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Abstract: The stacker cranes in automated storage/retrieval systems (AS/RS) of warehouses 

often have very high dynamical loads. These dynamical loads may generate harmful mast 

vibrations in the frame structure of stacker cranes which can reduce the stability and 

positioning accuracy of these machines. The aim of this paper is to develop controller 

design methods which have proper reference signal tracking and mast-vibration 

attenuation properties. First, the dynamic modeling of single-mast stacker cranes by means 

of multibody modeling approach is summarized. Based on this modeling technique a H∞ 

and a robust control design method are proposed for achieving the appointed purposes. 

The analyses of the controlled systems are carried out by time domain simulations. 
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1 Introduction 

One of the most important materials handling machines in automated 

storage/retrieval systems (AS/RS) of warehouses is the stacker crane. These 

machineries realize the storage/retrieval operation into/from the rack structure of 

warehouse. The stacker crane frame structures are often subjected to very high 

dynamical loads due to the inertial forces in the acceleration and braking phases of 

moving cycles. These dynamical loads generate undesirable, low frequency and 

high amplitude mast-vibrations in the frame structure. These high amplitude mast-

vibrations reduce the positioning accuracy and the stability of the stacker cranes. 

In extreme cases, the massive oscillations may damage the frame structure of 

these machines. 

Because of the above-mentioned reasons, the harmful mast-oscillations must be 

reduced. This can be performed for example by means of controlling the traveling 

motion (towards the aisle of the warehouse) of the stacker crane. In this paper, 

some controller designing techniques (based on H∞ approach) are developed 
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which can reduce the harmful mast-vibrations. In [2] and [4] authors introduce 

motion control techniques to attenuate the mast-vibration of stacker cranes. 

However, in these works the effect of lifted load position and magnitude on the 

dynamical properties of the structure is neglected during the controller design. The 

main purpose of this work is to develop a controller design method which takes 

varying lifted load position and magnitude into account and at the same time 

having proper reference signal tracking and mast-vibration attenuation properties. 

In this paper, the so-called multibody modeling technique is applied to the 

dynamic modeling of single-mast stacker cranes. For more information about this 

modeling approach see the following books: [1, 3]. Some further examples of 

dynamic modeling of stacker cranes by multibody models can be found in [17] 

and [18]. Concerning the mathematical models of electric drive systems see, e.g. 

[13-16] 

For control design purposes, H∞ [5-8] and robust control [19] approaches are 

applied. The presented control design methods in this paper are based on the 

results of our previous work, see in [10]. The main contribution of this paper is the 

robust H∞ position controller which can handle the model uncertainties due to 

varying lifted load conditions. First, the concept of H∞ control is presented by 

means of a standard H∞ control method (the so-called mixed-sensitivity loop 

shaping). After that, a more sophisticated method is developed for the robust H∞ 

position control of stacker cranes. The method for the determination of weighting 

function parameters in robust control design is also proposed. 

The structure of the paper is as follows. In Section 2 the background of dynamic 

modeling of single-mast stacker cranes is summarized. The state space 

representation of the model is also introduced. In Section 3 the mixed-sensitivity 

loop shaping control method for the positioning control of stacker cranes is 

presented. Section 4 proposes a robust control method which aim is the fast and 

vibration-free positioning control of stacker cranes in the presence of model 

uncertainties. 

2 Modeling Aspects of Single-Mast Stacker Cranes 

In this section the modeling considerations necessary to the control design are 

briefly summarized. Before the control design a suitable dynamic model must be 

generated, as mentioned in the introduction, for this purpose the multibody 

modeling approach is chosen. In this multibody model the continuous sections of 

the mast are approximated by rigid elements having lumped masses, its center 

points (i.e. nodes). These elements are interconnected by elastic hinges. More 

details of this multibody model, as well as the main parameters of investigated 

stacker crane, are presented in [9-11]. 
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One of the most important steps of dynamic modeling is choosing the generalized 

coordinates for the governing equations of motion. Several equivalent choices of 

generalized coordinates exist, and with the proper selection the generation process 

of motion equations can be simplified. In this paper, the iq  vertical displacements 

of each node are applied for generalized coordinates. Let us denote the degrees of 

freedom (DOF) of the model by dn . This way the generalized coordinate vector 

of the model can be expressed as:  Tnd
qqqq 21 . Here 1q  is the vertical 

position of the bottom frame and 
dnq  is the vertical position of mast-tip. 

The detailed derivation of the dynamic equations for the before-mentioned 

multibody model and generalized coordinates can be found in [9, 11]. The matrix 

equation of motion can be generated in the following form (with the mass matrix 

M , the damping matrix K  and the stiffness matrix S  respectively): 

FSqqKqM   . (1) 

In Equation (1) F  is the vector of external excitation forces. In this work a single-

input system is investigated, where the input signal of the model is the external 

force tF  acting on the bottom frame. Thus, in vector F  only the first coordinate 

is nonzero. 

The controller synthesis methods applied in this paper use the state space 

representation of the model, thus the matrix equation of motion (1) must be 

transformed into state space form. As mentioned before the input signal of the 

model is the external force acting in the direction of 1q  generalized coordinate. In 

the following steps of this work the model is applied in the synthesis of controller 

which realizes the positioning control of single-mast stacker cranes with reduced 

mast-vibrations. Therefore, two kinds of outputs are required in the state space 

presentation of the dynamic model. The first one is used to describe and 

investigate the mast-vibrations. This output is the inclination of mast, i.e. the 

position difference between the undermost point of mast and mast-tip. The output 

is denoted by z . The second output is the so-called measured output. This output 

is applied for the position control of the stacker crane and can be equal to the 

horizontal position or velocity of stacker crane. In this work the horizontal 

position of stacker crane, i.e. the first generalized coordinate is applied as 

measured output. The output is denoted by y . 

The state space representation of the dynamic model is generated in the following 

form: 

uBdBAxx 21  , (2a) 

uDdDxCz 12111  , (2b) 

dDxCy 212  , (2c) 
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where x , u , y , d , z  are the state vector, control input, measured output, 

disturbance input and performance output vectors, respectively. The matrices 
nnA  , mnB  , npC  , mpD   are the so-called system matrices. 

Here n  is known as the order of the system and m , p  are the number of all input 

and output variables of the system respectively. As can be seen in equation (2) the 

matrices B , C , D  are usually partitioned according to the kinds of input and 

output signals. 

In the actual case of this stacker crane dynamic model the disturbance input does 

not exist. The state vector with the above-mentioned generalized coordinate vector 

is defined as: 

 Tqqx  . (3) 

Using this definition, the state space representation of the investigated multibody 

model can be generated - taking notice of the above-mentioned definition of input 

and output signals - with the following considerations. Extending the equation (1) 

with the identity 0 xMxM   the system matrices A  and B  can be computed by 

means of expressing the derivative of state vector from the extended system: 








 




0

11

I

SMKM
A , (4a) 













0

1FM
B , (4b) 

where 0  is a zero matrix/vector and I  is an identity matrix with the 

corresponding size. 

As mentioned before the investigated model must fulfill the requirements of 

controller synthesis techniques. The multibody model introduced in this section 

has almost one hundred degrees of freedom, thus the order of state space 

representation of this model is near two hundred. This complicated, high order 

model is not suitable for controller design since it causes numerical problems in 

controller synthesis methods of modern control theory, e.g. H∞ method. A smaller 

size model also can speed up the simulation process during the design validation 

phase. Because of the above-mentioned reasons our investigated model is reduced 

with a suitable model order reduction method, see [10]. 
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3 Mixed-Sensitivity Loop Shaping Control of the 

Stacker Crane 

A frequently applied and well-known control design approach in H∞ control 

theory is the so-called loop shaping procedure presented in [12]. In this section, 

the H∞ control design method of stacker cranes using the mixed-sensitivity loop 

shaping approach is presented. The aim of this section is to analyze the influence 

of several loop shaping weighting strategies on the main control objectives (i.e. 

the reference signal tracking and the mast vibration attenuation). This may help 

later to generate more complex and advanced weighting strategies in order to 

improve the control performances. For the purpose of control design the nominal 

model of stacker crane - with the lifted load in the highest position - is used, thus 

in this section the nominal performances are investigated without model 

uncertainties. 

The augmented plant for mixed-sensitivity loop shaping is presented in Figure 1. 

As shown in Figure 1 the weighting functions 1W , 2W  and 3W  penalize the error 

signal, control signal, and output signal respectively. The weighting functions 1W , 

2W  and 3W  must be proper and stable transfer functions. In the actual control 

design 02 W , while 1W  and 3W  have the following general form: 

11

11
1

/

As

Ms
W








 , 

33

33
3
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Ms
W








 . (5) 

This way the low-frequency asymptote ( iA ), the high-frequency asymptote ( iM ) 

as well as the bandwidth ( i ) of weighting functions can be adjusted. These 

parameters have a fundamental role in the loop shaping procedure. 
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Figure 1 

Augmented plant for mixed-sensitivity loop shaping 
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The disturbance input and the controlled output of the augmented plant are 

defined as: rw ~  and  Tzzzz 321
~   respectively. The measured output is 

equal to: yry ~ . Using the above-mentioned definitions of input- and output 

signals it is easy to verify that the closed loop transfer function matrix wzT ~~  from 

w~  to z~  can be expressed as: 



















TW

KSW

SW

T wz

3

2

1

~~ , (6) 

where   1
 PKIS  and   1

 PKIPKT  are the sensitivity function and 

complementary sensitivity function of closed loop system respectively. 

As mentioned before in the actual design cases the weighting function 2W  is equal 

to zero, thus the performance objective of H∞ control design implies the following 

conditions: 

SW1 , TW3 . (7) 

Therefore, the weighting functions 1W  and 3W  determine the shapes of sensitivity 

function S  and complementary sensitivity function T . Typically, the inverse of 

1W  is chosen to be small inside the desired control bandwidth to achieve proper 

performance (e.g. disturbance attenuation or tracking), and the inverse of 3W  is 

chosen to be small outside the control bandwidth, which helps to ensure proper 

stability margin (i.e. robustness). 

Table 1 

Parameters of loop shaping 

Case #1 Case #2 

1A  100 1A  100 

1M  0.01 1M  0.01 

1  5.0 srad /  1  0.5 srad /  

3A  0.01 3A  0.01 

3M  100 3M  100 

3  20 srad /  3  2.0 srad /  

  0.9004   0.9012 
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By the variation of the parameters of these weighting functions two kinds of 

controllers are designed. In these controller design cases the desired control 

bandwidth is adjusted to 1 srad /  and 10 srad /  respectively. The parameters of 

performance weighting functions according to the above-mentioned design cases 

are summarized in Table 1. 

The calculations of designed controllers can be carried out, e.g. by means of the 

solution method presented in [7]. The achieved performance levels for each design 

cases are also presented in Table1. 
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 (a) Case #1 (b) Case #2 

Figure 2 

Performance objectives for loop shaping 

The performance objectives for the closed-loop system in both design cases can be 

analyzed by means of Figure 2. As shown in the figure by means of the weighting 

function 1W  the sensitivity function is shaped so that its gain is below 40  dB  in 

the low-frequency range. This ensures a low (practically under 1%) steady-state 

tracking error. The minimum control bandwidth is adjusted by the 0 dB  crossover 

frequency of weighting function 1W , while the upper limit of control bandwidth is 

given by the 0 dB  crossover frequency of 3W . 

The simulation results, i.e. diagrams of stacker crane position and mast deflection 

are shown in Figure 3. During simulations the position signal of a general stacker 

crane moving cycle is used as the reference signal. In the first session of moving 

cycle the stacker crane has constant 0.5 
2/ sm  desired acceleration. In the second 

session the desired velocity is 3.5 sm /  and the deceleration value of the third 

session is 5.0  
2/ sm . Distance covered of the moving cycle is 70 m  while the 

total cycle time is 27 seconds. 
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Figure 3 

Simulation results of loop shaping 

Analyzing the simulations above it can be concluded that the reference signal 

tracking and the vibration attenuation properties can be adjusted by means of the 

proposed method. However, better performances can be achieved by means of 

more advanced weighting strategies. Another interesting observation about the 

simulation results is that the magnitude of mast vibrations is inversely 

proportional to the control error. Thus, a trade-off between mast vibration 

attenuation and control error can be determined. Additionally, the modeling 

uncertainties also must be taken into consideration in the control design method. 

4 Robust Control Design for the Stacker Crane 

The aim of this section is the presentation of a robust controller design method 

which can handle the uncertainties in the dynamic model and at the same time 

have proper reference signal tracking and mast vibration attenuation properties. 

For applying the H∞ robust control approach first the control objectives must be 

formulated. In this section, the essential requirements for the closed-loop system 

(i.e. the proper reference signal tracking property and the mast-vibration 

attenuation) are defined, a more sophisticated way, by means of advanced 

weighting strategies in the generalized plant. Similar to the loop shaping case here 

the reference signal of investigated model is also the horizontal position demand 

of the stacker crane. The augmented plant for robust control design is shown in 

Figure 4. Since in this augmented plant both output signals of the stacker crane 

dynamic model are used, the vector-valued signals are denoted by thick lines. This 

way the diagram of the augmented plant can be simplified. 
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Figure 4 

Augmented plant for robust control 

As shown in Figure 4 here the controller K  is partitioned into a feedback part yK  

and a pre-filter part rK . This controller structure is connected to the second 

output of the stacker crane model (i.e. the position output y ). The aim of this 

structure is to provide for proper reference signal tracking properties in the 

positioning control of stacker crane.  

The purpose of the transfer function refW  is to represent the desired behavior of 

the closed loop system. It is usually a second-order transfer function with free 

parameters r  and  , i.e. 
22

2

2 rr

r
ref

ss
W






 . 

By means of the free parameters of refW  the bandwidth and damping of the ideal 

closed-loop transfer function can be adjusted. The difference between refW  and 

the actual closed-loop transfer function is penalized by the transfer function eW . 

The value of this penalty function should be large in the frequency range where 

small errors are desired and are small where larger errors can be tolerated. In most 

cases, the more accurate model is required in the low-frequency range thus eW  is 

a low pass filter. 
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The aim of the weighting function pW  is to penalize the harmful mast vibrations. 

Therefore, this weighting function is connected to the first output of the stacker 

crane model (i.e. the mast-inclination output z ). Since penalizing the final, 

steady-state value of mast inclination (which depends on the acceleration of 

stacker crane motion) is unnecessary, the 
pW  transfer function is a high pass filter. 

Some further performance specifications are also added to the control design 

augmented plant. In the high-frequency range the control input is limited by using 

the performance weighting function uW , as well as the purpose of the weighting 

function nW  is to reflect the sensor noises. Finally, the weighing function matrix 

rW  reflects the amount of uncertainty and it can be determined by the procedure 

mentioned in [9] and [10]. 

The transfer function matrix of the generalized plant can be expressed as follows. 
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. (8) 

Due to the two degrees of freedom controller structure the corresponding feedback 

relation is:  TyrKu ~ . 

During the actual investigations the lifted load position varies in position range 

from 41 to 44 m  which generates the model uncertainty. This helps to keep the 

amount of uncertainty sufficiently small. The nominal model of the model set that 

generates the uncertainty is the model with lifted load position in the middle of 

position range, i.e. 42.5 m . 

In order to analyze the proposed robust control design method two kinds of 

control design cases are generated. The first weighting strategy (Case #1) focuses 

on the adequate reference signal tracking rather than mast-vibration attenuation. 

While in the second strategy (Case #2) the mast-vibrations are penalized more. In 

the control design cases for the model matching function refW  the following 

parameter values are applied: 8r  srad / , 1 . The performance weighting 

functions according to the above-mentioned design cases are summarized in Table 

2. As shown in the table the weighting functions of control input and sensor noises 

are permanent for both design cases. 
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Table 2 

Weighting functions for robust control design 

Case #1 Case #2 
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The investigation of the properties of designed controllers can be carried out by 

means of time-domain analysis. In this simulation, as a reference signal, the same 

position signal is used as in the case of loop shaping control design, see in Section 

3. The simulation results (i.e. the stacker crane position and mast deflection 

functions) are shown in Figure 5. 
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Figure 5 

Simulation results of robust control 

For the comparison of above mentioned time-domain results the following 

quantities are defined. The rate of mast vibrations is measured by the overshoot of 

mast deflection signal in the acceleration phase of movement: 

   

 




z

ztz
t

a

max
 . (9) 

The reference signal tracking properties can be investigated by means of the 

steady-state tracking error re  as well as the actual cycle time ct  (which is the total 

time necessary to reach the final position of stacker crane). The steady-state 

tracking error can be defined as: 
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   

 




r

ry
er . (10) 

These time-domain quantities according to the two design cases are shown in 

Table 3. 

Table 3 

Time-domain analysis results of design cases 

Case #1 Case #2 

a  71.6 %  a  0 %  

re  0.70 %  re  0.40 %  

ct  27.4 s  ct  29.3 s  

As can be seen in the presented simulation results the inverse proportionality 

between the magnitude of mast vibrations and control error here also exists. 

Therefore, in controller design the trade-off between mast-vibration attenuation 

and cycle time of stacker crane motion can be found. To explore this trade-off a 

series of controller designs and time-domain analyses are carried out again with 

several eW  and pW  weighting functions. In these investigations the control input 

and sensor noises weighting functions were permanent and identical to the 

functions presented in Table 2. During the investigations the weighting strategy 

has changed from the cycle time focusing cases to the vibration attenuation 

focusing cases. In the presented eleven design cases the 0 dB  crossover 

frequencies of weighting functions eW  and pW  are modified evenly between its 

extreme values. In the case of eW  this crossover frequency is modified from 2 

srad /  to 1 srad / , while in the case of pW  function this value is changed from 

20 srad /  to 10 srad / . 

In order to find an ideal design case the overshoot and the cycle time values of 

every design case are plotted in Figure 6. Analyzing the data of Figure 6 it can be 

observed that the overshoot of mast deflection signal vanishes sharply before the 

cycle time of stacker crane motion considerable starts to increase. Therefore, a 

sufficient trade-off between conflicting performances can be found. 
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Trade-off between mast-vibration and cycle time 

The designed controllers are calculated by means of the so-called  -synthesis 

method presented in [19]. The achieved structured singular values   for each the 

design cases are also plotted in the diagram of Figure 7. As shown in the figure, 

although the robust stability and nominal performance is achieved, guaranteeing 

the robust performance is a challenging task due to the strict performance 

specifications. However, as can be seen in Figure 7 the proposed method 

guarantees robust performance in the interesting region of the design cases where 

the vibrations are sufficiently damped. 
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Achieved  values of design cases 

Conclusions 

In the paper a robust controller design method was developed which is able to 

handle the uncertainties in the dynamic model of single-mast stacker cranes and at 

the same time has excellent reference signal tracking and mast-vibration 

attenuation properties. In the first part of the paper the dynamic modeling of 

single-mast stacker cranes by means of multibody modeling approach was briefly 

summarized. The unstructured uncertainty approach was applied to handle the 

varying dynamical behavior due to varying lifted load position. A robust control 

method was developed which is suitable for positioning control of stacker cranes 
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with reduced mast-vibrations in the presence of model uncertainties. By means of 

a controller design example the trade-off between mast-vibration attenuation and 

cycle time of stacker crane motion was also presented. The developed designing 

method is suitable for finding the controller which produces the desired motion 

cycle time and mast-vibration free stacker crane motion. 
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