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Abstract: Decision matrices represent a common tool for modeling decision-making 

problems under risk. They describe how the decision-maker's evaluations of the considered 

alternatives depend on the fact which of the possible and mutually disjoint states of the 

world will occur. The probabilities of the states of the world are assumed to be known. The 

alternatives are usually compared on the basis of the expected values and the variances of 

their evaluations. However, the states of the world as well as the alternatives evaluations 

are often described only vaguely. Therefore, we consider the following problem: the states 

of the world are modeled by fuzzy sets defined on the universal set on which the probability 

distribution is given, and the evaluations of the alternatives are expressed by fuzzy 

numbers. We show that the common approach to this problem, based on employing crisp 

probabilities of the fuzzy states of the world computed by the formula proposed by Zadeh, is 

not appropriate. Therefore, we introduce a new approach in which a fuzzy decision matrix 

does not describe discrete random variables but fuzzy rule bases. The problem is illustrated 

by an example. 

Keywords: decision matrices; fuzzy decision matrices; decision making under risk; fuzzy 

states of the world; fuzzy rule bases system 

1 Introduction 

A decision matrix is often used as a tool of risk analysis in decision making under 

risk [3], [4], [7], [14]. It describes how the decision-maker's evaluations of the 

considered alternatives depend on the fact which of the possible and mutually 

disjoint states of the world will occur. The probabilities of occurrences of these 

states of the world are supposed to be known. Thus, the evaluations of the 

alternatives are discrete random variables. The alternatives are usually compared 

on the basis of the expected values and the variances of their evaluations. The 

decision-maker selects the alternative that maximizes his/her expected evaluation 

or maximizes the expected evaluation and simultaneously minimizes the variance. 

In practical applications, the states of the world as well as the evaluations of the 

alternatives can be determined vaguely. The states of the world are mostly 
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described verbally, like "the gross domestic product will increase moderately 

during next year". Sometimes, it can be problematic to express the evaluations of 

alternatives precisely because we may not have enough information. For instance, 

the evaluation under a certain state of the world can be described as “about 5%”. 

In some cases, it is more natural for a decision-maker to express the evaluations 

by selecting a term from a given linguistic scale. 

The vaguely described pieces of information can be mathematically modeled by 

means of tools of fuzzy sets theory. Different views of uncertainty and fuzzy 

decisions in a decision matrix are discussed in [7]. Multiple attribute decision 

making problems, described by a decision matrix with crisp and fuzzy data, are 

analyzed in [1]. In [2], a fuzzy decision matrix is applied to a group decision 

making. An application of risk analysis with fuzzy sets employing the decision 

matrix is presented in [3]. In [4], the authors considered decision matrices with 

fuzzy targets. In [5], the hesitant fuzzy decision matrix, i.e. a decision matrix 

containing fuzzy sets with a different definition of membership function then the 

original one proposed by Zadeh [15], is considered. 

A decision matrix with the fuzzy states of the world and the fuzzy evaluations of 

the alternatives under the particular fuzzy states of the world is called a fuzzy 

decision matrix. In [Error! Reference source not found.2], the authors 

considered a model where the fuzzy states of the world are expressed by fuzzy sets 

on the universal set on which the probability distribution is given. They proposed 

to proceed in the same way as in the case of the crisp (i.e. exactly described) states 

of the world; they set the probabilities of the fuzzy states of the world applying the 

formula proposed by Zadeh in [17]. Within this approach, the evaluations of the 

alternatives are understood as discrete random variables taking on fuzzy values 

with the probabilities of the fuzzy states of the world. 

In [10], the authors showed that the Zadeh’s probabilities of fuzzy events lack the 

common interpretation of a probability measure. Another problem is a precise 

definition of "the occurrence of the particular fuzzy state of the world" (see the 

discussion in Section 3.3). Therefore, an alternative to how the information 

contained in a fuzzy decision matrix can be treated was proposed in [8]. The way 

is based on the idea that a fuzzy decision matrix does not determine discrete fuzzy 

random variables, but a system of fuzzy rule bases (a fuzzy rule base was 

introduced in [16]). However, only the crisp (i.e. not fuzzy) evaluations of 

alternatives were considered in [8] which makes the problem much simpler. The 

main aim of the paper is to extend this approach to the case where the evaluations 

of alternatives are expressed by fuzzy numbers, and to derive the formulas for 

correct computations of fuzzy expected values and fuzzy variances of evaluations 

of alternatives. The obtained fuzzy characterstics will be compared with those 

obtained by the approach considerd in [12]. 

The paper is organized as follows. A decision matrix tool is briefly recalled in 

Section 2. In Section 3, the common approach to the fuzzification of a decision 
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matrix is analysed and the related problems are discussed. Our new approach to 

this problem is introduced and analysed in Section 4. In Section 5, both 

approaches are compared by an illustrative example. 

2 Decision Matrices 

In this section, let us describe a decision matrix as a tool for supporting a decision 

making under risk. 

Let us consider a probability space (Ω, 𝒜, P) where Ω denotes a non-empty 

universal set of all elementary events, 𝒜 is a σ-algebra of subsets of Ω, i.e. 𝒜 

represents the set of all considered random events, and P: 𝒜 → [0,1] denotes a 

probability measure. 

Now, let us describe a decision matrix under risk, considered e.g. in [3], [4], [7] 

and [14]. The decision matrix is shown in Table 1. In the matrix, x1, x2, …, xn 

represent the alternatives of a decision-maker, S1, S2, …, Sm, where Sj ∈ 𝒜 for j = 

1, 2, …, m, denote the mutually disjoint states of the world, i.e. Sj ∩ Sk = ∅ for any 

j, k ∈ {1, 2, …, m}, j ≠ k, and ,1 ΩS j

m

j   p1, p2, …, pm stand for the 

probabilities of the states of the world S1, S2, …, Sm, i.e. pj = P(Sj), and for any i ∈ 

{1, 2, …, n} and j ∈ {1, 2, …, m}, hi,j means the decision-maker's evaluation if 

he/she chooses the alternative xi and the state of the world Sj occurs. The 

evaluation of the alternative xi is commonly understood as a discrete random 

variable Hi: {S1, S2, …, Sm} → ℝ which takes on the values hi,j = Hi(Sj) with the 

probabilities pj, j = 1, 2, …, m. 

Table 1 

Crisp decision matrix 

 S1 

p1 

S2 

p2 

… 

… 

Sm 

pm 

  

x1 h1,1 h1,2 … h1,m EH1 var H1 

x2 h2,1 h2,2 … h2,m EH2 var H2 

… … … … … … … 

xn hn,1 hn,2 … hn,m EHn var Hn 

The alternatives are usually compared on the basis of the expected values and the 

variances of their evaluations (an overview of decision making rules can be found 

e.g. in [Error! Reference source not found.]). The expected values of the 

decision-maker's evaluations, denoted by EH1, EH2, …, EHn, are given for any i ∈ 

{1, 2, …, n} by: 
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 
m

j=

i,jji .hp=EH
1

 (1) 

The variances of the decision-maker's evaluations, denoted by var H1, var H2, …, 

var Hn, are calculated for any i ∈ {1, 2, …, n} as follows: 

 
m

j=

ii,jji .EHhp=var H
1

2)(  (2) 

The alternative that maximizes the expected evaluation and minimizes the 

variance of the evaluation is selected as the best one. 

3 Fuzzy Decision Matrices 

Now, let us describe the common approach to the generalization of a decision 

matrix to the case where the states of the world and the evaluations of the 

alternatives are expressed by fuzzy sets, considered e.g. in [Error! Reference 

source not found.2]. Within this approach, the probabilities of the fuzzy states of 

the world, computed by the formula proposed by Zadeh in [17], are used for 

computations of the characteristics of the evaluations of the alternatives. 

3.1 Fuzzy States of the World 

Vaguely defined states of the world can be mathematically expressed by fuzzy 

sets. A fuzzy set A on a non-empty set Ω is determined by its membership function 

μA: Ω → [0, 1]. Let us denote the family of all fuzzy sets on Ω by ℱ(Ω).  

A support of A and a core of A are given as  0>): (ωμ|Ωω=ASupp A  

and  1):  (ωμ|Ωω=ACore A
, respectively. Aα means an α-cut of A, i.e. 

  ): (ωμ|Ωω=A Aα
 for any α ∈ (0,1]. 

Remark  Any crisp set A ⊆ Ω can be seen as a fuzzy set A ∈ ℱ(Ω) of 

a special kind where its characteristic function χA coincides with the membership 

function μA of the fuzzy set. In fuzzy models, this convention allows us to consider 

also precisely described events given by crisp sets. 

In fuzzy decision matrices, fuzzy states of the world are described by the fuzzy 

events. According to Zadeh [17], a fuzzy event A ∈ ℱ (Ω) is a fuzzy set whose α -

cuts are random events, i.e. Aα ∈ 𝒜 for all α ∈ (0,1]. As an analogy to  

a decomposition of the universal set Ω by crisp states of the world, the fuzzy states 

of the world, denoted by S1, S2, …, Sm, have to form a fuzzy partition of the 

universal set Ω, i.e. for any ω ∈ Ω, it has to hold that 
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 



m

j

S j

1

.1  (3) 

Zadeh [17] extended the crisp probability measure P to the case of fuzzy events. 

Let us denote this extended measure by PZ. A probability PZ (A) of a fuzzy event A 

is defined as follows: 

      
.: dPωμ=μE=AP AAZ  (4) 

3.2 Fuzzy Evaluations of Alternatives under the Particular 

Fuzzy States of the World 

As was mentioned in Introduction, it can be difficult for a decision-maker to 

evaluate each alternative under each state of the world by a real number. One 

reason can be a lack of information caused e.g. by inaccuracies of measurements 

or a lower quality of data transmissions. Another reason can be that it is more 

natural for the decision-maker to describe the evaluations linguistically rather than 

by numbers. 

Linguistic terms or uncertain quantities can be mathematically modeled by fuzzy 

numbers. A fuzzy number A is a fuzzy set on the set of all real numbers ℝ such 

that its core A is non-empty, its α-cuts Aα are closed intervals for any α ∈  

(0, 1], and its support Supp A is bounded. The family of all fuzzy numbers on ℝ 

will be denoted by ℱN(ℝ). In some models, fuzzy evaluations can be restricted 

only to a closed interval, mostly [0,1]. A fuzzy number defined on the interval  

[a, b] is a fuzzy number whose α-cuts belong to the interval [a, b] for all α ∈ (0,1]. 

The family of all fuzzy numbers on the interval [a, b] will be denoted by        

ℱN([a, b]). 

Thus, there are two ways of expressing a fuzzy evaluation of an alternative. The 

first way is to specify the evaluation directly by a fuzzy number. For instance, 

some expert can evaluate the particular alternative directly by the fuzzy number 

"about five percent profit", whose membership function is shown in Figure 1. 

The second possibility of expressing the fuzzy evaluation of the alternative 

consists in the fact that the evaluation is modeled by a linguistic variable 

(linguistic variables were introduced in [16]). A decision-maker evaluates the 

alternatives under the particular states of the world by appropriate linguistic terms 

whose mathematical meanings are described by fuzzy numbers. A set of linguistic 

terms 𝒯1, 𝒯 2, …, 𝒯r forms a linguistic scale on [a, b] if T1, T2, …, Tr ∈ ℱN([a, b]) 

representing their mathematical meanings form a fuzzy partition of [a, b]. 
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Figure 1 

Example of an expertly specified evaluation 

Example  Let us consider a linguistic scale shown in Figure 2. This scale is 

formed by the linguistic terms "a big loss" (BL), "a small loss" (SL), 

"approximately without profit" (AWP), "a small profit" (SP), and "a big profit" 

(BP). In some cases, a selection of some linguistically described value like 

"a small profit" from the given linguistic scale can be more convenient for 

a decision-maker. 

 

Figure 2 

Example of a linguistic scale 

3.3 Common Approach to a Fuzzy Decision Matrix 

Let us describe a common approach to a fuzzy decision matrix that was 

considered e.g. in [Error! Reference source not found.2]. 

In the fuzzy decision matrix given in Table 2, x1, x2, …, xn denote the alternatives 

of the decision-maker and S1, S2, …, Sm stand for the fuzzy states of the world. 

Probabilities of the fuzzy states of the world S1, S2, …, Sm, calculated according to 

(4), are denoted by pZ1, pZ2, …, pZm, i.e. pZj = PZ(Sj). For any i ∈ {1, 2, …, n} and 

j ∈ {1, 2, …, m}, Hi,j expresses the fuzzy evaluation of the alternative xi under the 

fuzzy state of the world Sj. 
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Table 2 

Fuzzy decision matrix 

 S1 

pZ1 

S2 

pZ2 

… 

… 

Sm 

pZm 

  

x1 H1,1 H1,2 … H1,m EH1
Z

 var H1
Z

 

x2 H2,1 H2,2 … H2,m EH2
Z

 var H2
Z 

… … … … … … … 

xn Hn,1 Hn,2 … Hn,m EHn
Z var Hn

 Z
 

Thus, the evaluation of the alternative xi is understood as a discrete fuzzy random 

variable Hi
Z: {S1, S2, …, Sm} → ℱN(ℝ) where Hi

Z(Sj) = Hi,j for j=1, 2, …, m. Its 

fuzzy expected value, denoted by EHi
Z, is computed according to the generalized 

formula (1) where the probabilities pj of the states of the world are replaced by the 

Zadeh's probabilities pZj of the fuzzy states of the world and the crisp evaluations 

hi,j are replaced by the fuzzy evaluations Hi,j, i.e. 

.
1

 
m

j=

ji,Zj

Z

i Hp=EH  (5) 

The α-cuts  ZU

αi

ZL

αi

Z

i,α Eh,Eh=EH ,,
 are obtained for all α ∈ (0,1] as follows: Let 

 U

i,j,α

L

i,j,αi,j,α hhH , , j = 1, 2, …, m. The boundary values of 
Z

i,αEH are obtained 

by 

 
m

j=

L

αji,Zj

ZL

i,α hp=Eh
1

,  (6) 

and 

 
m

j=

U

αji,Zj

ZU

i,α hp=Eh
1

, .  (7) 

Computation of the fuzzy variance var Hi
Z is more complex. It was shown in [9] 

that the formulas proposed in [Error! Reference source not found.2] were not 

correct because the relationships between the fuzzy evaluations Hi,1, Hi,2,…, Hi,m, 

and the fuzzy expected evaluation EHi
Z were not involved in the calculation. This 

fact causes that the uncertainty of the resulting fuzzy variance is falsely increased. 

The proper formulas for the computation of the fuzzy variance were proposed in 

[9]. For any i ∈ {1, 2, ..., n} and any α ∈ (0,1], the α-cut of the fuzzy variance 

 ZU

i,α

ZL

i,α

Z

i,α var hvar h=var H ,  has to be calculated as follows: Let us denote 

    









m

j=

m

=k

ki,Zkji,Zjmiiii hphp=hhh
1

2

1

,2,1, ...., ,,z  (8) 
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Then, 

  m,=j,Hh|hhh=var h αji,miiii

ZL

i,α 1,2,......, ,,zmin j,i,,2,1,    (9) 

and 

  m,=j,Hh|hhhvar h αji,miiii

ZU

i,α 1,2,......, ,,z max j,i,,2,1,  . (10) 

As it is written in section 2, the element hi,j of the matrix given in table 1 describes 

the decision-maker's evaluation of the alternative xi if the state of the world Sj 

occurs. If we consider the fuzzy states of the world instead of the crisp ones, a 

natural question arises: What does it mean to say "if the fuzzy state of the world Sj 

occurs"? Let us suppose that some ω ∈ Ω has occurred. If   ,1=μ
jS   then it is 

clear that the evaluation of the alternative xi is exactly hi,j. However, what is the 

evaluation of xi if   1 0  
jSμ  (which also means that   1 0  

kSμ  for some 

k ≠ j)? Thus, perhaps it is not appropriate in the case of a decision matrix with the 

fuzzy states of the world to treat the evaluation of xi as a discrete random variable 

Hi
Z that takes on the fuzzy values Hi,1, Hi,2,…, Hi,m. 

Moreover, it was pointed out by Rotterová and Pavlačka [10] that the Zadeh’s 

probabilities pZ1, pZ2, …, pZm of the fuzzy states of the world express the expected 

membership degrees in which the particular states of the world will occur. Thus, 

they do not have in general the common probabilistic interpretation - a measure of 

a chance that a given event will occur in the future, which is desirable in the case 

of a decision matrix. 

Therefore, we cannot say that the values EH1
Z, EH2

Z, ..., EHn
Z, given by (6) and 

(7), and var H1
Z, var H2

Z, ..., var Hn
Z, given by (9) and (10), express the expected 

values and variances of evaluations of the alternatives, respectively. Ordering of 

the alternatives based on these characteristics is questionable. 

4 Fuzzy Rule Bases System Determined by the Fuzzy 

Decision Matrix 

In this section, let us introduce a different approach to the model of decision 

making under risk described by the decision matrix with fuzzy states of the world 

presented in Table 2. Taking the problems discussed in the previous section into 

account, we suggest not to treat the evaluation of the ith alternative xi, i ∈ {1, 2, …, 

n}, as a discrete random variable Hi
Z taking on the fuzzy values Hi,1, Hi,2, ..., Hi,m 

with the probabilities pZ1, pZ2, …, pZm. Instead of this, we propose to understand 

the information about the evaluation of the alternative xi as the following fuzzy 

rule base: 
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If the state of the world is S1, then the evaluation of xi is Hi,1. 

If the state of the world is S2, then the evaluation of xi is Hi,2. 

⋮ (11) 

If the state of the world is Sm, then the evaluation of xi is Hi,m. 

In [8], it was shown that in the case of the fuzzy decision matrix with crisp 

evaluations under the particular fuzzy states of the world, it is appropriate to use 

the Sugeno’s method of fuzzy inference, introduced in [11]. The obtained output 

from the fuzzy rule base was expressed by a real number. 

In the paper, we deal with the fuzzy evaluations of the alternatives under the  

fuzzy states of the world. Thus, the so-called generalised Sugeno’s method of 

fuzzy inference, introduced in [13], should be applied for obtaining an output from 

the fuzzy rule base (11). According to this method, the evaluation of an alternative 

xi for a given ω ∈ Ω is computed in the following way: 

 
 

 
 







m

=j

ji,
j

Sm

=j
j

S

m

=j

ji,
j

S

S

i Hωμ=

ωμ

Hωμ

=ωH
1

1

1
.  (12) 

For any α ∈ (0,1], let us denote  U

αji,

L

αji,αji hh=H ,,,, , , j = 1, 2, …, m, and 

       SU

αi

SL

αi

S

αi hh=H ,,, , . Then, the boundary values of  S

αiH ,  are 

computed as follows: 

    
m

j=

L

αji,
j

S

SL

αi hωμ=ωh
1

,,   

and 

    
m

j=

U

αji,
j

S

SU

αi hωμ=ωh
1

,, .   

Remark  In the formula (12), the denominator equals to one due to the 

assumption that the fuzzy states of the world S1, S2, …, Sm form a fuzzy partition 

of Ω. It is worth to note that in our approach, this assumption can be omitted. 

Since we operate within the given probability space (Ω, 𝒜, P), Hi
S is a fuzzy 

random variable such that Hi
S: Ω → ℱN(ℝ). 

Remark  It can be easily seen from (12) that in the case of the crisp states 

of the world Sj, j = 1, 2, …, m, and the crisp evaluations hi,j, i = 1, 2, …, n, under 

the particular fuzzy states of the world, the fuzzy random variables Hi
S coincide 

with discrete random variables Hi taking on the values hi,j with the probabilities pj, 
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j = 1, 2, …, m. Thus, this new approach can be seen as an extension of a decision 

matrix to the case of the fuzzy states of the world and the fuzzy evaluations of 

alternatives where appropriate. 

Analogously, as in the common approach to the fuzzy decision matrix, the 

ordering of the alternatives x1, x2, …, xn can be based on the fuzzy expected values 

and the fuzzy variances of the random variables Hi
S, i = 1, 2, …, n. Let us 

introduce the formulas for computations of the α-cuts of EHi
S and var Hi

S. 

For any α ∈ (0,1], the α-cut of the fuzzy expected output from the fuzzy rule base 

given by (11), denoted by  ,, ,,,

SU

αi

SL

αi

S

αi EhEh=EH is obtained as follows: 

 

  dPhωμ

m,=j,HhdPhωμ=Eh

m

=j

L

αji,S

αji,

m

=j

ji,S

SL

αi

j

j

 

 





















1

,

j,i,

1

, 1,2,...min

 (13) 

and 

 

  .

1,2,...max

1

,

j,i,

1

,

dPhωμ

m,=j,HhdPhωμ=Eh

m

j=

U

αji,S

αji,

m

j=

ji,S

SU

αi

j

j

 

 





















 (14) 

The α-cut  SU

i,α

SL

i,α

S

i,α var hvar h=var H , of the fuzzy variance of the output from 

the fuzzy rule base is obtained as follows: Let us denote 

 

.)

..., ,,s

2

1 1

,2,1,

dPdPh(t)μh(ωμ=

hhh

m

j
t

m

k

ki,
k

Sji,
j

S

miiii

   























 (15) 

Then, 

  m,=j,Hh|hhh=var h αji,miiii

SL

i,α 1,2,......, ,,smin j,i,,2,1,   (16) 

and 

  m,=j,Hh|hhh=var h αji,miiii

SU

i,α 1,2,......, ,,smax j,i,,2,1,  . (17) 

Now, let us compare the fuzzy expected values EHi
Z and EHi

S, and the fuzzy 

variances var Hi
Z and var Hi

S. 
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Theorem 1 For i = 1, 2, …, n, the expected fuzzy evaluation EHi
Z and the 

expected output from the fuzzy rule base EHi
S coincide. 

Proof  For any α ∈ (0,1], let  SU

αi

SL

αi

S

αi EhEh=EH ,,, ,  be the α-cut of the 

expected output from the fuzzy rule base and  ZU

αi

ZL

αi

Z

αi EhEh=EH ,,, , be the α-cut 

of the fuzzy expected evaluation. For the boundary values of 
S

αiEH ,
, it holds: 

   

ZL

αi

L

αji,

m

j=

Zj

m

j=

L

αji,
j

S

m

j=

L

αji,
j

S

SL

αi

Eh=hp

hdPωμ=dPhωμ=Eh

,,

1

1

,

1

,,







 
 

  

and 

   

.,,

1

1

,

1

,,

ZU

αi

U

αji,

m

j=

Zj

m

j=

U

αji,
j

S

m

j=

U

αji,
j

S

SU

αi

Eh=hp

hdPωμ=dPhωμ=Eh







 
 

  

Thus, all the α-cuts are the same. Therefore, EHi
S = EHi

Z. □  

In [8], the authors showed that in the case of a fuzzy decision matrix where the 

evaluations under the particular fuzzy states of the world are expressed by real 

numbers, the variances var Hi
Z and var Hi

S are real numbers as well, and var Hi
Z 

≥ var Hi
S. Now, let us compare the fuzzy variances var Hi

Z and var Hi
S. 

Theorem 2 For i = 1, 2, …, n, the fuzzy variance var Hi
Z of the fuzzy 

evaluation is greater or equals to the fuzzy variance var Hi
S of the output from the 

fuzzy rule base (11). 

Proof Let  miiii hhhz ,2,1, ..., ,,  and  miiii hhh ,2,1, ..., ,,s  be the auxiliary functions 

defined by (8) and (15), respectively. For the sake of simplicity, let us denote for a 

given hi,j ∈ αH j,i, , j = 1, 2, …, m, 

  dPhωμhp=hE
m

j=

ji,
j

S

m

j=

ji,Zji  





11

. 

We can express the difference of  miiii hhhz ,2,1, ..., ,,  and  miiii hhh ,2,1, ..., ,,s  as 

follows: 



P. Rotterová et al. New Approach How to Treat Fuzzy Decision Matrices 

 – 96 – 

     

 

  

 

 

 

 

 

dPh)(μh(ωμ

dPh)(μdPh(ωμ=Eh

dPh)(μEhdPh(ωμ=

dPEhdPh)(μEh+

dPh)(μ)dP(μEh+

dPh(ωμEhdPh(ωμ=

dPEh+Ehh)(μh)(μ

Eh+Ehhh)dP(μ=

dPEhh(ωμEhhp

hhhshhhz=hhh

m

j=

ji,
j

S

m

j=

ji,
j

S

m

j=

ji,
j

S

m

j=

ji,
j

Si

m

j=

ji,
j

Si

m

j=

ji,
j

S

i

m

j=

ji,
j

Si

m

j=

ji,
j

S

m

j=
j

Si

m

j=

ji,
j

Si

m

j=

ji,
j

S

ii

m

j=

ji,
j

S

m

j=

ji,
j

S

m

j=

iiji,ji,
j

S

i

m

j=

ji,
j

S

m

j=

iji,Zj

miiiimiiiimiiii

 

  

  

 

  

  

 



 

















































































































































































2

11

2

2

11

22

2

1

2

1

2

2

1

2

11

2

11

2

2

1

2

1

1

22

2

11

2

,2,1,,2,1,,2,1,

)

)

)

2

)2)

 2

2

)

..., ,,..., ,,..., ,,d

 

where relations (3), (13), (14) and the following relation from measure theory: 

  ,1 
PdP


  

were applied. 

The integrand 
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
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j=
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S h)(μh(ωμ   is clearly non-negative (it 

represents the variance of a discrete random variable that takes on the values hi,j, 

j = 1, 2, …, m, with the "probabilities" )(μ
j

S
,  j = 1, 2, …, m). It is equal to 
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zero if and only if hi,j = hi,k for any j ≠ k such that both pZj and pZk are positive. 

Thus, the function  miiii hhhd ,2,1, ..., ,,  is always non-negative. 

However,  miiii hhhd ,2,1, ..., ,,  is the auxiliary function for computation of the 

fuzzy difference Di between var Hi
Z and var Hi

S. For any α ∈ (0,1], the α-cut of 

the fuzzy difference  U

αi

L

αiαi dd=D ,,, ,  is given as follows: 

  m,=jHh|hhh=d αji,miiii

L

αi 1,2,...,..., ,,dmin j,i,,2,1,,    

and  

  m,=jHh|hhhdd αji,miiii

U

αi 1,2,...,..., ,,max j,i,,2,1,,  . 

Due to the non-negativity of the auxiliary function 
id , the α-cut of the fuzzy 

difference Di,α contains only non-negative values, i.e. .  ,,

S

i

Z

i HvarHvar    Hence, 

.  S

i

Z

i HvarHvar     □ 

Thus, although the fuzzy expected values EHi
Z and EHi

S coincide, the fuzzy 

variances var Hi
Z and var Hi

S differ in general. This can affect the ranking of the 

considered alternatives, which is illustrated by the example in Section 5. 

Now, let us focus on the interpretation of EHi
S and var Hi

S. Both characteristics 

describe a random variable that explains outputs from the fuzzy rule base (11). 

There are no such interpretational problems as those discussed in the previous 

section. So this approach seems to be more appropriate for the practical use. 

5 Illustrative Example 

Let us illustrate the difference between both described approaches on the similar 

problem as was considered in [9]. Let us compare two stocks, A and B, with 

respect to their future yields. We consider the following states of the economy:  

"great economic drop" (GD), "economic drop" (D), "economic stagnation" (S), 

"economic growth" (G), and "great economic growth" (GG). Let us assume that 

the considered states of the economy are given only by the development of the 

gross domestic product, abbreviated as GDP. Further, we assume that the next 

year prediction of GDP development [%] shows a normally distributed growth of 

GDP with parameters µ = 1.5 and σ = 2. 
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Figure 3 

Linguistic scale of the states of the economy 

A considered state of the economy can be expressed by a trapezoidal fuzzy 

number which is determined by its significant values a1, a2, a3, and a4 such that a1 

≤ a2 ≤ a3 ≤ a4. The membership function of any trapezoidal fuzzy number 

A ∈ ℱN(ℝ) is for any x ∈ ℝ in the form as follows: 
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The trapezoidal fuzzy number A determined by its significant values is denoted 

further by (a1, a2, a3, a4). 

Let us assume that the states of the economy are mathematically expressed by 

trapezoidal fuzzy numbers that form a linguistic scale shown in Figure 3. 

Moreover, let us consider that the predictions of future stock yields (in %) are set 

expertly. 

Significant values of the fuzzy states of the economy and of the fuzzy stock yields 

are shown in Table 3. The probabilities of the fuzzy states of the economy were 

calculated according to the formula (4) and are used only in the calculation of the 

characteristics of the output with respect to the common approach described in 

Section 3. 
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Table 3 

Considered fuzzy decision matrix 

Economy states GD = (-∞, -∞, -4, -3) D = (-4, -3, -1.5, -0.25) 

Probabilities 0.0067 0.1146 

A yield (%) -36 -34 -31 -16 -20 -17 -10 0 

B yield (%) -45 -40 -32 -25 -22 -17 -11 0 

Economy states S = (-1.5, -0.25, 0.25, 1.5) G = (0.25, 1.5, 3, 4) 

Probabilities 0.2579 0.4596 

A yield (%) -5 -3 3 10 6 12 17 24 

B yield (%) -5 -3 3 5 8 12 16 18 

Economy states GG = (3, 4, ∞, ∞) 

  

 
Probabilities 0.1612 

A yield (%) 22 27 34 36  

B yield (%) 20 26 33 40  

The resultant fuzzy expected values and the fuzzy variances can be compared, for 

instance, according to their centers of gravity. The center of gravity of a fuzzy 

number A ∈ ℱN(ℝ) is a real number cogA given as follows: 

 

 
.













dxxμ

dxxμx
=cog

A

A

A   

The fuzzy expected values EA and EB, computed by the formulas (6) and (7) (or 

(13) and (14)) are trapezoidal fuzzy numbers. Their significant values are given in 

Table 4. The fuzzy variances var AZ and var BZ, obtained by the formulas (9) and 

(10), as well as var AS and var BS, computed by (16) and (17), are not trapezoidal 

fuzzy numbers. Their membership functions are shown in Figures 4 and 5. The 

significant values of the fuzzy variances are also given in Table 4 (by these 

significant values we understand end points of the core and of the closure of the 

support). We can see that the fuzzy variances of the outputs from the fuzzy rule 

bases reach lower values than the variances obtained by the common approach. 

From the results given in Table 4, it is obvious that the center of gravity of the 

fuzzy expected value EA is greater than the center of gravity of the fuzzy expected 

value EB. Therefore, without considering the variances the decision-maker should 

prefer the stock A. 
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Table 4 

Resultant stocks characteristics 

Stock Characteristic Significant Values (%) Centre of Gravity 

EA 2.48 6.92 12.71 19.30 10.44 

EB 2.79 6.72 11.97 15.84 9.33 

var AZ 38.48 117.61 255.30 365.28 195.21 

var BZ 40.12 117.06 245.53 369.68 194.83 

var AS 33.44 105.75 229.30 324.36 173.98 

var BS 35.41 105.23 220.70 332.|41 174.98 

In this example, we can also see that the change in the fuzzy variance computation 

can cause a change in the decision-maker’s preferences. Based on var AZ and var 

BZ, the decision-maker is not able to make a decision on the basis of the rule of the 

expected value and the variance described in Section 2, while based on  

var AS and var BS, the decision-maker should prefer the stock A (the higher 

expected value and the lower variance than the stock B compared on the basis of 

centers of gravity of variances approximated by trapezoidal fuzzy numbers). 

 

Figure 4 

Membership functions of var AZ and var BZ 

 

Figure 5 

Membership functions of var AS and var BS 
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Conclusions 

We have dealt with the problem of the extension of a decision matrix for the case 

of the fuzzy states of the world and the fuzzy evaluations of the alternatives. We 

have analyzed the common approach to this problem proposed in [Error! 

Reference source not found.2] that is based on applying the Zadeh's probabilities 

of the fuzzy states of the world. We have found out that the meaning of the 

obtained characteristics of the evaluations of the alternatives, namely the fuzzy 

expected values and the fuzzy variances, is questionable. Therefore, we have 

introduced a new approach that is based on the idea that a fuzzy decision matrix 

does not determine discrete fuzzy random variables, but fuzzy rule bases. In such 

a case, the obtained characteristics of the evaluations, based on which the 

alternatives are compared, are clearly interpretable. We have proved that the 

resulting expected values of the evaluations are for both approaches the same, 

whereas the variances generally differ. In the numerical example, we have shown 

that the final ordering of the alternatives, according to both approaches, can be 

different. 

Future work in this field will be focused on the case, where the underlying 

probability measure is fuzzy. For instance, the parameters of the underlying 

probability distribution, like µ and σ in the case of the normal distribution 

considered in the numerical example in Section 5, could be expertly set with fuzzy 

numbers. 
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