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Abstract: An important step in any control system design is to account for the fault 

tolerance desired for the system at an early stage of development. It is not enough to test 

the fault tolerance after the implementation, as the tuning possibilities may be insufficient 

to ensure tolerance for an unexpected fault, it is better to monitor at the design phase. The 

control research community is interested in fault tolerant control system design, but only 

specific applications are addressed. The present paper deals with such a fault tolerant 

control system for a complex chemical process, the (13C) isotope separation columns 

cascade. To ensure the robustness to uncertainties of the designed system, the controller is 

a fractional order type, tuned using the particle swarm optimization method. The 

simulation results were obtained using the TrueTime Matlab toolbox. 
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1 Introduction 

Currently, the automatic control field is going through a continuous state of 

development. Research gives us new solutions and new control concepts. One of 

these is represented by cyber-physical systems, an interconnection between 

computers and physical systems. This modern type of system is embedding the 

computer into feedback loops, to monitor and control physical processes in 

various domains like: military and aeronautical systems, wastewater treatment, 

medical devices, manufacturing, automotive systems and so on. This approach 

gives us the chance to use preferred and efficient controller algorithms as opposed 

to old analog controllers, but the complexity of this approach increases. Because 

of this high level of complexity, we have to focus our attention towards the fault 

tolerance of the control system [1, 2]. To prevent critical failures we have to keep 

the local faults below a certain level. This represents an important objective to be 

pursued by researchers, who try to address it in the most efficient way. 
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Nowadays, fractional calculus is one of the most important and complex methods 

to be used in order to describe a complete behavior for a wide range of 

mathematical models from domains like: electrical and mechanical engineering, 

aeronautical engineering, computational mathematics, etc. A classic PID 

controller introduces three degrees of freedom, whereas a fractional PID controller 

has five degrees of freedom due to the fractional powers of the integrative and 

derivative effects. [3, 4]. The main disadvantage of the fractional controller design 

is caused by the complexity of the algorithm. By using classical tuning methods, it 

is hard to determine the fractional PID parameters needed to meet the given 

specifications. A solution for this disadvantage could be bio-inspired optimization 

algorithms [5]. 

This paper presents a simulation of a fault tolerant cyber-physical system, applied 

on a plant consisting of three (
13

C) isotope separation columns, connected in a 

cascade structure. The used controllers are of fractional order, designed using the 

particle swarm optimization algorithm and implemented using a new continuous-

to-discrete-time operator. 

2 Control Structure 

2.1 Robust Fractional Order Controller Design 

A fractional order PID controller may be easily described in the Laplace domain 

as follows: 

  







 


sK

s

K
1KsC d

i
PF ,          (1) 

where Kp, Ki, Kd are the proportional, integral and derivative gains, while  and  

represent the fractional orders of integration and differentiation. The design of the 

fractional order PID controller in (1) follows the classical tuning rules for such 

type of controllers and it is carried out in the frequency domain [6, 7, 8]. To tune 

the parameters of the fractional order controller, three performance specifications 

are imposed to shape the closed loop response. These performance specifications 

refer to a gain crossover frequency and a phase margin, linked to a specific 

settling time and overshoot for the closed loop system, as well as the iso-damping 

property that allows for an increased robustness to open loop gain variations. 

In mathematical terms, the three performance specifications may be easily 

described through the modulus and phase equations, while the iso-damping 

property is expressed using the derivative condition in the following equations: 
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CF( jwgc )×GP jwgc( ) = 0dB
           (2) 

arg CF ( jwgc) ×GP jwgc( )( ) = -p+jm
                        (3) 
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where GP stands for the transfer function of the process to be controlled, assumed 

here to be of the following form: 

GP jw( ) =
1

A jw( )
=

1

ReP w( )+ jImP w( )                            (5) 

Considering the following result: 
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and denoting the modulus, phase and derivative conditions as function f1, f2 and f3, 

respectively, the three performance specifications in (2)-(4) can be further 

expanded as indicated here: 
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Several techniques exist to solve the resulting system of nonlinear equations (2)-

(4). In this paper, the proposed technique is based on a modified version of the 

Particle Swarm Optimization (PSO) algorithm as developed by Eberhart and 

Kennedy [9, 10]. In the PSO algorithm, the parameters of the controller transfer 

function in (1) are represented by a particle and each of these particles keeps track 

of its best solution, the personal best, and of the best value of any particle, the 

global best. Each particle modifies its position according to its current position, 

current velocity, the distance between its current position and the personal best 

and the distance between its current position and the global best. The PSO 

algorithm is based on finding the best values for all particles such as a fitness 

function is minimized. In this paper, the fitness function is selected to be the sum 

of the performance specifications as expressed in equations (7)-(9). 

     xfxfxfCF 321 
                                                                               (10) 

where x = KP Ki Kd l mé
ë
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T

 are the controller parameters. 

To avoid falling into local optimal value and to ensure a fast convergence speed of 

optimization, the inertia weight [11] is used: 
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where m, n, p, q, r are parameters selected according to the nonlinear equations, 

gbest(i) is the i
th

 global best and bestf is the standard deviation of all the i
th

 

generation particles. 

2.2 Discrete-Time Implementation of the Fractional Order 

PID Controller 

In order to implement a fractional order PID controller, as given by the transfer 

function in (1), a new continuous-to-discrete-time operator is used: 

s =
1+a

Ts

1- z-1

1+az-1
                                                                                                  (12) 

with z
-1 

the backward shift operator, Ts the sampling period and α(0,1) – a 

weighting parameter that allows for an increased flexibility in ensuring a better 

fitting of the magnitude or phase curve of the original fractional order PID 

controller. The operator introduced in (12) is an interpolation between the Euler 

(α=0) and the Tustin (α=1) discretization rules [12]. 

The first step in the digital approximation consists in a continuous-time fitting of 

the fractional order PID controller, using a higher order rational transfer function. 

Because of its wide acceptance, simplicity and efficiency, the Oustaloup 
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Recursive Approximation [13] method is selected in this paper. The fitted 

continuous-time approximation of the fractional order PID controller is then given 

as: 

G(s) = Kc

s- z j

c( )
j=1

m

Õ

s- pi

c( )
i=1

n

Õ

                                                                                            (13) 

where Kc is the gain, 
c
jz  are the continuous-time zeros, j=1,2,...,m and c

ip  are the 

continuous-time poles, i=1,2,…,n. 

Once this continuous-time approximation of the fractional order PID controller in 

(11) has been obtained, the next step is to compute the discrete-time poles and 

zeros, using the inverse operator of (12): 

z =
1+a+asTs

1+a - sTs

                                                                                                    (14) 

The corresponding poles and zeros are then each computed according to the 

following rules: 
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Then, the discrete-time equivalent of the fractional order PID controller has the 

following form: 
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where the discrete-time gain Kd is computed based on the equivalency of the 

continuous-time and discrete-time transfer functions from (13) and (17) in steady 

state (s=0 and z=1): 
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Further details on the new operator (12) and on the effect of  can be found in 

[12] and in [14]. 
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2.3 Fault Tolerant Distributed Control System 

The modern control systems must be robust and adaptable for the system changes 

to be functioning, safe and fault tolerant, aspect which leads to the development of 

multi-agent systems. These systems have a number of independent agents, which 

possess capabilities such as: communication, computation, sensing and actuation. 

In the framework discussed in the present work, an agent is defined as an 

independent unit having specific functions. A Sensor agent is equipped with one 

or multiple redundant sensors of the same type to ensure fault-tolerance. The 

Actuator-agent is equipped with several redundant actuators that can provide the 

same functions. A Control-agent is capable of performing their own and their 

nearest neighbor control laws, being able to take over the functions of his 

neighbor in case of failure. The agents are distributed in the field, in order to 

complete the control system`s main task. In the case of a decentralized approach, 

any agent is free to manage and schedule its own activities and can exchange 

information with other controllers in its neighborhood, without any help from a 

coordinating agent. In the event of one agent`s failure, the resulting effect will not 

destabilize the process. Moreover, a neighboring agent could take over the task of 

a defective controller in order to keep the process near to the initial performances. 

3 Case Study 

The case study considered herein, consists in the distillation of carbon monoxide, 

in a train of three series columns, with the end purpose of enriching the natural 

concentration of the (
13

C) carbon isotope. The enriching process is a difficult task, 

since there are very small differences in the nuclear characteristics of the two 

stable isotopes to be separated: the (
12

C) and the (
13

C). The actual equipment, as 

well as a schematic representation, are given in Figures 1 and 2. A great deal of 

papers have been published previously by the Authors describing the 

characteristics and operation of a single column or the cascade, the model of such 

a plant, as well as several control strategies [15-21]. 

The entire plant uses a common condenser cooled with liquid nitrogen. Three 

boilers, installed at the bottom of each column, ensure a gaseous upstream, while 

the liquid downstream is produced by condensing these vapors on the cold walls 

of the condenser. The system operates at approximately -190
o
C, in order for both 

liquid and gaseous phases of (CO) to co-exist [16, 17, 22]. 
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Figure 1 

The (13C) isotope separation column cascade 

 

Figure 2 

Schematic representation of the (13C) isotopic separation column cascade 

Several sensors and actuators, as pictured in Figure 3, are installed for monitoring 

and control purposes, such as: seven flow transducers, three pressure transducers 

at the top of the columns, three differential pressure transducers, three 

thermocouples for boiler temperature measurements, three dedicated liquid carbon 

monoxide level transducers in the bottom of the columns, three pumps to ensure 

the flow between the columns, as well as, a dedicated transducer for the liquid 

nitrogen level in condenser [23]. 
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Figure 3 

Sensors and actuators for the (13C) isotopic separation column cascade 

The TrueTime toolbox from Matlab [24] has been used to simulate the distributed 

system. A section of this system, including the communication between two 

agents, is presented in Figure 4. The whole system is much more complex, as can 

be seen in Figure 3, including a series of agents. Figure 4 highlights the 

communication layer in a subsystem: the “Plant” and the corresponding controller 

using the send message (“ttSendMsg”) and get message (“ttGetMsg”) blocks 

through TrueTimeNetwork. It is also included a disturbing node to simulate real 

scenarios of this highly critical system. [25] 

 

Figure 4 

Communication between two agents as a section of the distributed control system of the (13C) isotope 

separation cascade 
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In order to highlight the efficiency of the proposed control strategy, in this 

simulation stage, a subsystem having a simple first order transfer function 

 
1s10

1
sG P


  is considered. This simplification does not affect the final results 

regarding fault tolerance. Imposing the gain crossover frequency of 15 [rad/sec], 

phase margin of 90
o
, the above described particle swarm optimization method 

solves the controller design problem, using equations (7), (8) and (9). With a 

population size of 50 particles and considering the inertia weights: m=0.9; n=1.01; 

p=1.1; q=0.051 and r=1.01, the resulted controller’s parameters are: Kp=71.51, 

Kd=0.012, Ki=16.5, =0.87 and =0.1. The Bode plot presented in Figure 5 proves 

the fulfillment of the imposed performances. 

To highlight the proposed particle swarm optimization method efficiency, in 

Figure 6 are presented the particle evolutions after 5, 50, 100 and 150 iterations. It 

can be seen that the cost function value tends to zero after 50 iterations, Figure 6b, 

although this number depends on the initial conditions, Figure 6a. With 100 or 150 

iterations, Figure 6c and Figure 6d, the accuracy can be improved. 
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Figure 5 

Frequency response of the system with the designed fractional order PID controller 
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Figure 6 

Particle evolution in the optimization method, presented after: a) 5 iterations; b) 50 iterations; c) 100 

iterations; d) 150 iterations 

The continuous-time approximation of this fractional order PID controller has 

been obtained using the Oustaloup Recursive Approximation method within a low 

frequency bound ωl=0.01 rad/s and a high frequency bound ωh=100 rad/s. The 

order N=3 has been selected for the fitted continuous-time transfer function, 

yielding a total of 13 continuous-time poles and zeros. The discrete-time 

approximation has been obtained using the new continuous-to-discrete-time 

operator described in Section II.B, with α=0.9 and Ts= 0.0314 s. The Bode 

diagram in Figure 7 shows that a similar frequency response is obtained for the 

original fractional order PID controller, as well as its discrete-time approximation. 

 

Figure 7 

Frequency response of the ideal fractional order PID controller and of its discrete-time approximation 

To test the robustness of the designed control structure, step responses were 

simulated using a +/-50% gain variation of the process transfer function. In Fig. 8, 

the step response of the simplified model is presented, highlighting no overshoot 

in all cases and settling time changes from 0.15 sec to 0.45 sec. 
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Figure 8 

Step response of the closed loop system with nominal and +/-50% gain variation of the process 

The next step in testing was the fault-tolerance test. Two schemes as the one, 

presented in Figure 4, have been used, in which each sensor- and actuator agent is 

equipped with two redundant sensors and actuators. Each control-agent is capable 

to perform their own and their nearest neighbor control laws, being able to take 

over the functions of his neighbor in case of failure. In Figure 9, the simulation 

results with the first controller failure are presented. If no fault tolerant control 

structure is implemented, the system output decreases from the steady-state value, 

Figure 9a. If the proposed strategy is implemented, when the controller fails, the 

neighboring controller detects this failure and takes over the responsibilities of the 

first one, obtaining the same steady-state value. The controller changes are not 

reflected in the system output; hence, the same closed loop system performance is 

obtained, Figure 9b. 
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Figure 9 

Output signal of the subsystem in case of controller failure: a) without fault-tolerant structure; b) with 

fault-tolerant structure 

The proposed fault-tolerance being based on the communication between two 

agents, the network effects on the control structure were tested. While taking into 

account the communication speed variations and the use of different network 

types, the step response of the system emphasizes the fact that the system is not 

affected. The packet loss probability has also been taken into account. Thus, 



E-H. Dulf et al. Robust Fractional Order Controllers for Distributed Systems 

 – 174 – 

Figure 10 shows that even in the event of a 50% loss probability, the steady state 

value of the system remain the same, although the performance changes. In case 

of a packet loss probability greater than 50%, the second controller must take over 

the responsibilities of the first one, in order to have comparable performance. 
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Figure 10 

Step response of the closed loop system with different packet loss probabilities: 0% - solid line, 20% - 

dash line, 50% - dot line 

Conclusions 

The present paper uses an agent oriented approach for designing a fault tolerant 

control system, having the sensors, actuators and controllers communicating 

through a network. The design of the controllers ensures robustness to gain 

variations, while the communication between adjacent neighbor agents provides 

the fault tolerance of the system - in the event of a critical failure, the 

responsibility of the faulty agent will be passed on to the neighbor. This case study 

is an insight into the isotope separation columns, connected in a cascade structure, 

forming a highly critical cyber-physical system. The efficiency of the 

aforementioned control strategy is proven through simulation results and through 

the use of dedicated software for multi-agent systems. Future work will be in the 

area of implementation of this strategy, on a more detailed and complex system. 
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