Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

Reproducibility Analysis of Scientific
Workflows

Anna Bénéti3, Péter Kacsukl’z, Miklos Kozlovszkyl’3

! MTA SZTAKI, H-1518 Budapest, Pf. 63., Hungary

2 University of Westminster, 115 New Cavendish Street, London W1W 6UW

* Obuda University, John von Neumann Faculty of Informatics, Bécsi Gt 96/b, H-
1034 Budapest, Hungary

peter.kacsuk@sztaki.mta.hu, {banati.anna,kozlovszky.miklos}@nik.uni-
obuda.hu)

Abstract: Scientific workflows are efficient tools for specifying and automating compute
and data intensive in-silico experiments. An important challenge related to their usage is
their reproducibility. In order to make it reproducible, many factors have to be investigated
which can influence and even prevent this process: the missing descriptions and samples;
the missing provenance data about the environmental parameters and the data
dependencies; the dependencies of executions which are based on special hardware,
changing or volatile third party services or random generated values. Some of these factors
(called dependencies) can be eliminated by careful design or by huge resource usage but
most of them cannot be bypassed. Our investigation deals with the critical dependencies of
execution. In this paper we set up a mathematical model to evaluate the results of the
workflow in addition we provide a mechanism to make the workflow reproducible based on
provenance data and statistical tools.

Keywords: scientific workflows; reproducibility; analytical model; provenance; evaluation;
gUSE

1 Introduction

In large computational challenges scientific workflows have emerged as a widely
accepted solution for performing in-silico experiments. In general, these in-silico
experiments consist of series of particularly data and compute intensive jobs and
in most cases their executions require parallel and distributed infrastructure
(supercomputers, grids, clusters, clouds). The complexity of workflows and the
continuously changing nature of the environment make it hard or even prevent to
reproduce or share the results in the scientist’s community. The different users for
different purposes may be interested in reproducing the scientific workflow

-201-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

(SWf). The scientists have to prove its results, other scientists would like to reuse
the results and reviewers intend to verify the correctness of the results [13]. A
reproducible workflows can be shared in repositories and can become useful
building blocks that can be reused, combined or modified for developing new
experiments. The workflows have to be reproducible in order to be shared or
reused. Unfortunately experiences have showed that many workflows failed on
occasion of a later re-execution. Zhao et al. [23] [11] investigated the main
purposes of the so-called workflow decay, which means that year by year the
ability and success of the re-execution of any workflow significantly reduces.
They found four main causes which have prevented the re-execution: 1. the
missing environmental parameters, 2. missing third party resources; 3. missing
descriptions about the workflows; 4. the missing samples of the experiments or the
inputs and outputs of the workflows.

By incorporating these results into our previous paper [2] we have deeply
investigated the requirements of the reproducibility and we have given a
taxonomy of the different dependencies of the execution which can interfere with
a later re-execution. To sum up our conclusions, in order to reproduce an in-silico
experiment the scientist community and the system developers have to face three
important challenges:

1) More and more meta-data has to be collected and stored pertaining to the
infrastructure, the environment, the data dependencies and the partial results
of an execution in order to make us capable of reconstructing the execution
in a later time even on a different infrastructure. The collected data — called
provenance data — help to store the actual parameters of the environments,
the partial and final data results and system variables. Concerning the
provenance, the challenge is what, where and how to store the captured
information.

2) Descriptions and samples have to be stored together with the workflows
which are provided by the user (scientist).

3) Some services or input data can change or become unavailable during the
years. For example, third party services, special local services or
continuously changing databases. Scientific workflows which are established
on them can become instable and non-reproducible. In addition there are
computations based on random generated values (for example, in case of
image processing) thus, their executions are not deterministic so these
computations cannot be repeated to provide the same result in a later time.
These factors — we call dependencies of the execution - can especially
influence the reproducibility of the scientific workflows, consequently, we
have performed a deeper analysis.

The first issue can be solved by capturing detailed provenance information. The
second one is the responsibility of the user (scientist), however, the scientific
workflow management systems (SWfMS) can and should support the scientist to

-202-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

provide detailed descriptions and samples. We have dealt with this issue in one of
our previous paper [1].

In this paper | deal with the third issue. Based on a provenance database we
introduce a so-called descriptor-space referred to the jobs of the workflow which
contains all the parameters required to reproduce the jobs. The elements of the
descriptor-space we call descriptors. Every descriptor has a hame, a value and a
so-called decay-parameter which refer to the fluctuation of the descriptor value. A
workflow can be reproducible if all the descriptor values are known and storable.
However, there are descriptors which cannot be stored (for example too big input),
can become unavailable in later time (for example volatile third party resources),
can vary in time (for example input originated from continuously changing
database). Additionally, the descriptors can be either unknown if they are based on
random generated values or other operation-related system-calls. In this case, the
full reproducibility is very challenging task.

By our research, we intend to make the scientific workflow reproducible by
extending the scientific workflow management system (SWfMS) with an analyzer
tool. With the help of the expressions of the descriptors and the decay-parameters
we can perform a pre-analysis before the execution. During this phase, we can
examine the jobs of a given workflow and determine whether they are
reproducible or not. If not, we determine the tools and the methods which can help
to reproduce the job. According to the decay-parameter, the jobs can be grouped
into four groups and executed in different ways. After the execution, based on
provenance data a post-analysis can be performed by the application of statistical
tools. An evaluation can be computed to replace the non-reproducible parts of the
workflow.

In order to achieve our goal, on one hand we have analyzed [2] the criteria of the
reproducibility on the other hand we have collected and have categorized all the
necessary information which are required to reproduce the scientific workflows
[1]. Finally, in this paper we set up a mathematical model to formalize the
problem and determine certain statistical methods to predict, evaluate or simulate
the results of the jobs and the re-executed workflows. We defined the descriptor
space, the decay parameter of the descriptors and the reproducible job and
workflow. Based on these definitions, we set up a mathematical model of the
reproducibility analysis to formalize the problem and to give our solution.

The ultimate goal of our research is to make the workflows either reproducible by
eliminating the dependencies or simulating the non-reproducible jobs of the
scientific workflows.

Our paper is organized as follows. In the next subsection (1.1) we introduce the
WS-PGARDE/gUSE system, in which we would like to test our results. Chapter 2
gives a brief summary about the related works. Chapter 3 represents our model
and the components of the reproducibility analysis. In Chapter 4 we introduce the
process and the phases of the analysis. Finally, we sum up our results in 5 and in

-203-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

Chapter 6 we conclude our research with a brief provisioning of possible future
research directions.

1.1. WS-PGRADE/gUSE

gUSE (grid and cloud user support environment) is a well-known and permanently
improving open source science gateway framework developed by the Laboratory
of Parallel and Distributed Systems (LPDS) that enables users the convenient and
easy access to grid and cloud infrastructures. It has been developed to support a
large variety of user communities. It provides a generic purpose, workflow-
oriented graphical user interface to create and run workflows on various
Distributed Computing Infrastructures (DCIs) including clusters, grids, desktop
grids and clouds. [20]

The WS-PGRADE Portal [21] [10] is a web based front end of the gUSE
infrastructure. The structure of WS-PGRADE workflows are represented by
directed acyclic graphs.

The nodes of the graph, namely the jobs are the smallest units of a workflow.
They represent a single algorithm, a stand-alone program or a web-service call to
be executed. Ports represent input and output connectors of the given job node.
Directed edges of the graph represent data dependency (and corresponding file
transfer) among the workflow nodes. This abstract workflow can be used in the
second step to generate various concrete workflows by configuring detailed
properties (first of all the executable, the input/output files where needed and the
target DCI) of the nodes representing the atomic execution units of the workflow.

A job may be executed if there is a proper data (or dataset in case of a collector
port) at each of its input ports and there is no prohibiting programmed condition
excluding the execution of the job. The execution of a workflow instance is data
driven forced by the graph structure: A node will be activated (the associated job
submitted or the associated service called) when the required input data elements
(usually file, or set of files) become available at each input port of the node.

2 State of the Art

The researchers dealing with the reproducibility of scientific workflows have to
approach this issue from two different aspects. First, the requirements of the
reproducibility have to be investigated, analyzed and collected. Secondly,
techniques and tools have to be developed and implemented to help the scientist in
creating reproducible workflows.

- 204-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

2.1. Requirements

Researchers of this field agree on the importance of the careful design [8],[15],
[16], [17], [22] which on one hand means the increased robustness of the scientific
code, such as modular design and detailed description about the workflow, about
the input/output data examples and consequent annotations [7]. On the other hand,
the careful design includes the careful usage of volatile third party or special local
services.

Groth et al. [10] based on several use cases analyzed the characteristics of
applications used by workflows and listed seven requirements in order to enable
the reproducibility of results and the determination of provenance. In addition,
they showed that a combination of VM technology for partial workflow re-run
along with provenance can be useful in certain cases to promote reproducibility.

Davison [7] investigated which provenance data have to be captured in order to
reproduce the workflow. He listed six vital areas such as hardware platform,
operating system identity and version, input and output data etc.

Zhao et al. [23] in their paper investigated the cause of the so called workflow
decay. They examined 92 Taverna workflows submitted in the period between
2007 and 2012 and found four major causes: 1) Missing volatile third party
resources 2) Missing example data 3) Missing execution environment
(requirement of special local services) and 4) Insufficient descriptions about
workflows. Hettne et al. [11] in their papers listed ten best practices to prevent the
workflow decay.

2.2. Techniques and Tools

There are existing available tools, VisTrail, ReproZip or PROB [5], [9], [14]
which allow the researcher and the scientist to create reproducible workflows.
With the help of VisTrail [9], [12] reproducible paper can be created, which
includes not only the description of scientific experiment, but all the links for
input data, applications and visualized output. These links always harmonize with
the actually applied input data, filter or other parameters. ReproZip [5] is another
tool, which stitches together the detailed provenance information and the
environmental parameters into a self-contained reproducible package.

The Research Object (RO) approach [3], [6] is a new direction in this research
field. RO defines an extendable model, which aggregates a number of resources in
a core or unit. Namely a workflow template; workflow runs obtained by enacting
the workflow template; other artifacts which can be of different kinds; annotations
describing the aforementioned elements and their relationships. Accordingly to the
RO, the authors in [4] also investigate the requirements of the reproducibility and
the required information necessary to achieve it. They created ontologies, which
help to uniform these data. These ontologies can help our work and give us a basis

-205-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

to perform our reproducibility analysis and make the workflows reproducible
despite their dependencies.

Piccolo et al [18] collected the tools and techniques and proposed six strategies
which can help the scientist to create reproducible scientific workflows.

Santana-Perez et al [19] proposed an alternative approach to reproduce scientific
workflows which focused on the equipment of a computational experiment. They
have developed an infrastructure-aware approach for computational execution
environment conservation and reproducibility based on documenting the
components of the infrastructure.

To sum up the results mentioned above, we can conclude that the general
approach is that the scientist has to create reproducible workflows with careful
design, appropriate tools and strategies. But none of them intended to solve the
problem related to the dependencies rather they suggested to bypass them.
Moreover, they did not deal with the following question: How an existing
workflow can be made reproducible?

2.3. Reproducibility Support in WS-PGRADE/QUSE System

In the WS-PGRADE/gUSE system with the help of the “RESCUE” feature the
user has the possibility to re-execute a job which does not own all the necessary
inputs but the provenance data is available from the previous executions. (Fig. 1)

DCI-Bridge

\ A

WFL
WS-PGRADE =
WF model Runtime Engine
Get runnable |- Input

outpu
queue|

JOB ID JOB ID

PID PID Is Rescue? »—

Outputs Outputs No T

YES
Figure 1

Operation of the Rescue feature in the WS-PGRADE/gUSE system

When submitting a job which has the identifier originated from the previous
execution, the workflow instance (WFI) queries the description file of the
workflow. This XML file includes the jobs belonging to the workflow. Their input

-206 -



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

and output ports, their relations and the identifiers of the job instances executed
previously with their outputs. After processing the XML file, a workflow model is
created in the memory representing the given workflow during its execution. At
this point the Runtime Engine (RE) takes over the control to determine the “ready
to run” jobs then it examines whether these jobs have already stored outputs
originated from previous executions. Concerning the answer the RE puts the job in
the input or in the output queue.

3 Reproducibility Analysis

In this section, we introduce our mathematical model of reproducibility analysis.
Next we give a method to handle the influence factors of the reproducibility of a
job and to make the non-reproducible job reproducible under certain conditions or
by a given probability. Finally we deal with jobs applying random generated
values in an independent subsection.

3.1. The Model
In order to formalize the problem let us introduce the following notations and
definitions:

e The scientific workflow (SWf) can be represented by a directed acyclic graph,
where the vertices denote the jobs and the edges denote the dataflow between
jobs.

V ={J4,..,Jn}, where N € N; the number of the job of a given workflow
E={(J.J)eVxVI|ie[1,2,..N—-1];j€[2,3,.., Nl and i # j}
e The job J;is exit job (exit node) in the graph, if #J; € V: (J;,J;) € E; Notation:
‘]exit

e The job J is entry job (entry node) in the graph, if aJ; € V: (J;,J;) € E;
Notation: Jengy

e The job, which is neither exit nor entry job, is an inside job.

e The forward sub-workflow of a job J; is the part of the workflow, which
contains all the successor jobs (nodes) and the edges between them.

From our point of view the SWf is a function: SWF(tg, J1, Jo, ..., Jn) = Y,
where t, is a given time of the submission of the workflow and Y is the result
of the workflow.

-207 -



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

Assuming that the workflow was successfully executed at least once and
provenance database is available a descriptor-space D), can be created to
store all the necessary parameter needed to re-execute the job.

The job J; (i =1, 2, ..., N) has K; descriptors: Vi, Vy, ..., Vg, which are
necessary to reproduce the workflows. The values of descriptors are: Dj, =

{v,-l, Vig, ) viKl.}

With the help of the descriptors every job can be written as a function:
Ji(t0, Vi1, Viz, ., Vi) = Y,

For every descriptor we have defined a so called decay-parameter which
indicates how the descriptor's value changes in time. There are four cases:

1. The availability and the value of the descriptor is not changing in time. In
this case the decay parameter is 0.

2. The availability of the descriptor is changing in time. There are two
cases: the probability distribution function of the descriptor's availability
is known or not. In the first case, the decay parameter can be determined
by the given distribution function and in the second one, the descriptor
value is infinite.

3. The value of the descriptor is changing in time. Similarly to the second
item, the change of the value can be known or unknown. According to
the actual case the value of decay parameter is a function describing the
change or it is infinite.

4. The value of the descriptor is not constant, but both its availability and
change is unknown. For example a random generated value, which is
used during the execution but it is not known. In this case the value of the
decay-parameter is infinite.

In formal:

0, ifthe value of the descriptor is
not changing in time
00, if the value of the descriptor
is unknown
decay(v;) = F;(t), distribution function of the
availability of the given value
Vary,(t, v;), if the value of the
descriptor is changing
in time

With help of these expressions we can define the reproducibility as the following
way:

-208 -



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

Definition (D1): The J; job is reproducible, if the descriptor space D, =
{Uil;viz,...,UiKi} of job — which contains all the inputs and environmental

parameters - is known and can be stored, in other words all the decay parameters
are zero.

Notation: J;*P"°; JOB "™ (vi1, Viz, ., Vig,) = Vi
Corollary: A reproducible job is invariable in time (time-independent):

joBireI)ro(to, Vi1, Vi2, «) viKi) = joBirepro(to + At, Vi1, Vi, -, v,-Ki) = Yi for
every At.

Definition (D2): The scientific workflow is reproducible, if its exit jobs and the
SubWF}P2k of the exit jobs is reproducible.

It can be easily proven, that if and only if every job of a SWf is reproducible, then
the SWHf is also reproducible.

We introduce other properties, namely the substitutional and the approximative
reproducibility referring to that case, in which the decay parameter of one of its
descriptors changes in time and this variation is known. There is two option: the
first one is that the variation of result can be described with a function determined
by the variation function of the descriptor; the second one is that the variation of
result can be estimated. In formal:

Definition (D2): The J; job is reproducible by substitution, if the descriptor space
{vi1, Vi, o, vig,} Of job and 3k € [1,2, ..., K;]: Varyy (At, vy ) is known, and
based on vary function a Vary; (At,Y; ) can be unambiguously determined.
If
JOB(to, Viy, Vizy -, Vik,) = Y;

Then

]OBl-(t0 + At, v, Vig, ..., varyy (A, vy,), ..., UiK,») = Vary;(At,Y;)
Notation: JOB{“"” (v, Viz, ..., varyy (At, vy), ... vi,)

Definition (D3): The J; job is approximately reproducible, if J; is reproducible
under condition that 3k € [1, 2, ..., K;]: Vary;, (At, vy, ) is precisely known, and
in accordance this function a Vary;(At,Y; ) can be estimated with an acceptable
accuracy:

]OBi(t0 + At, v, Vig, ..., varyy (At, vy, ""UiKi) ~ Vary™®P°(At,Y,) = T,

4

Notation: JOB{PP™* (v, Viz, .., varyu(Ot, vy), .. Vig,)

-209-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

3.2. Pre-Analysis

The first step of the process of the reproducibility analysis is to create the
descriptor space of all the jobs belonging to the given scientific workflow. The
descriptors and their decay parameters can originate from three different sources:
from the users, from the provenance database and it can be automatically
generated by the SWfMS. [1]

Analyzing the decay parameters of the descriptors we have separated those, which
can influence the reproducibility of the workflow in other words which have non-
zero decay parameters. Four groups have been created:

1. With the help of additional resources or tools this dependency of execution
can be eliminated. For example, in case of random generated values we are
going to implement an operating system level tool, which captures the return
value of the random generator, and stores it in the provenance database (see
subsection 3.4)

2. With the help of approximation tools the value of the descriptor can be
evaluated or even replaced. (see subsection 3.3)

3. A time interval can be given during which the descriptor is available by a
given probability p.

4. There is no method to make the workflow reproducible.

3.3. Evaluation

In this subsection we investigate the case when one decay parameter of the job's
descriptors is changing in time.

In case of the presented methods we assume two essential conditions:

1. The availability of the whole descriptor’s space of the job in a given SWT,
which means all the necessary information to reproduce the job.

2. The availability of a provenance database which contains the provenance
information about the previous executions of a given SWf. For example,
descriptor values, partial and final results of the jobs etc.

Based on provenance database a sample set can be defined which contains
provenance data originated from s (where s is a natural number) previous
executions:
0 0 0 —vyo0
( ]i(to' Vi1 Viz, ""UiKi) =v° )

S = ]i(to'vilvvilz' ---'Vilxi) =Y} 1)

Vilto v vyt o vigh) = ¥

-210-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

Ifavy(i=1..N;j=1..K; descriptor's value is not changing in time its decay
parameter is 0, thus, in the sample set the given elements are equals:

Vijo = Vijlz e = Vijs_l

Assuming that only one descriptor value is changing in time the sample set related
to the job J; can be written in a simpler form:

S ={(to, v, ), (t0, v, Y1), ooy (0, 0571 Y1)} )
Based on the sample set S = i the correlation can be investigated between the
variables vijk an Yik (k=1,2,...,s-1) with the? help of the following expression:

-1, k_ -~ k_&
Sk=oWij— T )

—1,. k_—~2vS—1yk_ov\2
\/Zi:o(”ij_vu)z Zk:O(Yi -1)?

corr(v,Y) =

@)

where ¥, and 1, are the empirical (sample) mean of the adequate variables.

In addition, based on provenance data we can determine the coverage of a given
descriptor, which contains every job influenced by this descriptor. We can
compute the correlation matrix of the v;; descriptor and the results of all the
successors of the job J;.

cor(v, ;,vi;) cor(v,;,Y,) .. cor(v,;,Y,)
R _| cor(¥,v;;) cor(Y,Y,) cor(Y,,Y,) (4)
(p+l)x(p+1) —
cor(Y,,v,;) cor(Y,,Y,) cor(Y,,Y,)

where Y;,Y; ..., Y, is the results of the successors of job J;  The R matrix is
symmetric and the values in the diagonal are 1.

The coverage of the given descriptor can be determined based on the first row of
the correlation matrix. The non-zero values, which are close to 1 can show which
Ji,i=1, 2, ..., p belong to the coverage zone.

Concerning to the value of the expression (3) we can differentiate two cases:

1. The result is close to 1, which means that the two variables are bounded? up
with each other thus the result Y;. can be evaluated by applying some
approximation. For example, the linear regression consequently, the result Y;.
can be written as a linear combination of the changing descriptor.

Yi=pBo+ .Blvij )
where the S, ang f1 are the linear coefficients.
In this way, Y = By + Byvary;;(t, v;;), where t is arbitrary.

If the result of (3) is closer to 0.5 then to 1, nonlinear regression or other
curve fitting method can be used.

-211-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

Storing the approximation and the final results in the repository makes it
possible that during the re-execution of a workflow, the non-reproducible job
can be replaced by these approximated or simulated results.

we call The scientific workflows associated to this group reproducible by
substitution or approximately reproducible scientific workflows.

2. The result of the correlation coefficient is close to 0, which means that the
descriptor v;; does not influence the result Y;. In this case, the analysis has to
be continued and the correlations between the results of the successor jobs
have to be investigated.

3.4. Random Based Dependency

Many jobs use applications and computations which are based on random
generated values (RGV). For example, the image processing applications, the
different simulators and workflows which simulate some physical or chemical
phenomena or even cryptographic algorithms. In this case, during the execution a
system call is performed which returns a random generated value but this result is
stored only in the memory. Consequently, provenance information does not get
into the provenance database. We have designed a tool which operates at the
operating system level and it captures the return values of the system call. Next, it
stores the given value in the provenance database or on a predefined location.
With the help of this tool the random RGVs can be stored together with the
workflow in a repository. In/on? occasion of a later re-execution, the SWfMS uses
the originally stored value instead of the newly generated random value.

4 The Process of Reproducibility-Analysis

Based on the decay-parameter (DP) the pre-analyzer performs a classification of
the jobs of the given SWf. Depending on the classification, the job can be
executed in three ways:

1. Standard execution, if all the decay parameters are zero.

2. Replacing the execution with evaluation, if there are changing descriptor
values or the availabilities are defined by a probability distribution function
(PDF).

3. Execution with random value capture (RVC) tool, if the execution of the job
is based on random generated value.

In all cases updating the Provenance Database (PDB) is performed occasionally
by extra provenance information (for example a random value).

-212-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

Based on the PDB the post-analyzer creates a sample set. The evaluator module
computes the evaluated output of the given job. Figure 2 shows the flow-chart
about the process and Figure 3 presents the block-diagram.

creating descriptor space

¥

getting runnable job

oes the YES
NO oes the DP
descril:ltu-r?s\f is a PDF?/ @?-—)’ Standard execution
YES ¢
Update PDB

YES

é::;ﬂ%—’ Standard execution
éstk NO
descriptor i
based on YES ¥

Replace the output I— Updating PDB
of the execution

with evaluated value
Future work *

Y
Execution with Creating sample set
RVC tool
Y
Evaluation
Updating PDB +
RGY

Figure 2

The flow-chart of the process of the reproducibility analysis

-213-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

Descriptor JOB MANAGER
Database Job classification based on
of the given the decay parameter of the jobs
workflow
Pre-analyzer

Standard
execution
Evaluation - :
Execution with
| | Provenance
Executor RVC tool ovenan
of the
given
Evaluator Sample set workflow

Post-analyzer

Figure 3

The block-diagram of the system of the reproducibility analysis

5 Results and Implementation

Since this investigation is based on the descriptor-space and the descriptor-space
is based on the provenance database, the first step toward the implementation of
an evaluating tool is the implementation of a provenance framework. The
implementation of a Provenance manager (PROV-man) framework is already
finished. It provides functionalities to create and manipulate provenance data in a
consistent manner and ensures its permanent storage. It also provides a set of
interfaces to serialize and export provenance data into various data format, serving
interoperability [24], [25], [26]. Three main components constitutes the PROV-
man framework:

e A set of methods to build and manipulate provenance data, while preserving
full compliance with the PROV specifications

e A set of interfaces for provenance data sharing and interoperation. These
interfaces covers serialization to formats of the PROV family of documents
(e.g. XML, RDF, DC, etc.) and other specifically required format (e.g.
Graphviz, PDF, JPG, etc.)

e A relational database that serves as a main repository for storing provenance
data, reflecting the PROV-man data model

Additionally, the “rescue” feature and the tool which captures the RGVs and
stores them in the PDB or in a predefined location are implemented in the WS-
PGRADE/gUSE system. Furthermore, we intend to extend it with an evaluating
tool in case the job cannot run because of the missing or unavailable inputs. This
solution makes us able to apply not only the previously stored results but an
evaluated or a simulated output of a previously executed job.

-214-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

Conclusions

We analyzed the requirements of the reproducibility and the critical, continuously
changing or non-deterministic descriptors of the scientific workflows to make
them reproducible. To formalize the problem, we set up a mathematical model and
gave definitions of the reproducible jobs and workflows. Based on the model, we
worked out a reproducibility analysis process which involves three phases. The
first is a pre-analysis based on the descriptor’s space to determine the reproducible
parts of the workflow and to classify the jobs according to their decay-parameter.
The jobs in the different classes are executed in different ways. In the post-
analysis phase, assuming that provenance data is available about the previous
executions a sample set is created and the determination of the evaluating
algorithm is performed. This information is stored together with the workflow in
the repository or in the provenance database. On occasion of a re-execution of the
workflow and in case of a non-reproducible job, instead of the standard execution
we evaluate the outputs based on the stored sample set and on the evaluating
parameters.

The presented framework is theoretical in the sense that the time is limitless. If the
probability distribution function of the availability referring to a descriptor is
given or can be estimated based on provenance, the limit of the function as time
approaches infinity is 1, and the time — during the descriptor is available — can be
determined, theoretically. If an estimating method can be determined for a
changing descriptor, it is also “time-limitless” and the method can be applied at
any time, maybe if the appropriate resources is out of time. However, the
experience actually shows, that the technological development can be prevent the
re-execution and can shorter the theoretical time given by our analysis.

In addition, we particularly have dealt with the job executions based on random
generated values and we have developed a mechanism which is able to capture the
return values of the system calls and to store it for a later re-execution.

In our future work, we would like to develop other tools to be able to handle more
special dependencies of the workflow execution. Also we intend to explore other
procedures to find a more general solution for the evaluating problems when many
descriptors’ values change, simultaneously. Furthermore, we plan to implement
our methods and tools within the gUSE framework.

Acknowledgement

This work was supported by EU project SCI-BUS (SClentific gateway Based User
Support). The SCI-BUS project aims to ease the life of the e-Scientists by creating
a new science gateway customization methodology based on the generic-purpose
gUSE/WS-PGRADE portal family.

-215-



A. Banéti et al. Reproducibility Analysis of Scientific Workflows

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

Banati A., Kacsuk P., Kozlovszky M.: Minimal Sufficient Information
about the Scientific Workows to Create Reproducible Experiment. In: IEEE
19th International Conference on Intelligent Engineering Systems (INES),
Slovakia, 2015, pp. 189-194

Banati A., Kacsuk P. Kozlovszky, M.: “Four Level Provenance Support to
Achieve Portable Reproducibility of Scientific Workflows” In Information
and Communication Technology, Electronics and Microelectronics
(MIPRO) 2015 38" International Convention on (pp. 241-244) IEEE

Bechhofer S., De Roure D., Gamble M., Goble C., Buchan I.: ,,Research
Objects: Towards Exchange and Reuse of Digital Knowledge” In: he
Future of the Web for Collaborative Science, 2010

Belhajjame K., Zhao J., Garijo D., Gamble M., Hettne K., Palma R., Goble
C.: ,,Using a Suite of Ontologies for Preserving Workow-Centric Research
Objects” In: Web Semantics: Science, Services and Agents on the World
Wide Web, 2015

Chirigati F., S., Shasha D., Freire J.: ,ReproZip: Using Provenance to
Support Computational Reproducibility” Presented as part of the 5"
USENIX Workshop on the Theory and Practice of Provenance, 2013

Corcho O., Garijo Verdejo D., Belhajjame K., Zhao J., Missier P., Newman
D., Goble C.: ,Workflow-Centric Research Objects: First Class Citizens in
Scholarly Discourse” In: Proceedings of Sepublica 2012, pp. 1-12, 2012

Davison, A. , Automated Capture of Experiment Context for Easier
Reproducibility in Computational Research”, Computing in Science &
Engineering, Vol 14/ 4, pp. 48-56, July 2012

De Roure D., Belhajjame K., Missier P., Gmez-Prez J. M., Palma R., Ruiz
J. E., Hettne K., Roos M., Klyne G., Hekkelman M. L.: , Towards the
Preservation of Scientific Workows”. In Proceedings of 8" International
Conference on Preservation of Digital Objects (iPRES 2011) 2011

Freire J., Koop D., Chirigati F. S, and Silva C. T.,: “Reproducibility Using
VisTrails”,  Implementing  Reproducible  Research 33, 2014,
OnlineAvailable:

http://citeseerx.ist.psu.edu/viewdoc/download doi:10.1.1.369.9566

Groth, P; Deelman E., Juve G., Mehta G., and Berriman B., , Pipeline-
Centric Provenance Model”, in Proceedings of the 4™ Workshop on
Workflows in Support of Large-Scale Science, 2009, p. 4

Hettne, K. Wolstencroft, K. Belhajjame, Goble C. A., Mina E., Dharuri H.,
D. De Roure, Verdes-Montenegro L., Garrido J., and M. Roos, ,,Best
Practices for Workflow Design: How to Prevent Workflow Decay”, in
SWATA4LS, 2012

-216-



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

Koop D., Freire J., and Silva C. T., ,,Enabling Reproducible Science with
VisTrails”, arXiv preprint arXiv:1309. 1784, 2013

Koop, D., Santos, E., Mates, P., Vo, H. T., Bonnet, P., Bauer, B., ... and
Freire, J. (2011) “A provenance-based Infrastructure to Support the Life
Cycle of Executable Papers”. Procedia Computer Science, 4, 648-657

Korolev, A. Joshi, V. Korolev, M. A. Grasso, A. Joshi, M. A. Grasso, D.
Dalvi, S. Das, V. Korolev, Y. Yesha, and others, ,,PROB: A Tool for
Tracking Provenance and Reproducibility of Big Data Experiments.”,
Reproduce’14. HPCA 2014, Vol. 11, pp. 264-286, 2014

Mesirov J. P., ,,Accessible Reproducible Research”, Science, Vol. 327/
5964, pp. 415-416, January 2010

Missier P., Woodman S., Hiden H., and P. Watson, ,,Provenance and Data
Differencing for Workflow Reproducibility Analysis”, Concurrency and
Computation: Practice and Experience, 2013

Peng, ,,Reproducible Research in Computational Science”, Science, Vvol.
334/ 6060, pp. 1226-1227, 2011

Piccolo S. R., Lee A. B., Frampton M. B.: ,,Tools and Techniques for
Computational Reproducibility”. In: bioRxiv, Vol. 022707, 2015

Santana-Perez 1., Prez-Hernndez M. S.. ,Towards Reproducibility in
Scientific Workows: An Infrastructure-based Approach”. In: Scientific
Programming, Vol. 2015, p. 11, 2015

SZTAKI LPDS: User's Guide. Http://guse.hu/about/home

SZTAKI LPDS: User's Guide
Http://sourceforge.net/projects/guse/ les/3.7.4/Documentation

Woodman, Hiden H., Watson P., and Missier P., ,,Achieving
Reproducibility by Combining Provenance with Service and Workflow
Versioning”, in Proceedings of the 6™ Workshop on Workflows in Support
of Large-Scale Science, 2011, pp. 127-136

Zhao J., Gomez-Perez J. M., Belhajjame K., Klyne G., Garcia-Cuesta E.,
Garrido A., Hettne K., Roos M., De Roure D., and Goble C., ,,Why
Workflows Break—Understanding and Combating Decay in Taverna
Workflows”, in E-Science (e-Science), 2012 IEEE 8" International
Conference on, 2012, pp. 1-9

http://nl.sharp-sys.com/PROV-man.html

Kiss, Tamas, et al. "Ws-pgrade/guse in European Projects." Science
Gateways for Distributed Computing Infrastructures. Springer International
Publishing, 2014, 235-254

Benabdelkader, A., Antoine AHC van Kampen, and Silvia D. Olabarriaga.
PROV-Man: A PROV-Compliant Toolkit for Provenance Management.
No. e1347. PeerJ PrePrints, 2015

=217 -


http://sourceforge.net/projects/guse/_les/3.7.4/Documentation
http://nl.sharp-sys.com/PROV-man.html

