its weight is larger than 2, 

then let 0 be assigned to A. 

Actually, by viewing its structure, the following scheme is between the valuable 

arrows and the basic schemes. 

) If vertex A has a starting arrow with weight 4, 5, 7 or 8, then let A have 

the value 0. 

) Let A, B and C be three vertices. If there are edges both from A and from 

B to C with weights non-divisible by 3 and there is an arrow from A to B 

with weight 3 or 5 such that there is no other arrow from A with weight 4 

or with an odd weight, then let 1 be assigned to C. 

We continue with arrow adding and arrow changing steps. 

Considering two (A, B) or three vertices (A, B and C) in the graph such that they 

have the connections satisfying any of the following conditions, we can modify 

the weight of an arrow as it is specified below: 
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1) If the weight of the edge from A to B has a value more than 2 then   

if the weight of the edge from B to A is at most 2, then it is increased by 6. 

2) If each edge from A has a weight different from 4 and there is a unique edge 

from A with odd weight, moreover it is either 1 or 7, and it ends at B, then   

if the weight of the edge from B to A is divisible by 3, then let it be 2 more 

than it was. 

3) If none of the values of the weights of the edges A to B and B to C are 

divisible by 3, then,   

if the weight of A to C is a multiplier of 3, then let this weight be increased by 

2. 

4) If the weight of the edge from A to B is not a multiplier of 3 and the weight of 

the edge from B to C is greater than 2, then 

- If the weight of the edge from A to C is at most 2, then it is increased by 6 

- If the weight of the edge from C to A is at most 2, then it is increased by 6 

5) If the weight of the arrow from A to B is not a multiplier of 3 and the weight 

of the edge from C to B is not less than 3, then 

- If the weight of the edge from A to C is at most 2, then it is increased by 6 

- If the weight of the arrow from C to A is at most 2, then it is increased by 6 

6) If the weight of the arrow from A to B is not less than 3 and each arrow from 

B has weight different from 4 and there is a unique edge from B with an odd 

weight, and it is either 1 or 7, and this edge ends at C, then 

- If the weight of the arrow from A to C is less than 3, then it is increased by 6 

- If the weight of the edge from C to A is less than 3, then it is increased by 6 

7) If each edge from B has a weight different from 4 and there is a unique edge 

from B with odd weight and this weight is either 1 or 7, and this edge ends at 

C, and the weight of the arrow from B to A is not less than 3, then 

- if the weight of the arrow from A to C is less than 3, then it is increased by 6 

- if the weight of the edge from C to A is less than 3, then it is increased by 6 

8) If the weight of the edge A to B is at least 3 and each edge from B has a 

weight different from 4 and there is a unique edge from B with odd weight 

and this weight is either 3 or 5, and this edge ends at C, then  

if the weight of the arrow from A to C is a multiplier of 3 then it is increased 

by 2. 

9) If the weight of the arrow from A to B is not less than 3 and each edge from C 

has a weight different from 4 and there is a unique edge from C with odd 

weight and this weight is either 3 or 5 and this edge ends at B, then  

if the weight of the edge from A to C is a multiplier of 3, then it is increased 

by 2. 
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10) If each edge from B has a weight different from 4 and there is a unique edge 

from B with odd weight and this weight is either 3 or 5 and this edge ends at 

C, and the weight of the arrow from B to A is not less than 6, then  

if the weight of the arrow from A to C is a multiplier of 3 then it is increased 

by 2. 

11) If the weight of the arrow from B to A is not less than 3 and each edge from C 

has a weight different from 4 and there is a unique edge from C with odd 

weight and this weight is either 3 or 5, and this edge ends at B, then  

if the weight of the edge from A to C is a multiplier of 3, then it is increased 

by 2. 

We are continuing with 3 arrow-changing steps, however, these steps use already 

known values at some vertices. 

12) If 1 is assigned to B and the weight of the edge from A to B is 1 mod 3 and 

there is another edge starting at A with either an odd weight or with weight 4, 

then 

the weight of the edge from A to B is incremented by 1. 

13) If 0 is assigned to B and the weight of the edge from A to B is either 3 or 5 

and there is another edge from A either with weight 4 or with an odd weight, 

then 

the weight of the edge from A to B is increased by 3. 

14) If A has the value 1 and   

- If the weight of an edge from A is 1, then let the weight of this edge be 2 

- If the weight of an edge from A is 3, then let the weight of this edge be 6 

Finally, we have some arrow-changing steps for subgraphs containing three 

vertices. Let A, B and C be three vertices. 

15) If the value of the edge from A to B and the value of the edge from A to C are 

both 1 mod 3 and the weight of the edge from B to C is not a multiplier of 3, 

then 

let the weight of the edge from A to C be increased by 1. 

16) If the value of the edge from A to B and the value of the edge from A to C are 

both between 3 and 5 (inclusively) and the weight of the edge from B to C is 

not a multiplier of 3, then , 

the weight of the edge from A to B is increased by 3. 

Now let us discuss these steps briefly. The next lemma shows how we can use the 

critical edges to gain information. 

Lemma 3. If there is a unique critical condition for a vertex (exactly one of the 

weights of the edges from there is odd, i.e., has weight 1, 3, 5 or 7), then this 

condition must represent an equality. 

Proof. It goes by indirect method.        ▄ 
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For example, we use the previous lemma at arrow changing steps 6) or at node 

evaluating step d). Using this property and the meaning of atomic conditions (type 

(5a) and (5b) inequalities) represented by the edges of the graph, the justification 

of valuable arrow steps a) to h) are based on inferences to find the unique value 

for a variable represented at a node where the value of one of the involved 

variables are already known. 

It is easy to check that at the basic scheme steps ), ) and ), there is only one 

possibility for the specified variable to satisfy the conditions and it is assigned for 

the corresponding variable. 

Condition (5a) is transitive and (5b) is symmetric. We use these properties in 

some steps, for example in 1), 2) etc. In those arrow-adding cases we increase the 

weight by 2 or 6 according to the new condition (5a) or (5b), and these new 

conditions are not critical, because they are not from an original type (2) 

condition. If a condition cannot be critical (see its definition) or our graph is 

equivalent to the original in the case of change a critical condition to non-critical 

one, then we use those steps which modify the given condition to non-critical one: 

we increase the respective value by 1 in case of (5a) or by 3 in case of (5b). 

Hence, steps 1) thru 16) are correct. 

Remark 1. The arrows which are critical in the solution are also critical in the 

original graph. 

4 Algorithm to Solve BP Problems 

In this part, we present an algorithm which works in two variations. The first 

variation provides a relatively good solution in a short time by a greedy approach, 

if there is a possible solution of the problem. The second variation works more 

slowly: it includes the case when we do not stop after the first solution is found. 

This variation of the algorithm will find the optimal solution, because it works 

after the first solution is found till it is guaranteed that no better solution can be 

found than the latest one that has already been found. 

Without loss of generality, for simplicity, we may assume that the variables 

indexed in non-decreasing order by the absolute values of their coefficients 

(multipliers) in the goal function, i.e. | ai |  | aj | if and only if i < j for all i,j 

between 1 and n. 

Algorithm 1 searches in almost the whole tree of the state space. It is a mixture of 

the known knapsack and backtrack [4, 9, 19, 21] algorithms extended with our 

graph-modifying method. 
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Algorithm 1 

Input: a BP problem.   

Output: a solution/the best solution (or “Contradiction” if no solution exists).   

0. If the goal is to minimize Z then let Z’ = – Z be the new goal function, and 

maximize it. (Else let Z’ = Z.)   

1. Draw the graph representation of the BP problem.  

2. Apply the possible graph-changing steps.  

3. If there is a vertex with both values (1 and 0), then the problem is not solvable. 

(Contradiction.) STOP   

4. If there is a unique value at each vertex, then this assignment could be the 

solution. Check it (because using graph-changing steps we may get a 

contradiction; see previous step)). If it satisfies all the conditions, it is the solution; 

otherwise the problem is not solvable (Contradiction). STOP  

5. If there are no more usable graph-changing steps, then choose the variable 

which has the smallest index among the variables which do not have any assigned 

value yet. If the multiplier is positive than choose and assign value 1 to this vertex, 

if the multiplier is negative, then assign value 0 for this variable.  

6. Use the possible graph-changing steps.  

7. If there is a vertex with both values (1 and 0), then this is contradiction. 

(BACKTRACK)   

If there is a unique value at each vertex, then this may be a solution. (Check it! 

and if it is fairly good, then STOP, else memorize this solution (if this is better 

than the previously found solution) and BACKTRACK.)  

8. If BACKTRACK then go back to the previous value assigning in step 5, and 

find the last chosen variable for which we have not tried both values, and assign 

the other value to it. Cancel all the graph-changing steps done after the step we 

have assigned the previous value to this variable. If such a variable does not exist, 

then we have already tried all possibilities and finished the search, if there is a 

memorized solution, then the last one is the best, else there is no possible solution. 

STOP  

9. Go to step 5. 

We can use cuts to speed up the algorithm. If we already have a solution, then we 

can check the possible maximal value of Z’ for the remaining part of the state 

space: 

Let our goal be, to maximize the function Z’ = a1B1 + a2B2 + ... + anBn 

We call the values Bi fixed values if they cannot change in the remaining part of 

the search. We use the concept critical node of the search tree, for which we gave 

the value of a variable by step 5 of the algorithm, and it is the variable with the 

smallest index such that we have not tried with both values. The fixed values are 

the variables which have got values before we used the value assigning at the 

critical node. (The fixed values are the variables which have smaller indices than 

the variable at the critical node and the variables which got their values by using 

graph-changing steps using only nodes with other fixed values.) 
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The possible best solution in the remaining state tree is the following: if the fixed 

values have their actual values and all other variables has the best value (i.e. 1, if 

the multiplier is positive and 0 if the multiplier is negative.) Therefore, if we 

remember the fixed values we can easily calculate that value: 







0a and
fixed,not  B

 wherei,for 
fixed B   
 where,for 

B

i

ii

ii

i

i
aa  

If this amount is not greater than the best found (memorized) solution, then we can 

finish the search. We can calculate this amount after we make a BACKTRACK. 

Or we can evaluate this sum after all node-value assigning (at step 5 or via graph-

changing steps) and we can use BACKTRACK earlier if this value is already less 

than at the best found solution. If a variable with negative multiplier get the value 

1 or a variable with positive multiplier get the value 0, then the sum will decrease 

by the absolute value of the multiplier. 

As a consequence of the description given in Section 3, the graph-changing part of 

our algorithm works properly. Step 5 of the algorithm represents the knapsack 

problem and we use greedy algorithm to solve it. Since this step cannot guarantee 

the (best) solution we expand our algorithm by the backtrack method. We use a 

kind of branch-cost backtrack, in which we can calculate the maximal value of the 

goal function of the possible solutions of the remaining search space and we can 

use this value to decide whether we continue the search. 

Remark 2 (On the difference between various types of BP) By analyzing the 

original graphs of various types of BP-problems one can see that in basic 

problems only even numbers are used as weights in the graph (2, 6 and 8). In 

modified BP-problems we use more weights, and in extended problems we have 

knowledge about values of some nodes originally. 

5 Examples 

In this part we will show some examples. 

Example 1 (BP problem without possible solution)  

Let A, B and C be the variables. The conditions:  

A < B   

1 – B < C     

B  A  C   

Z = 5A + 3B + C and the task is to minimize Z. 

Solution. It is an extended BP problem. We want to maximize the function  

Z’= –5A – 3B – C. First we draw the graph of the example (Fig. 1). The first 

condition gives the values of A and B (0 and 1, respectively). The second 
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inequality gives the value B and C (both of them are 1). And we have two 

weighted edges from the third condition. 

 

     A = 0 

 

       2 

 

     2 
 

        B = 1              C = 1  

Figure 1 

Graph representation of Example 1 

We have a value at each node, but it is contradictory. (Between B and A, the 

weight of the arrow means that it is impossible that B is 1 and A is 0, it is 

described in point f) with interchanged role of A and B.)  

Example 2 

A  D   

A = 1 – B   

B  D  ( 1 – E )  

C  ( 1 – B )  D   

E  B  F   

Z = 3A – 2.21B + 3D – 22E – 3.25F, the task is to maximize value of Z. 

Solution. This is a modified BP problem. Let us draw its graph (Fig. 2). 

 

          A   3  B          C 

 

            3      6 

     2     2       1  2 

 

 

     2 

 

           F       E      D 

Figure 2 

Graph of Example 2 

In this graph, one can use some local graph changing steps: There is a basic 

scheme ) with vertices A, B and D, consequently, D = 1. Then one can use step 

12) for the edge between B and D, thus its weight becomes 2. One can use step 1) 
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between B and E, therefore the weight of the edge EB goes to 8. But according to 

step ) value 0 is obtained at E. Now one can use step g) for the arrow BE getting 

value 1 at vertex B. Then, step c) for A and B and for B and C are used to get 

values at A and C: they both receive value 0. The values of five vertices are 

already known. There is no step to get the value of F. We are at point 5 of the 

algorithm. The goal is to maximize Z, in which F has negative coefficient. Thus, 

let F = 0. This is the best possible solution: B = D = 1 and A = C = E = F = 0, 

yielding Z = 0.79.  

 

Example 3 

A  ( 1 – E )   

B = ( 1 – C )  ( 1 – D )  

C  A  D   

E  A  ( 1 – E )   

E = B  C  ( 1 – D )  

Z = -5A + 9B + 3C + 7D + 0.5E   

The goal is to maximize Z. 

Solution. We will use the next ordering on the variables: B, D, A, C and E, and 

function Z’ = Z. It is an extended BP problem. The graph of these conditions is 

shown in Fig. 3. 

 

     B 

             3 

       3 

        1 = A         2      C 

 

 

   6 1 1  2 

               

 

 

         0 = E  3        D 

Figure 3 

The graph of conditions in Example 3 

From the fourth condition we know the values of two variables. There are some 

arrow-changing steps 3) and 4) for arrows starting from E and from B to C we can 

use step 16) etc., but we have no information about the values of the nodes B, C 

and D. See Fig. 4. 
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     B 

             6 

       3 

        1 = A         2      C 

 

 

   6 1 7  2 

               

 

 

         0 = E  5        D 

Figure 4 

The graph of example 3 after changing arrows 

Now we are at point 5 of the algorithm. A and E are fixed values. Let us choose 1 

for the value of B. We can use step a) and we get C = 0 and D = 0. One can check 

it; it is a solution with Z = 4. Now we want the best solution, thus we make a 

BACKTRACK and let B = 0. Now we check the value Z of the remaining 

possible best solution: A and E were fixed before B got the value and we are 

trying the second value for B, so they are fixed. (It is easy to check that there are 

no more fixed values.) Therefore, the amount is -5 + (3+7) = 5, which is greater 

than the value of our memorized solution, thus we continue the search: We have 

no graph-changing steps to determine the values of C and D, so we are at point 5 

of the algorithm and let D = 1. We cannot get the value of C by graph-changing, 

so we are at point 5 again, let C = 1. We can check, it is also a solution, with the 

value Z = 5. We memorize it, and we finish the search because we know from the 

previous calculation that it is impossible to get a better solution. 

Conclusions 

In this paper, various types of Boolean Programming problems have been 

considered. Using graph-theoretical approach we have solved these special 0-1 

integer programming problems. In practice, we can approach similar problems, if 

we have conditions, for switches or Boolean circuits. We can solve such problems 

in which each variable is binary, i.e., it has a value of a characteristic function. In 

some logical exercises and puzzles the conditions are similar to the conditions 

investigated here [13, 15-17], or we can write them in the form of the conditions 

of BP problems and we can use graphs to solve them [11, 14]. We used linear 

goal-function in the optimization. The conditions are strong (i.e. strict) and weak 

inequalities and equations. In the graph representation, the critical edges, are used 

to represent the non-linear conditions. Our algorithm is based on local 

information: we can modify the graph by changing the weight values of the edges 

and by assigning values to nodes. Interesting properties of graphs are noted, such 
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as the arrows with weights non-divisible by 3 are specifying a transitive relation 

among nodes, while the arrows with weights at least 3 are representing a 

symmetric relation. In the future, we expect some more interesting phenomena by 

a more detailed analysis of our theory. Our method, similarly to knapsack 

algorithms, can give a relatively good solution in a short time in many cases. The 

algorithm uses backtracking graph-search strategy to find also the optimal solution 

of these problems. 

We can use our algorithm for the case of arbitrary goal-functions, in step 5, we 

need to choose the most ‘important’ variable to be 1 (or the variable which is the 

least ‘important’ to be 0), where the importance property is specified based on the 

goal function. Our method can easily be implemented by using matrices of the 

graphs. 

When we allow more than one type (2) condition for a variable in the LHS, we 

must use and-or graphs (i.e., hypergraphs) to represent the conditions. We hope 

that a variation of the presented method will work for other integer-valued 

programming problems for which we allow more values than 2 for the variables. 

Finally, we note that the technique used here is related to methods to solve logical 

puzzles [14]. On the other hand, SAT solvers [1, 6, 8] provide valuations of the 

variables such that the given formula evaluates to true, if it is possible. The SAT 

problem is one of the most known NP-complete problems. SAT solvers can also 

be used to solve certain puzzles. Moreover, the problem of finding a satisfying 

valuation of a logical formula that optimizes a linear function of variables is called 

MinCostSAT [5]. Thus, we can see that Boolean Programming is an important 

and challenging topic with various new approaches. 
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