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Abstract: The main idea of the paper is an attempt to numerically simulate the data 

obtained by acoustic measurements. These measurements were performed in specialized 

acoustic laboratory. Their main idea was to study the reflection of different frequencies 

from boards with openings of various size and shape. The Finite volume method was used 

to make the simulations, where the Helmholtz equation is solved using the impedance 

boundary conditions. The results of the simulations are presented herein. 
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1 Introduction - Acoustic Measurements 

The main motivation of this work is to numerically simulate the values obtained 

by acoustic measurements. The measurements were performed in a specialized 

acoustic laboratory at the Faculty of Science at KU Leuven, in Belgium. The main 

idea is to study the reflection of different frequencies from boards with various 

openings. In Figure 1, there is the photo of one measuring experiment. 

 

Figure 1 

Photo of the measurement 
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As it is seen in the first figure, the measurements were performed in an anechoic 

room. Acoustically hard boards with openings of different size and shape were 

placed in the room and the impulse response measurements between the source 

and receiver were performed. The main focus was an analysis of sound reflection 

in frequency domain. Figure 2 shows simple scheme of the measurement. 

 

Figure 2 

Scheme of the measurement 

At known positions of the space, the speaker and microphone were placed. These 

positions were also varying. Exponential sweep, containing all audible frequencies 

was used as a test signal, sent from the loudspeaker and recorded by microphone, 

and impulse response (will be presented in next section) was calculated. 

The main assumption was that if there is full board placed in the room (as in the 

Figure 2), all frequencies with wavelength smaller than the size of the board will 

be reflected. In case of a board with opening, a part of the sound energy with 

higher frequency content won’t be reflected and will get through the panel, and 

the lower frequencies will fully reflect due to diffraction effects. If the opening is 

smaller, more of the frequencies are reflected. It is because the lower the 

frequency is, the bigger is its wavelength [9, 10]. When the frequency spectrum of 

the reflection was studied, our assumption was confirmed. 

The main goal was the comparison of the data obtained from the measurements 

with numerical simulations implementing the Finite volume method. 

2 Time Domain – Frequency Domain 

This section describes the difference between the domains that the authors worked 

with and the conversion from one domain to the other. 

The output from the acoustic measurements is the impulse response, which is 

shown in Figure 3. 
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Figure 3 

Impulse response of the space 

The measurement data is in the time domain, which means that the particular 

signal is studied considering time. In Figure 3, the horizontal axis is the time 

measured in seconds and the vertical axis is the acoustic pressure measured in 

Pascal. This record contains the information about the behavior of all frequencies 

during whole time. It can be clearly seen, that the first and biggest peak in the 

graph is the direct sound arriving at the microphone, and the following smaller 

peaks are the sound reflections arriving with a time delay. 

The numerical methods which are used for our simulations, work in the frequency 

domain. That means that the signal is studied with respect to frequency – during 

the computations a constant frequency is considered. To decompose the function 

of time into the frequencies, the Fourier transform was used. 

The Fourier transform of a function of time is complex valued function of 

frequency 

 

 .      (1) 

In the equation 1,  is the frequency. 

After the Fourier transform we obtain the data shown in the Figure 4. 

On the horizontal axis the frequencies measured in Hertz. As can be seen there are 

also negative values of frequencies, which are the complex conjugate numbers of 

positive frequencies. These negative values were not important for us, but they are 

needed in case we would like to convert the data back to time domain. 
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Figure 4 

Frequency spectrum of impulse response after Fourier transform 

The Magnitude of the complex number is the amplitude of acoustic pressure. 

Figure 5 shows this amplitude plotted on the logarithmic scale. 

 

Figure 5 

Amplitude of frequency domain signal plotted on logarithmic scale 

We have taken the values from the frequency spectrum, which were used as the 

input data for the simulations. This was done by dividing the time-domain signal, 

so only a direct sound signal was obtained (Figure 6). We have applied the Fourier 

transform to this direct sound signal and computed data that was used in the 

program. 

As the values in the frequency domain are variable (can be seen in Figure 4), it is 

not easy to choose the right frequency. If there is a Fourier transform done for 

either the direct sound or for the reflections, the frequency scaling is different so 

the interpolation had to be calculated. This approach may not be accurate, as the 

data oscillates, so this problem is left for further study. 
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Figure 6 

Time domain signal – direct sound only 

3 Helmholtz Equation 

Numerical methods in the field of acoustics solve the Helmholtz equation 

.        (2) 

Here  is the Laplace operator,  is the amplitude and  is the wavenumber 

(number of radians per unit distance). The wavenumber is given by 

        (3) 

where  is the angular frequency measured in radians per second,  is the phase 

velocity measured in meters per second, and  is the frequency. 

The Helmholtz equation is related to the problems of steady-state oscillations. It is 

derived from the wave equation using the method of separating the variables, and 

it represents its time-independent form. 

Because of its relation to the wave equation, the Helmholtz equation has use in 

various areas of physics, such as, electromagnetic radiation, elasticity or 

seismology. The main area of our interest is in acoustics. The algorithm based on 

the Finite volume method, presented later, is solving the Helmholtz equation. 



I. Riečanová et al.  Acoustical Simulations based on FVM Solution of the Helmholtz Equation 

 – 144 – 

4 Impedance Boundary Conditions 

The boundary conditions which we mostly work with here are of the Robin type. 

They are called the impedance boundary conditions [1, 5] 

.        (4) 

Here  is already mentioned amplitude,  is imaginary unit and  is the normal 

derivative. The function  on the right hand side can be generally seen as the 

function of source. The parameter  is the relative surface admittance. When this 

parameter is set to , this represents the simulation of acoustically hard wall 

with maximum energy reflected. When we set , it simulates the wall with 

maximal sound absorption, i.e. the free space. It is important to note, that if we do 

the calculation considering the inward normal, the sign is opposite . 

There must be mentioned that the Helmholtz equation with homogenous boundary 

conditions is an eigenvalue problem for the Laplacian [2]. When the situation 

 where  is the eigenvalue, the solution to the equation is not unique. 

Moreover, its existence also depends on compatibility with the source function . 

This knowledge about the impedance boundary conditions, was implemented in 

our programs to simulate the aforementioned measurements. 

5 Finite Volume Method 

There are several numerical techniques for solving the Helmholtz equation and 

here we present the algorithm based on the Finite volume method [3, 4, 7, 8]. It is 

the method where the domain is discretized into cells called the finite volumes, 

which in our case were squares. The numerical solution , i.e. the numerical value 

of amplitude, is a piecewise constant function with one constant value on each 

cell. The values of unknown function are calculated at discrete points of mesh 

usually called the representative points in the form of algebraic equations. 

Important feature of the method is the local conservativity of numerical fluxes, 

which means that the flux is conserved from one discretization cell to its neighbor. 
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Our case is three-dimensional, however we decided to simulate only the plane 

where the speaker and microphone were placed. Thus the problem reduces to two-

dimensional which makes the computation easier and faster. The domain 

considered in the simulations was square, whereas its size was set to match the 

real situation. 

After the volume discretization of the domain the grid of  finite volumes is 

obtained (  is the number of discretizing points along one side of the domain). As 

the solution is complex valued function, it is in the form 

.        (5) 

For better calculations we have worked with the following form of (2) 

.        (6) 

The steps of the method are the integration of the Helmholtz equation (6) over the 

finite volume  and applying the Green’s theorem about the relationship between 

line and double integral. Thus the following equation for the numerical solution 

was obtained 

      (7) 

where  is particular finite volume,  is its numerical solution on , and  is the 

normal to the side of . When approximating the integrals, we used the fact that 

numerical solution is constant function on each cell. To the normal derivative the 

difference approximation was applied and the following equation was obtained 

     (8) 

where  is the edge of the cell (| | is its length),  is the size of cell,  is the 

solution on the neighbor of particular finite volume, and  denotes the distance 

between representative points of two adjacent finite volumes p and q 

(representative points were chosen the centers of finite volumes so the vector 

, connecting the points, is perpendicular to the edge). If we suppose that 

our finite volumes are squares so that , we get the following 

.     (9) 
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This equation (9) is valid for interior finite volumes. Thus we compute the 

equations for each cell for both, the real and imaginary part. The system of 

equations with matrix of size  is obtained. 

The equations for the finite volumes on the boundary or in the corner are slightly 

different, as these finite volumes have one or two exterior cells (Figure 7). 

 

Figure 7 

Representation of finite volume on the boundary 

In these equations is the term  denoting the numerical solution on exterior 

cell. As this value is not known, it was eliminated through the boundary 

conditions, which when written extra for real and imaginary part are 

 

.                  (10) 

This was obtained by substituting (5) into (4). Using the boundary conditions the 

following formula was derived 

                  (11) 

which was used to solve this problem. h is the length of finite volume’s side. The 

created system of equation was solved by method of LU decomposition and once 

it was done, the solution of the acoustic pressure was calculated at each point of 

the domain. 
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6 Numerical Simulations 

This section presents the numerical simulation of acoustic measurement using the 

described knowledge. The simulated particular measurement was shown in Fig. 1, 

with the board with square opening placed in anechoic room. The way the 

boundary conditions were prescribed is shown in Figure 8. 

 

Figure 8 

Representation of boundary conditions 

For one finite volume on the boundary, the source function was prescribed with 

Dirichlet boundary conditions, where we put the values gained from the 

measurement. The relative surface admittance parameter was almost everywhere 

 to simulate the free space. Only on part of domain’s right side it was 

 to simulate the board. 

From the measurements we have known the data at the point where the 

microphone was placed. To make the simulation more precise we wanted to know 

the values at the position of loudspeaker. To do this we used the knowledge about 

the sound intensity and its decrease with distance considering the spherical sound 

wave [6] 

.                   (12) 

Here  is the sound intensity in known place measured in watt per square meter, 

and  is decreased intensity in second place, where we want to know the value. 

Then we used the formula about the sound intensity and its relation to the sound 

pressure 

                    (13) 
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where  is the sound pressure,  is the density of air, and 

 is the phase velocity. Using these formulas we have derived the 

new one, so we could increase the known measurement values and compute the 

data for the loudspeaker spot, which was used as Dirichlet boundary conditions. 

As each frequency decreases differently when propagating in air, this way of 

amplifying the data might not be correct. Solution would be an improvement of 

the measurement, where there would be more than just one microphone placed in 

the space. This way we would own the data from more points so we could 

calibrate the values used for our simulations. 

The following figures show the results of the simulations for the frequency of 436 

Hz (for the value of wavenumber ). The value of real part of 

Dirichlet boundary conditions after recalculation using (12) and (13) was 4.772, 

and the value of imaginary part was 2.503. Figure 9 presents the real and 

imaginary part of the solution for  and Figure 10 shows the amplitude of 

acoustic pressure (magnitude of complex number). The size of domain was . 

 

Figure 9 

Numerical solution for the frequency of 436 Hz, left – real part, right – imaginary part 

 

Figure 10 

Numerical solution of acoustic pressure amplitude for the frequency of 436 Hz 
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Next are the results where the domain was diminished, so that the microphone lies 

exactly in the left side of the domain. This way no data had to be recalculated. The 

Dirichlet boundary conditions were put along whole left side. Figure 11 and 12 

present the results for the same frequency again with . 

  

Figure 11 

Numerical solution with diminished room for the frequency of 436 Hz, left – real part, right – 

imaginary part 

 

Figure 12 

Numerical solution of acoustic pressure amplitude for the frequency of 436 Hz, diminished room 

Conclusions 

This work presents the results of acoustic simulations based on numerical 

methods, particularly the Finite volume method. The goal is use and process the 

data obtained by measurements performed in an acoustic laboratory and to 

possibly make comparisons with numerical simulations. Various problems 

appeared in the process. They could be solved by improving the measurements, 

which means placing more than one microphone in the room. In this way we could 

calibrate the data used in the simulations and secure their accuracy. It would also 

help us to compare the data from simulations with those from measurements. This 

is kept for future work. 
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