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Abstract: The closed-loop inverse kinematics algorithm is a numerical approximation of
the solution of the inverse kinematics problem, which is a central problem ofrobotics. The
accuracy of this approximation, i.e. the convergence of the numericalsolution to the real
solution can be increased by increasing the value of a feedback gain parameter. However, this
can lead to unstable operation if the stability margin is reached. The accuracy of the closed-
loop inverse kinematics algorithm is increased here by replacing the numerical integration
with second-order and implicit numerical integration techniques. The application of implicit
Euler, explicit trapezoid, implicit trapezoid and the weighted average method is considered,
and an iteration is presented to calculate the implicit solutions. Simulation results show
that implicit second-order methods give the best results. However, theydecrease the stability
margin due to the iteration required to calculate the implicit solution. The stability margin
of the algorithms with different numerical integration techniques is analyzed, and it turns out
that the implicit trapezoid method has the most desirable properties.
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1 Introduction

In robotics, finding the motion of the robot joints that results in the predefined mo-
tion of the end effector of the robot is a central problem, called the inverse kine-
matics problem. The solution of this problem lies in the inversion of nonlinear ge-
ometric transformations (that are nonlinear in the joint variables of the robot), and
we can only find symbolic solution in special cases (for special robot architectures),
see e.g. [1–3]. Thus in general, we need to use numerical techniques to solve the
inverse kinematics problem; the most widely used approaches that can be used in
real-time are based on the Jacobian of the robot [4]. This Jacobian defines a linear
relationship for fixed joint variables between the joint velocities and the end effector
velocities, thus given the desired end effector velocities, we can calculate the neces-
sary joint velocities by solving a system of linear equations defined by the Jacobian.
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In the implementation of the Jacobian-based inverse kinematics algorithm, first we
discretize the problem in time, solve the linear system of equations, and finally inte-
grate the joint variables using a numerical integration technique. The most common
numerical integration technique used in the literature is the explicit Euler method
(see e.g. [5–7]). The Jacobian-based solution of the inverse kinematics problem is
usually called the differential inverse kinematics algorithm.

Since the differential inverse kinematics algorithm is a numerical approximation of
the solution, it has a tracking error. The tracking performance can be improved by
adding a constant multiple of the tracking error to the desired end effector velocity,
this constant will be called the feedback gain, and the algorithm with nonzero feed-
back gain will be referred to as the closed-loop inverse kinematics (CLIK) algorithm
(see e.g. [8]), being presented in Section 2. The tracking error can be decreased by
increasing the value of the feedback gain. However, there isan upper limit for that
depending on the sampling time (for the proof see [8]); if thefeedback gain exceeds
this limit, then the algorithm becomes unstable. The maximal value of this limit is
2/Ts with Ts being the sampling time used at the discretization, if the initial track-
ing error is small enough, which implies that this also givesan upper limit for the
tracking performance.

The tracking performance of the CLIK algorithm can be further increased if we re-
place the numerical integration with second-order methods, as it was shown, e.g.
in [9–11]. Second-order, explicit trapezoid method was proposed in [9], while im-
plicit methods with an algorithm to calculate the implicit solutions were proposed
in [10, 11]. In [11], explicit Euler, implicit Euler, explicit trapezoid and implicit
trapezoid methods were implemented and compared to each other, and it turned
out that the trapezoid methods yield better performance, and the implicit trapezoid
method has the best performance properties.

The implicit trapezoid method does the integration using the average of the veloc-
ities from the explicit and implicit Euler methods. This canbe generalized further
by using the convex combination of these velocities, this iscalled theϑ -method
(or weighted average method) in the literature [12]. Note that these methods are
usually used to solve partial differential equations, and for specific problems it was
shown that among all convex combinations, the average givesthe best tracking per-
formance; we show the same here with simulations in Section 4.

The implicit Euler, explicit trapezoid, implicit trapezoid andϑ -methods and their
application in the CLIK problem are explained in Section 3. The iterative algorithm
to calculate the implicit solutions is also expounded in Section 3, where the con-
ditions on the convergence of the iteration are also given. The application of the
algorithms is demonstrated using simulations in Section 4,where the results from
the known explicit and the proposed implicit methods are compared.

The maximal value of the feedback gain parameter in the CLIK algorithm is exam-
ined using simulations with different numerical integration techniques. It turns out
that the stability margin is close to 2/Ts for the explicit and implicit trapezoid meth-
ods. However, the CLIK algorithm becomes unstable for smaller feedback gain if
implicit Euler method is used for numerical integration. For the weighted average
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method, the stability margin depends on the weighting parameterϑ . Theoretical up-
per limits for the stability margins are also given symbolically for these algorithms
in Section 3 that are verified in Section 4 with the simulations. The simulation
results show that the implicit trapezoid method has the bestperformance, and the
stability margin for the feedback gain, if the implicit trapezoid method is used, is
very close to the stability margin of the CLIK algorithm using the explicit Euler
method that was used in [8].

2 Closed-Loop Inverse Kinematics Algorithm

We will denote the vector of joint variable functions withθ , whoseith componentθi

is the joint variable of theithe joint of the manipulator.θ is a function that maps the
value of the joint variables (angles or displacements depending on the type of the
joints) for each positive time instant. We denote the forward kinematics mapping
by f , i.e. f (θ) is the end effector pose (position and orientation). Suppose that the
orientation is represented as a vector, e.g. the componentsof the vector are rotations
around the basis vectors of a fixed spatial frame. Let the desired end effector pose
be xd, while the desired end effector velocity be ˙xd. Denote the Jacobian of the
mappingf at the joint variableθ by J(θ), i.e. ẋ= J(θ)θ̇ .

We are looking for the joint variable functionθd such that

f (θd) = xd (1)

holds. This implies that for the velocities the expression

ẋd = J(θd)θ̇d (2)

holds as well.

First, we discretize the problem in time, i.e. consider the functionsθ and xd in
discrete time instantst = kTs with k being a nonnegative integer, whileTs being
the sampling time. Define the discretized functions asθ [k] := θ(kTs) andxd[k] :=
xd(kTs). After the discretization, the velocities become differences, i.e. ∆θ [k] :=
θ̇(kTs) and∆xd[k] := ẋd(kTs).

The discretized version of (2) is thus

∆xd[k] = J(θd[k])∆θd[k], k= 0,1,2, . . . (3)

The differential inverse kinematics algorithm is based on solving a linear system of
equations

∆xd[k] = J(θ [k])∆θ [k], k= 0,1,2, . . . (4)

to acquire∆θ [k], followed by a numerical integration

θ [k+1] = θ [k]+α∆θ [k] (5)
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to update the joint variable vector. The numerical integration used in (5) is the
explicit Euler method [13]. Since (4) only describes velocities, but the goal is to
track the desired path, i.e. to minimize the difference between the elements of the
seriesf (θ [0]), f (θ [1]), f (θ [2]), . . . andxd[0],xd[1],xd[2], . . ., it is necessary to take
the tracking errorxd[k]− f (θ [k]) into consideration as well. We add this feedback
term after multiplication with the feedback parameterα to the desired velocities, so
that (4) becomes

∆xd[k]+α(xd[k]− f (θ [k])) = J(θ [k])∆θ [k], k= 0,1,2, . . . (6)

thus the joint variable difference∆θ [k] is calculated as

∆θ [k] = J#(θ [k]) (∆θ [k]+α(xd[k]− f (θ [k]))) (7)

where theJ# denotes the (generalized) inverse of the Jacobian. This algorithm is
called the CLIK algorithm that has better tracking performance than the differential
inverse kinematics algorithm without the feedback term. The performance of the
algorithm increases, i.e. the speed of the convergence of the seriesf (θ [0]), f (θ [1]),
f (θ [2]) to the seriesxd[0],xd[1],xd[2], . . . becomes faster asα is increased, until the
stability margin is reached, at which point the algorithm becomes unstable, thus the
increase of the performance by changing the feedback parameter is limited. How-
ever, further increase in the tracking performance can be achieved by replacing the
numerical integration step (5) by a different technique [9–11] that will be discussed
in the upcoming sections.

We supposed that the task is to achieve the desired position and orientation of the
end effector of the manipulator. However, the task can be more specific, for example
only the position or the orientation of the end effector is considered, or the robot
moves only in a plane (i.e. it is a planar manipulator). In this case, the functions
xd and f can be described such that they map to the space relevant to the specific
task, we will call this space the task space. Similarly, we can define the Jacobian
of the new functionf that maps to the task space, we will call this Jacobian the
task Jacobian. The sum of the desired velocity and the feedback term defined in
the task space will be called the task vector and denoted byt(θ [k],k), where the
first argument means that the task vector is considered at joint variableθ [k], and
the second argument shows that the desiredxd and∆xd values are considered at the
discrete time instantk, i.e.

t(θ [k],k) = ∆xd[k]+α (xd[k]− f (θ [k])) . (8)

The first step (7) of the CLIK algorithm is written with this terminology as

∆θ [k] = J#(θ [k])t(θ [k],k) (9)

whereJ is the task Jacobian. In the remaining sections we will suppose that the
corresponding functions map to the task space, thus the application of the discussed
methods does not depend on the task space.
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3 Implicit and Second-Order Numerical Integration Al-
gorithms

The tracking performance of the numerical solution of the inverse kinematics al-
gorithm can be increased by using implicit or second-order numerical integration
techniques instead of the explicit Euler method in (5). The authors in [9] considered
the application of higher-order explicit methods. However, implicit methods may
yield better tracking performance [10, 11], thus we consider mostly implicit meth-
ods here, i.e. the update law that replaces (5) depends onθ [k+1] as well. Let the
general form of the update law be

θ [k+1] = φ(θ [k],θ [k+1]) (10)

for some functionφ . Some of the results (iteration to calculate the implicit solution,
bounds for the convergence of the iteration) will be given for the general update
law. However we will consider specificφ functions (standing for specific numerical
integration techniques) in the simulations.

Note that an implicit update law depends onθ [k+ 1] that is the solution we are
looking for (that makes the method implicit), and the underlying expressions are
usually complex and nonlinear, so the update law can not be rearranged to express
θ [k+1] explicitly, thus we need an iteration to calculate the implicit solutionθ [k+
1].

Suppose that the update lawφ can be written in the form

φ = θ [k]+Tsψ(∆θ [k],∆θ [k+1]). (11)

Then an iteration to calculate the update law is shown in Algorithm 1 [11].

Algorithm 1. Iteration for implicit solution with update law (11).

1. First, calculate∆θ [k] using the expression

∆θ [k] = J#(θ [k])t(θ [k],k) (12)

and calculate∆θ [k+1] using the expression

∆θ [k+1] = J#(θ [k])t(θ [k],k+1), (13)

and computẽθ [k+1] using the update law (11).

2. Calculate the difference

∆θ̃ [k+1] = J#(θ̃ [k+1])t(θ̃ [k+1],k+1). (14)

3. Updateθ̃ [k+1] using the expression (11) as

θ̃ [k+1] = θ [k]+Tsψ(∆θ [k],∆θ̃ [k+1]). (15)

4. Repeat steps 2 and 3 until the alteration ofθ̃ [k+ 1] is small enough or a
certain number of iterations is reached.
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The following theorem gives an upper bound for the feedback gain α so that Algo-
rithm 1 is convergent [11], i.e. the alteration ofθ̃ [k+1] becomes arbitrarily small
after the appropriate number of iterations.

Theorem1. Suppose, that the manipulator is far from singular configurations, i.e.
it is moving in the connected subsetU of the joint space, such that there exists a
positive numberη > 0 so that

∥

∥J#(θ)
∥

∥

∞ ≤ η for all θ ∈U . Moreover, there exists
a positive numberν so that

max
i

∥

∥∂θi J(θ)
∥

∥

∞ ≤ ν (16)

for all θ ∈U . Let ∆θ [k+1] be the implicit difference and∆θ [k] be the explicit dif-
ference of joint variables. Suppose thatψ is a continuously differentiable function
of ∆θ [k+1]. Then ifα satisfies the inequality

α <
1

Ts
∥

∥∂∆θ [k+1]ψ(∆θ [k],∆θ [k+1])
∥

∥

∞
−nνη ‖∆θ [k+1]‖∞ (17)

wheren is the number of the joints of the robot, thenθ [k+ 1] is the fix point of
the function (10) with∆θ [k+1] = J#(θ [k+1])t(θ [k+1],k+1) and Algorithm 1
converges to this fixed point.

Proof. We will show that with the above conditions the mappingφ in (10) is a
contraction mapping (in the∞-norm), i.e. if the conditions of the theorem hold then
there exists a number 0≤ q< 1 such that for alla,b∈U

‖φ(a)−φ(b)‖∞ ≤ q‖a−b‖∞ . (18)

Sinceψ in (11) is continuously differentiable, the mapping (10) isalso continuously
differentiable due to the conditions of the theorem (sinceJ is nonsingular thus,
J# exists and is continuously differentiable), so condition (18) is equivalent to the
existence of a Lipschitz-constantq such that
∥

∥∂θ [k+1]φ
∥

∥

∞ ≤ q. (19)

We will show that
∥

∥∂θ [k+1]φ
∥

∥

∞ < 1 implies (17) if the other conditions of the theo-
rem hold. Applying the chain rule, the differential∂θ [k+1]φ can be written as

∂θ [k+1]φ = Ts∂∆θ [k+1]ψ(∆θ [k+1])∂θ [k+1]∆θ [k+1], (20)

where we have omitted the argument∆θ [k] of ψ for clarity.

The derivative∂θ [k+1]∆θ [k+1] is a matrix with itsith column being∂θi [k+1]∆θ [k+
1]. For the sake of simplicity, in the remainder of the proof we will omit the argu-
ment[k+1] and use the notationsθ := θ [k+1] and∆θ := ∆θ [k+1]. Since∆θ is
calculated as∆θ = J#(θ)t(θ ,k+1), the derivative of∆θ with respect to the scalar
θi is

∂θi ∆θ = ∂θi

(

J#(θ)t(θ ,k+1)
)

=
(

∂θi

(

J#(θ)
))

t(θ ,k+1)

+J#(θ)∂θi (t(θ ,k+1)) . (21)
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The differential of the task vector is

∂θi (t(θ ,k+1)) = ∂θi (∆xd[k+1]+α (xd[k+1]− f (θ)))
= −α∂θi f (θ)
= −αJ(θ)(·, i), (22)

whereJ(θ)(·, i) denotes theith column of the matrixJ(θ) with the notation used,
e.g. in [14,15]. Substituting this into the second term in (21) yields

J#(θ)∂θi (t(θ ,k+1)) = J#(θ)(−αJ(θ)(·, i))
= −αei , (23)

whereei is theith unit vector ofRn.

The differential of the Jacobian pseudoinverse is

∂θi

(

J#(θ)
)

=−J#(θ)
(

∂θi J(θ)
)

J#(θ), (24)

so the first term in (21) becomes
(

∂θi

(

J#(θ)
))

t(θ ,k+1) =−J#(θ)
(

∂θi J(θ)
)

∆θ , (25)

so (21) reduces to

∂θi ∆θ =−J#(θ)
(

∂θi J(θ)
)

∆θ −αei . (26)

The norm of the function∂θ φ can be bounded from above by

‖∂θ φ‖∞ ≤ Ts‖∂∆θ ψ‖∞ ‖∂θ ∆θ‖∞ (27)

provided thatTs > 0. Since the∞-norm of a matrix is its maximal absolute column
sum,

‖∂θ ∆θ‖∞ = max
i

{

1n
∣

∣−αei −J#(θ)∂θi J(θ)∆θ
∣

∣

}

(28)

where 1n is a row vector of lengthn whose each element is one and| · | is the
element-wise absolute value function. Due to the triangle inequality

‖∂θ ∆θ‖∞ ≤ α +max
i

{

1n
∣

∣−J#(θ)∂θi J(θ)∆θ
∣

∣

}

, (29)

and since the absolute column sum is not greater than the product of the length of
the column and the absolute value of the element of the columnthat has the greatest
absolute value, the inequality becomes

‖∂θ ∆θ‖∞ ≤ α +nmax
i

∥

∥J#(θ)∂θi J(θ)∆θ
∥

∥

∞ (30)

from which we obtain

‖∂θ ∆θ‖∞ ≤ α +n
∥

∥J#(θ)
∥

∥

∞ ‖∆θ‖∞ max
i

∂θi J(θ). (31)
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Substituting the bounds from the conditions of the theorem into (31), and substitut-
ing the result into (27) yields

‖∂θ φ‖∞ ≤ Ts‖∂∆θ ψ‖∞ (α +nνη ‖∆θ‖∞) . (32)

This derivative is smaller than one and thus,φ is contractive and has a unique fixed-
point θ if

α <
1

Ts‖∂∆θ ψ‖∞
−nνη ‖∆θ‖∞ (33)

that is the result we were looking for.

The parameterq in (18) characterizes the speed of convergence, since the distance
of the implicit solution and the approximate solution in thenth iteration is

‖∆θ [k+1]−∆θ̃ [k+1](n)‖ ≤
qn

1−q
‖∆θ̃ [k+1](0)−∆θ̃ [k+1](1)‖ (34)

where∆θ [k+ 1] is the implicit solution and∆θ̃ [k+ 1](n) is the solution resulting
from Algorithm 1 aftern number of iterations. Thus, the required number of itera-
tions in Algorithm 1 depends on the value ofq that depends on the value ofα: if α
is closer to the limit defined by Theorem 1, thenq is closer to 1, so more number of
iterations are required to get solutions that are sufficiently close to the real solution.

Condition (17) of Theorem 1 contains the norm of the partial derivative of the func-
tion Ψ in the update law that depends on the joint velocities. However, for specific
numerical integration techniques

∥

∥∂∆θ [k+1]ψ
∥

∥

∞ is usually a constant as it will be
shown in the upcoming subsections.

3.1 Implicit Euler Method

The update law in (10) in the case of implicit Euler integration becomes

φ = θ [k]+Ts∆θ [k+1] (35)

so the functionψ in (11) is

ψ(∆θ [k],∆θ [k+1]) = ∆θ [k+1], (36)

and the∞-norm of the differential of this function with regard to∆θ [k+1] is
∥

∥∂∆θ [k+1]ψ
∥

∥

∞ = 1. (37)

Thus, the iteration described in Algorithm 1 converges for feedback gainα that
satisfies

α <
1
Ts

−nνη ‖∆θ‖∞ (38)
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that is much smaller than the limit 2/Ts for the explicit Euler integration (since the
quantities in the second term on the right-hand side of this inequality are all positive,
so the limit is less than 1/Ts), so the application of the implicit Euler method makes
the CLIK algorithm unstable for smallerα values than in the case of explicit Euler
integration. Note that if the CLIK algorithm becomes unstable for 1/Ts < α < 2/Ts

(and it does not become unstable if explicit Euler integration is used) it is because the
iteration for the implicit solution becomes unstable sincethe conditions of Theorem
1 does not hold.

3.2 Trapezoid Methods

The update law in the case of trapezoid methods is the averageof the explicit and
implicit difference, i.e.

φ = θ [k]+
1
2

Ts(∆θ [k]+∆θ [k+1]) . (39)

The trapezoid method is called the explicit trapezoid method if the solution is ap-
proximated without iteration, so only the first step of Algorithm 1 is carried out.

If the iteration in Algorithm 1 is used, then the trapezoid method is called the im-
plicit trapezoid method, and if the iteration is convergent, then the result of the
algorithm converges to the implicit solution. The functionψ in the update law is

ψ(∆θ [k],∆θ [k+1]) =
1
2
(∆θ [k]+∆θ [k+1]) (40)

and the∞-norm of its derivative with respect to∆θ [k+1] is

∥

∥∂∆θ [k+1]ψ
∥

∥

∞ =
1
2
. (41)

Thus the upper bound for the feedback gainα from the condition of Theorem 1 is

α <
2
Ts

−nνη ‖∆θ‖∞ (42)

that is smaller than the limit 2/Ts. However, it can be close to that limit if the second
term on the right-hand side of the inequality is small enough.

3.3 Weighted Average orϑ -Method

The update law in the case of the weighted average method is

φ = θ [k]+Ts((1−ϑ)∆θ [k]+ϑ∆θ [k+1]) (43)

with ϑ ∈ [0,1], thus, the functionψ becomes

ψ(∆θ [k],∆θ [k+1]) = (1−ϑ)∆θ [k]+ϑ∆θ [k+1]. (44)

Note that the three special cases of the weighted average method are
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• ϑ = 0 that corresponds to the explicit Euler method;

• ϑ = 1/2 that corresponds to the implicit trapezoid method;

• ϑ = 1 that corresponds to the implicit Euler method.

The∞-norm of the derivative of (44) with respect to∆θ [k+1] is
∥

∥∂∆θ [k+1]ψ
∥

∥

∞ = ϑ . (45)

Thus, the upper bound for the feedback gainα from the condition of Theorem 1 is

α <
1

Tsϑ
−nνη ‖∆θ‖∞ (46)

that depends on the value ofϑ . Note that asϑ → 0, the result converges to the
explicit Euler solution, and for the explicit Euler solution no iteration is needed,
thus, the range of the convergence for the iteration tends toinfinity. This inequality
also shows that choosingϑ < 0.5 may give a bound forα that is higher than 2/Ts,
so the stability of the CLIK algorithm is not harmed. However, as we will see in the
following section,ϑ = 0.5 (which special case corresponds to the implicit trapezoid
method) gives the best tracking performance, and differentϑ values result in worse
tracking performance.

4 Simulation Results

The numerical integration techniques are tested on a benchmark problem where the
solution of the inverse positioning problem of an elbow manipulator is considered;
the manipulator consists of three revolute joints, the firsttwo joint axes intersect
each other and are perpendicular, while the second and thirdjoint axes are parallel.
This architecture is widely used in the practice. The three joint axes of the manipu-
lator in the home configuration (i.e. in the configuration where θ = 0) defined in a
fixed frame are

ω1 =





0
0
1



 ω2 =





1
0
0



 ω3 =





1
0
0



 , (47)

while some points on the joint axes 1, 2 and 3 respectively are

q1 =





0
0
0



 q2 =





0
0
0



 q3 =





0
0
l1



 , (48)

with l1 = 1 being the length of the second segment of the manipulator, while the
position of the end effector in the home configuration is

p(0) =





0
0

l1+ l2



 (49)
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with l2 = 1 being the length of the third segment of the manipulator. Based on these
design parameters one can calculate the forward kinematicsmap in the task space
and the task Jacobian in every configuration using techniques from, e.g. [1,16].

The initial configuration of the robot arm wasθ [0] = (0,0,π/2)⊤ that is a nonsin-
gular configuration, i.e.J(θ [0]) is regular. The desired end effector path and end
effector velocity were

xd[k] =





0
−1
1



+
k
N





0
0.5
−1



 (50)

∆xd[k] =
1
N





0
0.5
−1



 . (51)

The number of iterations for the CLIK algorithm wasN = 30, so in the simulations
the discrete time stepsk = 0,1, . . . ,N were considered, while the sampling time
wasTs = 0.1 sec. The CLIK algorithm was solved for differentα feedback gain
parameters. The number of iterations in Algorithm 1 used forthe implicit methods
was chosen to depend onα as

M = ⌊5(1+α)⌋ (52)

in order to ensure good convergence (note that asα increases and gets closer to the
limit given in Theorem 1 the parameterq in (18) gets close to 1, so the speed of
convergence decreases, and more iterations are required).However, this influences
the computation time, since the implicit methods require approximately 1+M times
more computation than the explicit methods.

For every value ofα the tracking error was calculated and transformed into a specific
coordinate system for each discrete timek= 0,1, . . . ,N whose basis vectors are:

1. The regular path direction, that is∆xd[k] after normalization for eachk =
0,1, . . . ,N; components of this basis are denoted by the subscriptreg.

2. The first singular path direction, that is a unit vector perpendicular to∆xd[k]
for eachk= 0,1, . . . ,N; components of this basis are denoted by the subscript
sin1.

3. The second singular path direction, that is a unit vector perpendicular to
∆xd[k] and the first singular path direction for eachk = 0,1, . . . ,N; compo-
nents of this basis are denoted by the subscriptsin2.

Note that for each value ofα, the tracking error is a series in the three new com-
ponents{ereg[k]},{esin1[k]},{esin2[k]} for k= 0,1, . . . ,N, so along each component,
the absolute value is taken and the maximal element is chosen. Thus, for eachα we
take the∞-norms of the series{ereg[k]}, {esin1[k]} and{esin2[k]} that are the values
max‖ereg‖, max‖esin1‖ and max‖esin2‖. This way, we can characterize each simu-
lation (i.e. the result of the CLIK algorithm for the desiredpath tracking task) with
three numbers: the maximum absolute values of the tracking errors in the direction
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Figure 1
The logarithm of the maximal absolute values of the tracking errors along the regular and the two

singular path directions for different values of the feedback gain parameterα, with the application of
the explicit Euler (EE), implicit Euler (IE), explicit trapezoid (ET) and implicit trapezoid methods (IT)

of the desired movement ( the regular path direction) and thetwo mutually orthog-
onal directions perpendicular to the direction of the desired movement (the singular
path directions).

In the first case, the CLIK algorithm was solved using the explicit Euler [8], im-
plicit Euler [10, 11], explicit trapezoid [9] and implicit trapezoid [10, 11] methods
for different α feedback parameters. The initial value ofα was zero, then it was
increased by 0.1 in each step until it reached the valueα = 21. Note that since the
sampling time wasTs = 0.1 sec, the stability limit forα in the case of the explicit
Euler method isα = 2/Ts = 20, so the explicit Euler method must become unstable
if α ≥ 20.

The logarithm of the∞-norms of the different error components for different feed-
back parameters are in Fig. 1. The tracking errors start to increase atα = 9.3 for the
implicit Euler method, since the iteration in Algorithm 1 becomes unstable for that
value ofα. The tracking errors start to increase for the implicit trapezoid method
at α = 18.5 for the same reason. The explicit methods provide stable operation for
α < 20 as expected.

All the four methods have similar performance in their stable region in the regular
path direction, however there are differences in the singular path directions. The
explicit and implicit Euler methods have same performance in the singular path di-
rections as well until the implicit Euler method becomes unstable. For low values of
α, the explicit trapezoid method has better performance in the singular path direc-
tions than the Euler methods, however forα > 6 its performance becomes similar
to the performance of the Euler methods. The implicit trapezoid method outper-
forms all the other methods, and has better performance withat least two orders
of magnitude than the other methods (except forα close to zero, in this case the
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Figure 2
The logarithm of the maximal absolute values of the tracking errors along the regular and the two

singular path directions for different values of the feedback gain parameterα, with the application of
the weighted average method withϑ ∈ {0.1,0.35,0.5,0.65,0.9}

explicit trapezoid method has similar performance) until it becomes unstable for
α > 18.5. Thus, the implicit trapezoid method has the best trackingperformance in
the singular path directions for a wide range ofα.

The CLIK algorithm was simulated with the application of theweighted average
method as well, in order to find the optimal value ofϑ with which the algorithm has
the best performance. The simulation results in this current situation showed that
ϑ = 0.5 has the best performance that corresponds to the implicit trapezoid method.
The simulation results withα = 0,0.1,0.2,0.3, . . . ,20 with five differentϑ values,
i.e. ϑ ∈ {0.1,0.35,0.5,0.65,0.9} are in Fig. 2. Note that the results for the other
values ofϑ are not depicted so that the data on the figure remain interpretable.

The figure shows that theϑ = 0.5 choice (i.e. the implicit trapezoid method) gave
the best tracking performance. The differences are not relevant in the regular path
direction, however theϑ = 0.5 solution has much better performance in the singular
path directions. As the distance of the parameterϑ from 0.5 increases, the tracking
error in the singular path directions increases as well. Forthe pairsϑ = {0.1,0.9}
andϑ = {0.35,0.65} (i.e. whose difference from 0.5 is the same), the performance
is same in their stable region. Forϑ < 0.5 the iteration in Algorithm 1 did not
become unstable as it can be observed from (46) and since the tracking errors did
not increase as the valueα = 20 was approached. However, forϑ > 0.5 the tracking
errors started to increase forα < 20 because the iteration for the implicit solution
became unstable, i.e. forϑ = 0.65 the tracking error starts to increase atα = 14.5
and for ϑ = 0.9 the tracking error starts to increase atα = 10.2. Note that as
ϑ → 1, theϑ -method tends to the implicit Euler method, and the value ofα where
the iteration becomes unstable tends toα = 9.3, the stability margin for the implicit
Euler method. Thus, the simulation results showed that theϑ = 0.5 choice gives
the best results.
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Conclusions

Application of second-order and implicit numerical integration methods in the CLIK
algorithm were presented and the effect of the different integration methods on the
tracking performance were examined. It turned out that the second-order methods
give better tracking performance than the first order methods, and the implicit trape-
zoid method has the best performance. In order to explore if the implicit solution
can be used more efficiently by taking its convex combinationwith the explicit so-
lution, the application of the weighted average method has been considered as well
and it turned out that the implicit trapezoid method (that isa special case of the
weighted average method) has the best performance among allthe possible choices.

An iteration was presented to calculate the implicit solutions, and the region of
convergence for the iteration was given. Symbolic calculations showed that the
implicit methods decrease the range of stability of the CLIKalgorithm which was
verified by simulations as well. Simulation results showed that the decrease of the
stability margin in the case of implicit trapezoid method issmall. However, the
implicit Euler method greatly decreases the stability margin, while the decrease of
the stability margin for the weighted average method depends on the parameterϑ .

The results clearly show that the tracking performance of the CLIK algorithm can be
increased by replacing the first-order numerical integration technique with a second-
order one. Moreover, simulation results showed that implicit second-order methods
give the best performance. The drawback of the implicit methods is that they require
iteration to calculate the implicit solution that decreases the stability margin. As
α tends to the stability margin for the iteration required to calculate the implicit
solution, the number of required iterations increases as well. However, the results
demonstrated that the decrease in the stability margin is relatively small, i.e. it does
not affect the utility of the results, moreover, the increase in the computation time is
only linear, thus do not harm real-time implementation criteria, while the increase
in the tracking performance is significantly larger.
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in numerical integration improve tracking performance of the closed-loop in-
verse kinematics algorithm. InProceedings of the 2016 IEEE International
Conference on Systems, Man, and Cybernetics, pages 3362–3367, 2016.

[12] Gordon D. Smith. Numerical solution of partial differential equations: fi-
nite difference methods, Oxford applied mathematics and computing science
series. Oxford University Press, 1985.

[13] Uri M. Ascher and Chen Greif.A First Course in Numerical Methods. Society
for Industrial and Applied Mathematics, 2011.
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