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In the paper a sufficient condition for the asymptotic stability with respect to total variation
norm of semigroup generated by an abstract evolutionary non-linear Boltzmann-type equa-
tion in the space of signed measures with the right-hand side being a collision operator is
presented. For this purpose a sufficient condition for the asymptotic stability of Markov semi-
groups acting on the space of signed measures for any distance ([4]), adapted to the total
variation norm, joined with the maximum principle for this norm is used. The paper general-
izes the result in [4] related to the same type of non-linear Boltzmann-type equation, where
the asymptotic stability in the weaker norm, Kantorovich-Wasserstein, was investigated.
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1 Introduction

We are interested in the problem of the stability of solutions u of the following
version of the Boltzmann equation

∂u(t,x)
∂ t

+u(t,x) =
∞∫

x

dy
y

y∫
0

u(t,y− z)u(t,z)dz t ≥ 0, x≥ 0, (1)

with the additional conditions for t ≥ 0
∞∫

0

u(t,x)dx =
∞∫

0

xu(t,x)dx = 1, (2)

which describes the law of conservation of mass and energy. Equation (1) was
presented in the space Lp(R+) with p = 1,2 and different weights (see [1], [3],
[7]). Equation (1) was derived by J. A. Tjon and T. T. Wu from the Boltzmann
equation using the Abel transformation (see [14]) and was later called by Barnsley
and Cornille (see [1]) the Tjon–Wu equation.
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Equation (1) governs the evolution of the density distribution function of the energy
of particles imbedded in an ideal gas in the equilibrium stage (see [7], [8], [14]).
The solution u(t, ·) of the problem has an interpretation as a probability distribution
function of the energy of particles in an ideal gas. In the time interval (t, t +∆t)
a particle changes its energy with the probability ∆t + o(∆t) and this change is de-
scribed by the operator

(Pu)(x) =
∞∫

x

dy
y

y∫
0

u(y− z)u(z)dz. (3)

Hence, the change is equal to [−u(t,x)+P(u(t,x))]4t +o(4t).

In order to understand the action of P consider three independent random variables
ξ1,ξ2 and η , such that ξ1,ξ2 have the same density distribution function u and η

is uniformly distributed on the interval [0,1]. Here we obtain that Pu is the density
distribution function of the random variable

η(ξ1 +ξ2). (4)

This corresponds to the physical assumption that the energies of the particles before
a collision are independent quantities and that a particle after collision takes η part
of the sum of the energies of the colliding particles.

The assumption that η has the density distribution function of the form 1[0,1] is quite
restrictive. In general, if η has the density distribution h, then the random variable
(4) has the density distribution function

(Pv)(x) =
∞∫

x

h(
x
y
)

dy
y

y∫
0

u(y− z)u(z)dz. (5)

The problem of the asymptotic behaviour of solutions of the equation:

∂u(t,x)
∂ t

+u(t,x) =
∞∫

x

h(
x
y
)

dy
y

y∫
0

u(y− z)u(z)dz (6)

was investigated by A. Lasota and J. Traple in 1999 ([10], Theorem 1.1).

This version is more general than (1). In both versions there are no physical reasons
which will allow us to assume that the distribution of energy of particles can be
described only by density (so by the absolutely continuous measure).

Following this physical interpretation, Gacki in 2007 (see [4]) considered the evo-
lutionary Boltzmann-type equation

dψ

dt
+ψ = Pψ for t ≥ 0 (7)

with the initial condition

ψ (0) = ψ0, (8)
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where ψ0 ∈M1(R+) and ψ : R+→Msig(R+) is an unknown function. Moreover
P : M1(R+)→M1(R+) is analogous to (5), but in this case P is an operator acting
on the space of probability measures. The operator P will be described precisely in
Section 3. By M1(R+) and Msig(R+) we denote the space of probability measures
and the space of finite signed measures respectively. More precisely an operator P
is acting on the subset D⊂M1(R+) given by formula

D :=
{

µ ∈M1 : m1(µ) = 1
}
, where m1(µ) =

∞∫
0

xµ(dx). (9)

Equation (7) was studied in the space M1(R+). The operator P describes the colli-
sion of two particles in general situation.

In [4], the problem of the stability of solutions of a nonlinear Boltzmann-type equa-
tion (7) with the initial condition (8) was studied in Kantorovich-Wasserstein norm
(see [4], [13]). The proof of the asymptotic stability is based on a property of the
Kantorovich-Rubinstein norm in the space of probabilistic measures, which the au-
thor called the maximum principle (see [5]).

The purpose of our paper is to prove that the semigroup generated by the equation
(7) with the initial condition (8) is asymptotically stable with respect to the total
variation norm. The basic idea of our method is to apply technique related with the
maximum principle for the total variation norm (see [2]).

The maximum principle method in studying the asymptotic stability of Markov
semigroup with respect to various metrics was used in the papers [2], [4], [6], [9]
and [10].

In order to make the paper self-contained all necessary definitions from the theory of
Markov operators, dynamical systems and differential equations in Banach spaces
are recalled at the beginning of Sections 2 and 3 respectively.

2 Preliminaries

Let (X ,ρ) be a Polish space and let BX be σ–algebra of its Borel. We denote by
M the family of all finite (nonnegative) Borel measures on X . and by M1 we the
subset of M such that µ(X) = 1 for µ ∈M1. Now let

Msig = {µ1−µ2 : µ1,µ2 ∈M },

be the space of finite signed measures endowed with the total variation norm ‖ · ‖T
(under which it is a Banach space).

Fix an element c of X and for every real number α ≥ 1 we define sets M1,α and
Msig,α

M1,α = {µ ∈M1 : mα(µ)< ∞} and Msig,α = {µ ∈Msig : mα(µ)< ∞}
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where

mα(µ) =
∫
X

(ρ(x,c))α |µ|(dx).

It is easy to verify that these spaces do not depend on the choice of c.

Denote by B(x,r) a closed ball in X with center x ∈ X and radius r. For µ ∈M1
define the support of a measure µ by

supp µ = {x ∈ X : µ(B(x,ε))> 0 for every ε > 0}.

The support of a measure being a stationary solution will play an important role in
the proof of the asymptotic stability of the equation (7). Every set M1,α , for α ≥ 1
contains the subset of all measures µ ∈M1 with a compact support.

In the proof of the main result of this paper an important role is played by some
property of the total variation norm, directly connected with the strong contractivity,
which is called the maximum principle. The relation between contractivity and the
maximum principle will be described below in Theorem 2.1.

The Maximum principle for total variation norm formulated as follows: Let µ1,µ2 ∈
M . Then

‖µ1−µ2‖T = ‖µ1‖T +‖µ2‖T (10)

if and only if µ1 and µ2 are mutually singular (i.e. if there are two sets A,B ∈B
such that A∩B = /0, A∪B = X and µ1(B) = µ2(A) = 0). (For details see [2], p.
325).

We start with a definition of Markov operator

Definition 2.1. An operator P : M →M is called a Markov operator if it satisfies
the following conditions:

(i) P is positively linear

P(λ1µ1 +λ2µ2) = λ1Pµ1 +λ2Pµ2

for λ1,λ2 ≥ 0 and µ1,µ2 ∈M ,

(ii) P preserves the measure of the space

Pµ(X) = µ(X) for µ ∈M . (11)

Note that every Markov operator P can be uniquely extended as an operator to the
space of signed measures.

In what follows we will understand by d the distance generated by the total varia-
tion norm on Msig. A Markov operator P : Msig →Msig is called contracting or
nonexpansive with respect to d if

d(Pµ1,Pµ2)≤ d(µ1,µ2) for µ1,µ2 ∈Msig. (12)
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A Markov operator P : Msig→Msig is called strongly contracting or contractive in
the class M̃ ⊂Msig with respect to d if

d(Pµ1,Pµ2)< d(µ1,µ2) for µ1,µ2 ∈ M̃ . (13)

Definition 2.2. We say that the measures µ,ν ∈M overlap supports if there is no
set A ∈B such that

µ(A) = 0 and ν(Ac) = 0

Contractivity of Markov operators in total variation plays an important role in in-
vestigation of asymptotics of solutions of equation (1). We have

Theorem 2.1. Let P be a Markov operator. Assume that Pµ+,Pµ− overlap sup-
ports for every nontrivial measure µ ∈Msig. Then Markov operator P is strongly
contracting with respect to the distance d generated by the total variation norm.

In the proof of this theorem, the crucial role is played by the inequality:

d(Pµ+,Pµ−)≤ ||Pµ+||T + ||Pµ−||T .

Applying the maximum principle to Pµ+ and Pµ−, we obtain the strong inequality.
But we have

||Pµ+|T = ||µ+||T and ||Pµ−||T = ||µ−||T ,

so using the maximum principle once more (for µ+ and µ−), we directly obtain that
P is strongly contracting. For details see [2], p. 326.

Now we recall few facts from the theory of dynamical systems.

Let T be a nontrivial semigroup of nonnegative real numbers i.e. {0}  T ⊂ R+

and t1 + t2 ∈ T, t1− t2 ∈ T for t1, t2 ∈ T, t1 ≥ t2.

A family of Markov operators (P t)t∈T is called a semigroup if

P t+s = P t P s for t,s ∈ T

and P 0 = I where I is the identity operator.

A semigroup (P t)t∈T is called a semidynamical system if the transformation
Msig 3 µ → P t µ ∈Msig is continuous for every t ∈ T .

Remark 2.1. Every Markov operator P : Msig →Msig is continuous with respect
to the total variation norm. Consequently, every semigroup (P t)t∈T of Markov
operators is a semidynamical system.

If a semidynamical system (P t)t∈T is given, then for every fixed µ ∈Msig the
function T 3 t→P t µ ∈Msig will be called a trajectory starting from µ and denoted
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by (P t µ). A point ν ∈Msig is called a limiting point of a trajectory (P t µ) if there
exists a sequence (tn), tn ∈ T , such that tn→ ∞ and

lim
n→∞

Ptn µ = ν .

The set of all limiting points of the trajectory (P t µ) will be denoted by Ω(µ).

We say that a trajectory (P t µ) is sequentially compact if for every sequence (tn),
tn ∈ T , tn → ∞, there exists a subsequence (tkn) such that the sequence (Ptkn µ) is
convergent to a point ν ∈Msig.

Remark 2.2. If the trajectory (P t µ) is sequentially compact, then Ω(µ) is a nonempty,
sequentially compact set.

A point µ∗ ∈Msig is called stationary (or invariant) with respect to a semidynamical
system (P t)t∈T if

P t
µ∗ = µ∗ for t ∈ T. (14)

A semidynamical system (P t)t∈T is called asymptotically stable if there exists a sta-
tionary point x∗ ∈ X such that

lim
t→∞

P t
µ = µ∗ for µ ∈Msig. (15)

Remark 2.3. Since (Msig,‖ · ‖T ) is a Hausdorff space, an asymptotically stable dy-
namical system has exactly one stationary point.

We say that a Markov semigroup (P t)t∈T is contracting or nonexpansive semigroup
with respect to the distance d generated by the total variation norm in the class
M̃ ⊂Msig if the following condition holds

d(P t
µ1,P t

µ2)≤ d(µ1,µ2) µ1,µ2 ∈ M̃ ; t ∈ T. (16)

A contracting semigroup (P t)t∈T will be called strongly contracting with respect to
the distance d generated by the total variation norm in the class M̃ ⊂Msig if and
only if for every µ1,µ2 ∈ M̃ , µ1 6= µ2 there is a number t0 ∈ T such that

d(Pt0 µ1,Pt0 µ2)< d(µ1,µ2).

Let (P t)t∈T be a semidynamical system which has at least one sequentially com-
pact trajectory and Z – the set of all µ ∈Msig such that the trajectory (P t µ) is
sequentially compact. Z is a nonempty set, so

Ω =
⋃

µ∈Z
ω(µ) 6== /0.

In the proof of the main result of this paper – Theorem 3.2 – we will use the follow-
ing criterion for the asymptotic stability of trajectories
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Theorem 2.2. Let x∗ ∈ Ω be fixed. Assume that for every x ∈ Ω , x 6= x∗ there is
t(x) ∈ T such that

d(St(x)x,St(x)x∗)< d(x,x∗). (17)

Further assume that the semidynamical system (S t)t∈T is nonexpansive with respect
to distance d, i.e.,

d(S tx,S ty)≤ d(x,y) for x,y ∈Msig and t ∈ T. (18)

Then x∗ is a stationary point of (S t)t∈T and

lim
t→∞

d(S tz,x∗) = 0 for z ∈ Z. (19)

where Z is the set of all z ∈Msig such that the trajectory (S tz) is compact.

This criterion is a special case, adapted to the distance generated by the total varia-
tion norm, of the more general result (for any distance), which may be found in [4],
p. 28–30.

3 Main result - asymptotic stability

In this section we show that the equation (7) may by considered in a convex closed
subset of a vector space of signed measures. This approach seems to be quite natural
and it is related to the classical results concerning the semigroups and differential
equations on convex subsets of Banach spaces (see [3], [11]).

Let (E,‖ · ‖) be a Banach space and let D̃ be a closed, convex, nonempty subset of
E. In the space E we consider an evolutionary differential equation

du
dt

=−u+ P̃u for t ∈ R+ (20)

with the initial condition

u(0) = u0, u0 ∈ D̃, (21)

where P̃ : D̃→ D̃ is a given operator.

A function u : R+ → E is called a solution of problem (20), (21) if it is strongly
differentiable on R+, u(t) ∈ D̃ for all t ∈ R+ and u satisfies relations (20), (21).

We start from the following theorem which is usually stated in the case E = D̃.

Theorem 3.1. Assume that the operator P̃ : D̃→ D̃ satisfies the Lipschitz condition

‖P̃v− P̃w‖ ≤ l ‖v−= w‖ for u,w ∈ D̃, (22)

where l is a nonnegative constant. Then for every u0 ∈ D̃ there exists a unique
solution u of problem (20), (21).
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The standard proof of the Theorem 3.1 is based on the fact, that a function u :R+→
D̃ is the solution of (20), (21) if and only if it is continuous and satisfies the integral
equation

u(t) = e−t u0 +

t∫
0

e−(t−s) P̃u(s)ds for t ∈ R+. (23)

Due to completeness of D̃ the integral on the right hand side is well defined and
equation (23) may be solved by the method of successive approximations.

Observe that, thanks to the properties of D̃, for every u0 ∈ D̃ and every continuous
function u : R+→ D̃ the right hand side of (23) is also a function with values in D̃.

The solutions of (23) generate a semigroup of operators (P̃ t)t≥0 on D̃ given by the
formula

P̃ t u0 = u(t) for t ∈ R+, u0 ∈ D̃. (24)

We can now come to the main result of the paper – a sufficient condition for the
asymptotic stability of solutions of the equation (7) with respect to the total variation
metric.

At the beginning we return to equation (7) and give the precise definition of P.

We start from recalling that the convolution of measures µ,ν ∈Msig is a unique
measure µ ∗ν satisfying

(µ ∗ν)(A) :=
∫
R+

∫
R+

1A(x+ y)µ(dx)ν(dy) for A ∈BX . (25)

(see [9]).

A linear operator P∗2 : Msig 7→Msig is defined by

P∗2µ := µ ∗µ for µ ∈Msig. (26)

It is easy to verify that P∗2(M1) ⊂M1. Moreover the maps P∗2
∣∣
M1

have a simple
probabilistic interpretation. Namely, if ξ1,ξ2 are independent random variables with
the same distribution µ , then P∗2µ is the distribution of the sum ξ1 +ξ2.

The second class of operators we are going to study is related to the multiplication of
random variables (see [9]). The formal definition is as follows. Given two measures
µ,ν ∈Msig, we define the elementary product µ ◦ν by the formula

(µ ◦ν)(A) :
∫
R+

∫
R+

1A(xy)µ(dx)ν(dy) for A ∈BR+ . (27)

For fixed ϕ ∈M1 we define the linear operator Pϕ : Msig→Msig by the formula

Pϕ µ := ϕ ◦µ for µ ∈Msig. (28)
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Again, as in the case of convolution, from this definition it follows that
Pϕ(M1)⊂M1. For µ ∈M1 the measure Pϕ µ has an immediate probabilistic inter-
pretation. If ϕ and µ are the distributions of random variables ξ and η respectively,
then Pϕ µ is the distribution of the product ξ η .

Now we may return to the equation (7) and give the precise definition of P. Namely
we define

P := Pϕ P∗2, (29)

where ϕ ∈M1 and m1(ϕ) =
1
2 . From equality (29) it follows that P(M1) ⊂M1.

Further using (26) and (28) it is easy to verify that for µ ∈ D

m1(P∗2µ) = 2 and m1(Pϕ µ) =
1
2
, (30)

where D is defined by the formula (9).

From the definition of the set D and operator P, we obtain the following properties:

1. The set D is a convex subset of Msig,1.

2. The set D with distance d is a complete metric space.

3. If ϕ ∈M1 and m1(ϕ) = 1/2, m1(ν0) = 1, then P(D)⊂ D.

Equation (7) together with the initial condition (8) may be considered in a convex
subset D of the vector space of signed measures. From the properties (1), (2), (3)
and the results of [3] it follows immediately that for every ψ0 ∈ D the initial value
problem (7), (8) has exactly one solution ψ satisfying the integral equation

ψ(t) = e−t
ψ0 +

t∫
0

e−(t−s) Pψ(s)ds for t ∈ R+. (31)

Corollary 3.1. If ϕ ∈M1 and m1(ϕ) = 1/2 then for every ψ0 ∈ D there exists an
unique solution ψ of problem (7), (8).

The solutions of (31) generate a semigroup of Markov operators (P t)t≥0 on D given
by

ψ(t) = P t
ψ0 for t ∈ R+, ψ0 ∈ D. (32)

Now using criterion for the asymptotic stability of trajectories Theorem 2.2 jointly
with the maximum principle for total variation metric from the Theorem 2.1, we can
easily derive the following main result of this paper:

Theorem 3.2. Let P be the operator given by (29). Moreover, let ϕ be a probability
measure with m1(ϕ) = 1/2 and let 0 be accumulation point of suppϕ . If P has
a fixed point ψ∗ ∈ D such that

suppψ∗ = R+, (33)
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then

lim
t→∞
‖ψ(t)−ψ∗‖T = 0 (34)

for every compact solution ψ of (7), (8).

Proof. It is sufficient to verify condition (17) of Theorem 2.2.

From (31) it follows immediately that

‖P t
ψ0−ψ∗‖T ≤ e−t ‖ψ0−ψ∗‖T

+

t∫
0

e−(t−s) ‖P s
ψ0−ψ∗‖T ds for ψ0 ∈ D and t > 0.

This may be rewritten in the form

‖P t
ψ0−ψ∗‖T ≤ e−t ‖ψ0−ψ∗‖T +(1− e−t)‖ψ0−ψ∗‖T (35)

= ‖ψ0−ψ∗‖T for ψ0 ∈ D and t > 0.

Condition (33) is equivalent to the fact that the measures P t ψ0,ψ∗ ∈ D overlap
supports for t > 0 and ψ0 ∈ D. Applying Theorem 2.1 for P t , we will get that
Markov operator P t is strongly contracting. Consequently, in (35) we have a strict
inequality, because P t(ψ∗) = ψ∗. An application of Theorem 2.2 completes the
proof.

Remark 1. We showed that if equation (7) has a stationary solution µ∗ such that
supp µ∗ =R+, then this measure is asymptotically stable. The positivity of u∗ plays
an important role in the proof of the stability. Namely, it allows us to apply the
maximum principle in order to show that the total variation distance between u∗ and
an arbitrary solution u is decreasing in time.

Moreover, in [4] p. 34. the following result was shown:

Let ϕ be a probability measure and let m1(ϕ) =
1
2 . Assume that:

(i) There is σ0 > 0 such that

(0,σ0)⊂ suppϕ. (36)

(ii) The operator P has a fixed point v ∈M such that v 6= δ0.
Then

suppv = R+. (37)

From above it follows that the assumption (33) can be replaced by the more effective
condition (36).
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Observe that in the case of the classical linear Tjon–Wu type equation (1) the mea-
sure ϕ is absolutely continuous with density 1[0,1]. Moreover, u∗(t,x) := exp(−x)
is the density function of the stationary solution of (1). This is a simple illustration
of the situation described by Theorem 3.2.

Moreover, the condition (33) is not particularly restrictive because in Lasota’s and
Traple’s paper (see [12]) it has been proved that the stationary solution φ∗ has the
following property: Either ψ∗ is supported at one point or suppψ∗ = R+. The first
case holds if and only if ϕ = δ 1

2
. But this case is forgettable as a physical model

of particle collisions because it is more restrictive than the model described by the
classical Tjon-Wu equation.

Remark 2. It is worth noting that:

1. Every solution of the equation Pµ = µ is a stationary solution of equation (7).

2. We have many possibilities to apply the criterion written in Theorem 3.2. For
example, if we consider the equation (7) with the following assumption:

2mr(ϕ)< 1, where r > 1,

then for every ψ0 ∈ D the solution of (7) and (8) is compact (see [4]).

Summary

The Boltzmann equation in the general form gives us information about time, po-
sition and velocity of particles in the dilute gas. This equation is a base for many
mathematical models of colliding particles.

In particular, in [2] authors described the homogeneous model where a small num-
ber of particles is introduced into a gas which contains many more particles, at
equilibrium. The solution of the considered in [2] equation in the time t informs us
about an energy state of the introduced particles in t.

In present paper authors consider the homogeneous model in the dilute gas with
a possibility of collisions of two particles. The solution of the equation describing
this model, (7), in time t, gives an information about an energy change between
colliding particles in t.

In the future, it is planned to describe the mathematical model of colliding particles
with a possibility of collisions of arbitrary many particles. Moreover, the external
forces may exist.

Acknowledgements. The Authors are indebted to Joanna Zwierzyńska for her valu-
able remarks and editorial help.
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