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Abstract: Starting with the study of the Collatz-Sinogowitz and the Albertson graph 

irregularity indices the relationships between the irregularity of graphs and their spectral 

radius are investigated. We also use the graph irregularity index defined as Ir(G) = Δ – δ, 

where Δ and δ denote the maximum and minimum degrees of G. Our observations lead to 

the answer for a question posed by Hong in 1993. The problem concerning graphs with the 

smallest spectral radius can be formulated as follows: If G is a connected irregular graph 

with n vertices and m edges, and G has the smallest spectral radius, is it true that Ir(G) 

=1? It will be shown that the answer is negative; counterexamples are represented by 

several cyclic graphs. Based on the previous considerations the problem proposed by 

Hong can be reinterpreted (refined) in the form of the following conjecture: If G is a 

connected irregular graph with n vertices and m edges, and G has the smallest spectral 

radius, then Ir(G)=1 if such a graph exists, and if not, then Ir(G)=2. Considering the 

family of unicyclic graphs for which Ir(G) ≥ 2, we prove that among n-vertex irregular 

unicyclic graphs the minimal spectral radius belongs to the uniquely defined short lollipop 

graphs where a pendent vertex is attached to cycle Cn-1. Moreover, it is verified that among 

n-vertex graphs there exists exactly one irregular graph Jn having a maximal spectral 

radius and an irregularity index of Ir(Jn)=1. Finally, it is also shown that by using the 

irregularity index Ir(G) a classification of n-vertex trees into (n-2) disjoint subsets can be 

performed. 
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1 Introduction 

For a graph G with n vertices and m edges, V(G) and E(G) denote the set of 

vertices and edges, respectively. Let d(u) be the degree of vertex u in G, and 

denote by uv an edge of G connecting vertices u and v. Denote by Δ and δ the 

maximum and minimum degree of G. 

We use the standard terminology in graph theory, for notations not defined here 

we refer the reader to [1, 2, 3]. A graph is called regular, if all its vertices have the 
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same degree. A non-regular connected graph G is said to be irregular. Let ρ(G) be 

the spectral radius of G and denote by Cy = m – n +1 the cyclomatic number of a 

graph G. Because a tree graph is acyclic, its cyclomatic number is equal to zero. A 

connected graph G having Cy(G)= k ≥1 cycles is said to be a k-cyclic graph. 

A connected bidegreed bipartite graph G(Δ,δ) is called semiregular if each vertex 

in the same part of bipartition has the same degree. An n-vertex unicyclic graph is 

a connected graph obtained by attaching a finite number of trees at vertices of a 

cycle. Because m = n for unicyclic graphs, their cyclomatic number equals one. 

The only regular unicyclic graphs are the cycles. By definition, let C(n,m) be the 

family of connected irregular graphs with n vertices and m edges, respectively. 

Consequently, C(n,n-1) denotes the set of trees, and C(n,n) denotes the set of  

irregular unicyclic graphs. It is immediate that for any connected irregular n-

vertex graph, 1 ≤ Δ – δ ≤ n-2. By definition, an n-vertex graph G is said to be 

maximally irregular graph if Ir(G) = n-2, and weakly irregular graph (WIR 

graph) if Ir(G) = 1. It is obvious that any connected WIR graph is a bidegreed 

graph. 

The organization of this paper is as follows. In Section 2, we review some known 

irregularity indices, and their relations with the spectral radius of acyclic and 

various cyclic graphs. In Section 3, the Hong’s problem is investigated with 

particular regard to unicyclic graphs. In Section 4, inequalities characterizing the 

irregularity of lollipop graphs are presented. In Section 5, it is proved that among 

n-vertex graphs there exists an irregular graph Jn having a maximal spectral radius 

and an irregularity index of Ir(Jn)=1. Moreover, a sharp upper bound is given for 

the spectral radius of n-vertex connected irregular graphs. In Section 6, it is 

shown that by using the irregularity index Ir(G) a classification of n-vertex trees 

into (n-2) disjoint subsets can be performed. 

2 Relations between Graph Irregularity Indices and 

the Spectral Radius 

By definition, a topological invariant IT(G) is called an irregularity index of a 

graph G if IT(G) ≥ 0 and IT(G)=0 if and only if G is a regular graph. The majority 

of irregularity indices are degree-based, but there exist eigenvalue-based 

irregularity indices as well [6-19]. Widely used topological invariants are the 

Collatz–Sinogowitz irregularity index [6] 

n

m2
)G()G( 

  

and the Albertson irregularity index [7], 
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



Euv

)v(d)u(d)G(AL

  

Among the degree-based irregularity indices, Ir(G) = Δ – δ is one of the simplest 

topological graph invariants [8]. It is easy to see that for any m-edge connected 

graph 

)G(mIr)v(d)u(d)G(AL
Euv

 
  

and equality holds if graph G is a regular or semiregular. 

Weakly irregular graphs play a central role in the mathematical chemistry. 

Benzenoid graphs are bidegreed graphs composed of finite number hexagons 

(except C6 cycle) [4]. They form a subset of WIR graphs because Δ=3 and δ=2 

hold for them. The dual graphs of traditional trivalent fullerene graphs contain 

only vertices with degrees 5 and 6, consequently all dual fullerene graphs are 

WIR graphs with Δ – δ = 6 - 5=1 [5]. It is worth noting that semiregular WIR 

graphs with Δ=3 and δ=2 can be easily generated by performing a subdivision 

operation on edges of arbitrary 3-regular graphs. Complete bipartite graphs Kp,q 

where p≥1 and q=p+1 are also semiregular WIR graphs with n=2p+1 vertices and 

m=p(p+1) edges. This observation implies that for any n≥3 odd integer there is an 

n-vertex WIR graph isomorphic to an n-vertex complete bipatite graph. 

As an example, in Fig.1, tricyclic WIR graphs with Δ=3 and δ=2 are depicted. 

 

Figure 1 

WIR graphs having identical vertex degree sequence 

As can be seen, graphs JC and JD are semiregular, and JC is generated by using a 

subdividing operation on the edges of K4 complete graph. 

The Collatz–Sinogowitz irregularity index has been extensively studied during the 

last two decades [10-19]. As can be seen, ε(G) is a linear function of the spectral 

radius, consequently among graphs with n vertices and m edges the maximal 

irregularity index ε(G) belongs to graphs with maximal spectral radius, and the 

minimal irregularity index ε(G) belongs to graphs with minimal spectral radius. 

Similar phenomenon can be observed for some particular classes of graphs which 

are characterized by the irregularity index Ir(G. 
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2.1 Acyclic Graphs with Extremal Irregularity 

Denote by Pn and K1,n-1 the n-vertex paths and stars, respectively. 

Lemma 1 Let Tn be an (n≥3)-vertex tree. Then Ir(Pn)=1 and Ir(K1,n-1)=n-2, 

consequently, 

1 = Ir(Pn) ≤ Ir(Tn) ≤ Ir(K1,n-1) = n-2. 

In other words, the lower bounds are attained if Tn is the path Pn, and the upper 

bounds if Tn is the star K1,n-1. Based on the Lemma 1 and using the known 

formulas published in Ref. [3] the following proposition is obtained: 

Proposition 1 Let Tn be an n-vertex tree with n ≥ 3 vertices. Then 

1)P(Ir2
1n

cos2)P()T( nnn 











 , 

1)K(Ir1-n)K( )K()T( 1n,11n,11n,1n  
, 

1n1)K(Ir)T( )P(Ir1 1n,1nn  
. 

2.2 Maximally Irregular Cyclic Graphs 

In what follows methods for constructing maximally irregular n-vertex cyclic 

graphs with Ir(G)=n-2 are presented. 

Proposition 2  For any n ≥ 4 positive integer there exists a maximally irregular n-

vertex graph Gn with m=(n-1)(n-2)/2 +1 edges having one vertex of degree 1, one 

vertex of degree n-1, and n-2 vertices of degree n-2. 

Proof: Let Kn-1 be a complete graph with n-1 vertices, where n≥ 4. By attaching 

one pendent edge to Kn-1 we obtain the n-vertex graph Gn belonging to the family 

of kite graphs [30]. It is easy to see that the kite graph Gn has one vertex of degree 

1, one vertex of degree n-1, and n-2 vertices of degree n-2. 

Proposition 3 Denote by )p,k(

nG  an n-vertex and k-cyclic graph composed of k 

triangles and p=n-k-2 ≥ 1 pendent edges. Let us assume that k triangles have a 

sole common vertex u and all pendent edges are attached to vertex u. Then, 

2npk)G(Ir )p,k(

n   

Proof: Consider the n-vertex cyclic graphs depicted in Fig. 2. 
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Figure 2 

Four n-vertex and k-cyclic graphs with k= 1, 2 and 3 

In Fig. 2 graphs An are unicyclic, Bn are bicyclic graphs, while En and Fn are non-

isomorphic 3-cyclic graphs, respectively. It is easy to see that graphs denoted by 

An, Bn and En form subsets of )p,k(

nG  graphs. Because k+p=n-2 is fulfilled, this 

implies that, )3n,1(

nn GA  , )4n,2(

nn GB  , and )5n,3(

nn GE  . 

Remark 1 According to results published in [25] a fundamental property of 

graphs An, Bn and Fn is that all of them have maximal spectral radius among n-

vertex unicyclic, bicyclic and tricyclic connected graphs, respectively. From this 

observation it can be concluded that tricyclic graphs Fn have a larger spectral 

radius than graphs En. 

Remark 2 It is interesting to note that among 6-vertex connected graphs there 

exist two non-isomorphic 3-cyclic graphs having identical minimal spectral radius 

of 2,732 and identical minimal irregularity index Ir=3-2=1. 

2.3 Irregularity of Unicyclic Graphs 

Structural properties of unicyclic graphs have been characterized in several papers 

[20-31]. As an example, consider the n-vertex sun graphs denoted by SGn where 

n≥6 even integer. A sun graph SGn is the graph on n=2k vertices obtained by 

attaching k pendent edges to a cycle Ck. [42]. (See Fig. 3) 

 

Figure 3 

Sun graph SG8 
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Sun graphs represent a particular subset of unicyclic graphs where Δ=3 and δ=1 

hold [42]. For these graphs 

)SG(Ir1121)SG( nn  . 

As can be seen, the spectral radius and the irregularity index of sun graphs are 

constant numbers; they are independent of the vertex number and the graph 

diameter. 

For the spectral radius of unicyclic graphs various upper bounds have been 

deduced [20-31]. 

Proposition 4 Let U be a unicyclic graph different from a cycle. Then 

)U(Ir22)U(  . 

Proof: Hu in [20] verified that for a unicyclic graph with maximum degree Δ the 

inequality 12)G(   is valid, and equality holds if and only if G is a cycle. 

Because any unicyclic graph different from a cycle contains one or more pendent 

vertices, from this observation the result follows. 

Hong in 1986 [40] and, independently Brualdi and Solheid [25] obtained a sharp 

upper bound for the spectral radius of unicyclic graphs. 

Proposition 5 [40, 25]: Let Un be an n-vertex unicyclic graph different from cycle 

Cn. Then  

)S()U( 3

nn  , 

where 3

nS  denotes the graph obtained by joining any two vertices of degree one of 

the star K1,n-1 by an edge. The upper bound is attained only when Un is the graph 
3

nS . 

Remark 3 It should be noted that the set of 3

nS  graphs is identical to the family of 

unicyclic graphs An depicted in Fig. 2. 

In 1993, Hong asked the following question (his Problem 3) [31]: Let G be a 

simple irregular connected graph with n vertices and m edges. If G has the 

smallest spectral radius, is it true that Δ – δ = Ir(G) = 1 ? 

3 Investigating the Hong’s Problem 

Concerning the Hong’s problem, it is easy to see that a necessary condition for the 

fulfillment of equality Ir(G) = Δ – δ = 1 is that the connected graph G must be a 

WIR graph. It is known that in the set C(n,n-1) of trees there is exactly one tree 
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(path Pn) which is a WIR graph. Moreover, paths Pn have minimal spectral radius 

among n-vertex trees. Unicyclic graphs other than cycles contain at least one 

pendent vertex of degree 1 and at least one vertex of degree not smaller than 3. As 

a consequence: 

Proposition 6 For any irregular unicyclic graph Ir(G) = Δ – δ ≥ 2 holds. 

It is easy to show that there exist M and N, M > N positive integers such that all 

graphs in C(N,M) are not WIR graphs (that is Ir(G) = Δ – δ ≥ 2 is fulfilled). This 

observation is demonstrated by simple examples. 

Proposition 7 If N=6 and M=12, then the set C(6,12) of connected irregular 

graphs does not contain WIR graphs. 

Proof: Set C(6,12) contains exactly 4 irregular graphs with cyclomatic number 

Cy=12-6+1=7. They are denoted by HA, HB, HC, and HD and are characterized by 

the following properties: 

Degree sequence of HA is [5,5,4,4,4,2]  and Ir(HA) =5 – 2 = 3 

Degree sequence of HB is [5,5,5,3,3,3]  and Ir(HB)= 5 – 3 = 2 

Degree sequence of HC is [5,5,4,4,3,3]  and Ir(HC) =5 – 3 = 2 

Degree sequence of HD is [5,4,4,4,4,3]  and Ir(HD) =5 – 3 = 2 

The minimal spectral radius belongs to graph HD, namely ρ(HD) = 4,067. In Fig. 4 

these graphs taken from [32] are depicted. 

 

Figure 4 

The four 6-vertex graphs from set C(6,12) 

Proposition 8  If N=6 and M=9, then the set C(6,9) does not contain WIR graphs. 

Proof: Set C(6,9) contains 18 irregular graphs with cyclomatic number Cy=9-

6+1=4. None of them are WIR graphs. Among these 18 graphs the graph HE 

depicted in Fig. 5 has the minimal spectral radius, ρ(HE) = 3,086. The 

corresponding degree sequence is [4,3,3,3,3,2], so Ir(HE) = 2. 
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Figure 5 

The 9-edge graph HE from set C(6,9) 

In what follows we deal with the construction of n-vertex irregular unicyclic 

graphs having minimal spectral radius. To do this, the introduction of some 

definitions and two lemmas are needed. 

Lemma 2 [3, 33]: If H is a (not necessarily induced) subgraph of a graph G, that 

is GH , then ρ(H) < ρ(G). 

Hoffman and Smith [34] defined an internal path of graph G as a walk v0,v1,…vk 

(k ≥ 1) such that the vertices v1,...,vk are distinct (v0, vk do not need to be distinct), 

d(vk) > 2, and d(vi) = 2 whenever  0  < i  <  k, holds. 

Lemma 3 [30, 33]: Let uv be an edge of the n-vertex connected graph G and let 

Guv be obtained from G by subdividing the edge uv of G. Let Wn, with n ≥ 6 be 

the double-snake depicted in Fig. 6. If uv belongs to an internal path of G, and 

nWG  , then ρ(Guv) < ρ(G). 

 

Figure 6 

The double-snake graph Wn (n ≥ 6) 

The lollipop graphs are a subset of unicyclic graphs [30, 35-38]. A lollipop 

Lo(n,k) with 3 ≤ k ≤ n is a graph obtained from a cycle Ck and a path Pn-k by 

adding an edge between a vertex from the cycle and the endpoint from the path. 

Lollipop Lo(n,n-1) is called the short lollipop, while Lo(n,n) is the cycle Cn [36]. 

Proposition 9 The minimal spectral radius of an n-vertex unicyclic graph different 

from a cycle Cn belongs to uniquely defined short lollipop Lo(n,n-1) obtained by 

appending a cycle Cn-1 (n ≥ 4) to a pendent vertex u. 

Proof: It is based on the application of two different graph transformation 

operations. A common feature of these transformations is that both of them 

decrease the spectral radii of unicyclic graphs. 

i) Denote by Ω(n,k) the class of n-vertex irregular unicyclic graphs 

including a k-edge cycle Ck, where 3  ≤  k ≤  n-1. Let )k,n(G1   be an 

arbitrary n-vertex unicyclic graph. Consider the finite sequence of 

unicyclic graphs
Jj21 G,...G,...,GG   obtained by deleting step-

by-step pendent edges, in such a way, that  e-G j1 jG , where e is an 
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arbitrary pendent edge of Gj. According to Lemma 2, 
j1j GG 
holds, 

consequently, as a result of consecutive edge-deleting operations ρ(Gj+1) 

< ρ(Gj) is fulfilled. Because in the final step the corresponding vertex 

number is equal to k+1, we get the short lollipop graph Lo(k+1,k) 

composed of a k-edge cycle Ck and one pendent edge attached to Ck. 

ii) In order to identify the n-vertex unicyclic graph with a minimal spectral 

radius, the lollipop graph Lo(k+1,k) must be further transformed.  For 

this purpose, based on the concept outlined in Lemma 3, we have to 

create a sequence of subdividing transformations on the cycle Ck by 

increasing step-by-step the edge number of Ck until we obtain the 

lollipop graph Lo(n,n-1). (The final step of transformations is 

characterized by the case of k=n-1.) It is clear that in each step, our 

subdividing transformations are always performed on an edge belonging 

to an internal path of cycles considered. Moreover, from Lemma 3 it 

follows that as a result of subsequent subdividing operations we get a 

sequence of lollipop graphs with increasing vertex numbers and 

decreasing spectral radii, simultaneously. It is easy to see that the short 

lollipop graph Lo(n,n-1) obtained at the final step has the minimal 

spectral radius among all n-vertex irregular unicyclic graphs. 

Remark 4 From the previous considerations it follows that for short lollipops 

Lo(n,n-1) having the minimal spectral radius the equality Δ – δ = 3 – 1 = 2 holds. 

In Fig. 7, the concept for constructing n-vertex unicyclic graphs with the minimal 

spectral radius is demonstrated. 

 

Figure 7 

Transformations used for obtaining a unicyclic graph with the smallest spectral radius 

Considering the three graphs shown in Fig. 7 it can be concluded that 

i) graph GA is a 9-vertex unicyclic graph with a spectral radius 

ρ(GA) = 2,456 

ii) the 5-vertex lollipop graph GB obtained from unicyclic GA has the 

spectral radius 2,13582/)17(5)(GB  , 
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iii) the short lollipop graph GC obtained from GB represents the unique 

unicyclic graph having the minimal spectral radius ρ(GC) = 2,084 among 

all 9-vertex unicyclic graphs. 

Remark 5 In the family of n-vertex, non-isomorphic unicyclic graphs there are 

graphs having cycles Ck with different k ≥ 3 edge numbers. The characteristic 

feature of the method used for identifying the n-vertex unicyclic graph with 

minimal spectral radius is that independently from the topological structure of 

graph G1, in the final step we always obtain the same uniquely defined extremal 

lollipop graph Lo(n,n-1). 

4 Some Considerations Related to Lollipop Graphs 

Lemma 4 Boulet and Jouve in [37] verified that for the spectral radius of lollipop 

graphs Lo(n,k) the following universal upper bound holds 

236068,25))k,n(Lo(   

The value 5  seems to be the best upper bound for lollipop graphs. This claim is 

confirmed by computational results as well. For example, for lollipop Lo(8,3) one 

obtains that ρ(Lo(8,3))= 2,2350. (See computed spectral radii of 8-vertex 

unicyclic graphs summarized in [22]). 

Remark 6 Let k ≥2 a positive integer. It is easy to show that there exist infinitely 

many unicyclic graphs Hk with vertex number n=3k for which 

236068,25)H( k  holds. 

Consider the infinite sequence of unicyclic graphs Hk depicted in Fig. 8. Graphs 

Hk having an identical degree set {1,2,3} and an arbitrary large diameter. They 

belong to the family of bipartite pseudo-semiregular graphs [48]. 

 

Figure 8 

Unicyclic graphs Hk for k=2, 3, 4, with vertex number 6, 9, 12, .. 
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It is likely that there is no simple closed formula for computing the spectral radius 

of short lollipop graphs Lo(n,n-1). Supposing that a closed formula exists, this 

will be very complicated. As an example, consider the smallest lollipop graph 

Lo(4,3), having only 4 vertices. 

In [39] the formula for calculating the spectral radius of the smallest lollipop 

graph Lo(4,3) is given. Namely, ρ(Lo(4,3))= θ1 = 2,17009 where θ1 is one of the 

three roots of the polynomial defined by 01323  . 

Woo and Neumayer [33] studied the structural properties of a particular class of 

unicyclic graphs called closed quipus. By definition, a closed quipu is a unicyclic 

graph G of maximum degree 3 such that all vertices of degree 3 lie on a cycle [30, 

33]. This implies the following proposition: 

Proposition 10 Because lollipop graphs form a subset of closed quipus it follows 

that in the family of n-vertex closed quipus the short lollipop Lo(n,n-1) has the 

smallest spectral radius. 

Based on the previous considerations, the problem suggested by Hong can be 

modified (refined) in the form of the following conjecture: If G is a connected 

irregular graph with n vertex and m edges, and G has the smallest spectral 

radius, then Ir(G)=1 if such a graph exists, and if not, then Ir(G)=2. 

Remark 7 From the relations between the spectral radius of unicyclic graphs and 

the corresponding Collatz-Sinogowitz irregularity index the following inequalities 

yield. For any n-vertex unicyclic graph Un 

02))n,n(Lo(2))1n,n(Lo(
n

m2
)U()U( nn  . 

Furthermore, from Lemma 4, one obtains that 

236068,025
n

m2
))k,n(Lo())k,n(Lo(  . 

5 WIR Graphs with Maximal Spectral Radius 

The Hong’problem concerns WIR graphs. On the analogy of Hong’s problem the 

following question can be asked: Let G be a simple irregular connected graph 

with n vertices and m edges. If G has the maximal spectral radius, is it true that Δ 

– δ = Ir(G) = n-2 ? 

The answer is negative. It is easy to show that for any n ≥ 4 positive integer there 

always exists an n-vertex irregular graph Jn possessing the following properties: 

Ir(Jn)=1 and Jn has a maximal spectral radius among n-vertex irregular graphs. 
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Consider the unambiguously defined n-vertex irregular graph Jn obtained as Kn – 

e, where Kn is the n-vertex complete graph and e is an arbitrary edge of Kn. From 

the definition of graph Jn the following proposition is obtained: 

Proposition 11 The n-vertex irregular graph Jn is characterized by the following 

properties: 

i) Jn is the only n-vertex irregular graph having the maximal edge number 

equal to 1  - 1)/2-n(n=m . This implies that Jn is the sole graph in the 

set )m C(n,  . 

ii) Because Δ(Jn)= n-1 and δ(Jn)=n-2, this implies that Ir(Jn )=1. 

iii) Jn has the maximal spectral radius among n-vertex irregular graphs [49]. 

iv) Using the formula published by Hong et al. [41], for the spectral radius 

of a connected irregular graph G one obtains that 

2

7n2n3-n
 )G(

2 
 , 

and equality is fulfilled if and only if G is isomorphic to Jn. 

Remark 8 Cioabă [43] proved that for a connected R-regular graph GR,n with n 

vertices 

nD

1
)eG(

n

2
n,R   

holds. If GR,n is isomorphic to Kn then Δ(Kn) = Δ(Jn) = n-1. Because D(Jn) = 2, it 

follows that  

n2

1
)J(1n

n

2
n  . 

Remark 9 Let G be a connected graph with n vertices and m edges. If n ≥ 4 and 

1  - 1)/2-n(n=m  then the known Hong’s bound [44] represented by 

1nm2)G(   slightly overestimates the spectral radii of graphs Jn: 

  )J(2/7n2n3n1n2n1nm2 n

22  . 

Remark 10 For example, if J4 = K4 – e, then for the spectral radius of the 

“diamond graph” J4 one obtains that )/2)17(1=)J( 4  . 
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6 Additional Considerations 

The next inequalities represent some results relating to irregularity indices. 

Cioabă and Gregory have proved the following inequality [45]: Let G be a non-

regular graph with n vertices and m edges having maximum degree Δ. Then 









n4

)G(Ir

n4

)(

n

m2
)G(

22

. 

An interesting conjecture has been posed in [46]: For any connected non-regular 

graph G with n vertices 

nD

)G(Ir

nD





. 

By a computer search the conjecture is verified for all connected graphs of order 

at most 8 [46]. 

Proposition 12 Let G be a connected graph. Then 

)G(Var4)GIr)G(nVar2 2   where 

0
n

m2
)u(d

n

1
)G(Var

2

Vu

2 







 



 

is the degree-variance irregularity index proposed by Bell [9]. In the above 

formula equalities hold in both sides if and only if G is a regular graph. 

Proof. In [47] Izumino et al. have proved that for a connected non-regular graph G 

with n vertices and m edges 

)G(Var4)()GIr 22   

Moreover, in [50] Gutman et al. verified that 

)G(nVar2)()GIr 22  . 

Proposition 13 Let G be a connected irregular graph with n vertices and m edges. 

According to [19] consider the graph irregularity index IRF(G) defined by 

 



Euv

2
)v(d)u(d)IRFG  

Then 

 )G(M2)G(F
m

1
)G(IRF

m

1
)GIr 2

2  . 

where 
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



Vu

3 )u(d)G(F       and    



Euv

2 )v(d)u(d)G(M , 

and equality is valid if G is regular or semiregular. 

Proof. In [19] it was shown that )G(M2)G(F)G(IRF 2 . This implies that  

  2

Euv

2

2 )(m)v(d)u(d)G(M2)G(F)IRFG  


where equality holds 

if G is regular or semiregular. 

Using the irregularity index Ir(G) a classification of n-vertex trees into (n-2) 

disjoint subsets can be performed. 

Proposition 14 Let n ≥ 4 and 2 ≤ q ≤ n-1 be positive integers. There exists at least 

one n-vertex tree Tq for which Ir(Tq)=q-1 holds. 

Proof. The concept of generating the proper sequence of n-vertex trees Tq is based 

on the ordering of trees according to their maximum vertex degrees.  

 

Figure 9 

The sequence of Tq graphs with increasing irregularity (case of n=6) 

As it is demonstrated in Fig. 9, for constructing the sequence of n-vertex trees Tq 

a simple graph transformation is used by which only the irregularity changes, but 

the vertex number n remains the same. Starting with path T2=Pn, as a result of 

consecutive transformation steps, the maximum degree increases as Δ(Tq+1) 

=Δ(Tq)+1, and simultaneously the graph irregularity also increases according to 

Ir(Tq+1) = Ir(Tq)+1. 

Based on previous considerations, the following conjecture is posed: Let n ≥ 4 

and 2 ≤ q ≤ n-1 be positive integers. There exists at least one n-vertex cyclic 

graph Gq for which Ir(Gq)=q-1 holds, except for unicyclic graphs with q=2. 
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