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Abstract: The closed-loop inverse kinematics algorithm is a numericaloappation of
the solution of the inverse kinematics problem, which is a central problewbofics. The
accuracy of this approximation, i.e. the convergence of the numesaation to the real
solution can be increased by increasing the value of a feedback gaimesea However, this
can lead to unstable operation if the stability margin is reached. The acgwtite closed-
loop inverse kinematics algorithm is increased here by replacing the ricahéntegration
with second-order and implicit numerical integration techniques. Théiegtn of implicit
Euler, explicit trapezoid, implicit trapezoid and the weighted average ndathoonsidered,
and an iteration is presented to calculate the implicit solutions. Simulation reshits s
that implicit second-order methods give the best results. Howeverldwgase the stability
margin due to the iteration required to calculate the implicit solution. The stabilitsgma
of the algorithms with different numerical integration techniques is analyeredlit turns out
that the implicit trapezoid method has the most desirable properties.

Keywords: differential inverse kinematics; numerical integration; expluler; implicit
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1 Introduction

In robotics, finding the motion of the robot joints that resuh the predefined mo-
tion of the end effector of the robot is a central problem|echthe inverse kine-
matics problem. The solution of this problem lies in the msi@n of nonlinear ge-
ometric transformations (that are nonlinear in the joinfalales of the robot), and
we can only find symbolic solution in special cases (for sgleobot architectures),
see e.g. [1-3]. Thus in general, we need to use numericahitpeds to solve the
inverse kinematics problem; the most widely used appraattet can be used in
real-time are based on the Jacobian of the robot [4]. Thighlan defines a linear
relationship for fixed joint variables between the jointogities and the end effector
velocities, thus given the desired end effector velogitiesscan calculate the neces-
sary joint velocities by solving a system of linear equadidefined by the Jacobian.

—147 -



D. A. Drexler Closed-Loop Inverse Kinematics Algorithm with Implicit Numerical Integration

In the implementation of the Jacobian-based inverse kitiesalgorithm, first we

discretize the problem in time, solve the linear system ab¢igns, and finally inte-
grate the joint variables using a numerical integratiohmégue. The most common
numerical integration technique used in the literaturénéséxplicit Euler method
(see e.g. [6-7]). The Jacobian-based solution of the ievidreematics problem is
usually called the differential inverse kinematics altiom.

Since the differential inverse kinematics algorithm is anevical approximation of
the solution, it has a tracking error. The tracking perfanoeacan be improved by
adding a constant multiple of the tracking error to the aesénd effector velocity,
this constant will be called the feedback gain, and the #lyorwith nonzero feed-
back gain will be referred to as the closed-loop inverserkiaics (CLIK) algorithm
(see e.qg. [8]), being presented in Section 2. The trackirg ean be decreased by
increasing the value of the feedback gain. However, these ispper limit for that
depending on the sampling time (for the proof see [8]); iffdexback gain exceeds
this limit, then the algorithm becomes unstable. The makiralue of this limit is
2/Ts with Ts being the sampling time used at the discretization, if thigairtrack-
ing error is small enough, which implies that this also gimaesupper limit for the
tracking performance.

The tracking performance of the CLIK algorithm can be furtinereased if we re-
place the numerical integration with second-order methadst was shown, e.g.
in [9-11]. Second-order, explicit trapezoid method wagpsed in [9], while im-

plicit methods with an algorithm to calculate the implicifgtions were proposed
in [10, 11]. In [11], explicit Euler, implicit Euler, explittrapezoid and implicit

trapezoid methods were implemented and compared to eaeh athd it turned

out that the trapezoid methods yield better performance tla implicit trapezoid

method has the best performance properties.

The implicit trapezoid method does the integration usirggdtierage of the veloc-
ities from the explicit and implicit Euler methods. This da@ generalized further
by using the convex combination of these velocities, thisaked thed-method
(or weighted average method) in the literature [12]. Not these methods are
usually used to solve partial differential equations, amdspecific problems it was
shown that among all convex combinations, the average tieelsest tracking per-
formance; we show the same here with simulations in Section 4

The implicit Euler, explicit trapezoid, implicit trapezbandJ-methods and their
application in the CLIK problem are explained in Section BeTterative algorithm
to calculate the implicit solutions is also expounded int®ec3, where the con-
ditions on the convergence of the iteration are also givelme dpplication of the
algorithms is demonstrated using simulations in Sectiowhkre the results from
the known explicit and the proposed implicit methods are pared.

The maximal value of the feedback gain parameter in the Clgidréghm is exam-

ined using simulations with different numerical integoatitechniques. It turns out
that the stability margin is close tg'Z for the explicit and implicit trapezoid meth-
ods. However, the CLIK algorithm becomes unstable for senddledback gain if
implicit Euler method is used for numerical integration.r fize weighted average
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method, the stability margin depends on the weighting patant. Theoretical up-

per limits for the stability margins are also given symballig for these algorithms
in Section 3 that are verified in Section 4 with the simulagiorThe simulation

results show that the implicit trapezoid method has the pedbrmance, and the
stability margin for the feedback gain, if the implicit tegoid method is used, is
very close to the stability margin of the CLIK algorithm ugithe explicit Euler

method that was used in [8].

2 Closed-Loop Inverse Kinematics Algorithm

We will denote the vector of joint variable functions withwhoseth componen®

is the joint variable of thé&he joint of the manipulato® is a function that maps the
value of the joint variables (angles or displacements ddipgnon the type of the
joints) for each positive time instant. We denote the fodvkinematics mapping
by f, i.e. f(0) is the end effector pose (position and orientation). Supploat the
orientation is represented as a vector, e.g. the compoogthts vector are rotations
around the basis vectors of a fixed spatial frame. Let theekksind effector pose
be x4, while the desired end effector velocity ig. ‘Denote the Jacobian of the
mappingf at the joint variabled by J(0), i.e.Xx=J(6)6.

We are looking for the joint variable functiddy such that

f(6) =X @
holds. This implies that for the velocities the expression

%q = J(6a) g (2)
holds as well.

First, we discretize the problem in time, i.e. consider thections@ andxy in
discrete time instants= kTs with k being a nonnegative integer, whilg being
the sampling time. Define the discretized function®8¢ := 0(kTs) andxy[k] :=
x4(KTs). After the discretization, the velocities become diffares, i.e. AG[K] :=

B(KT) andag (K] := %a(KTs).

The discretized version of (2) is thus

The differential inverse kinematics algorithm is based @lniag a linear system of
equations

AxglKl =J(6K)ABK], k=0,1,2,... 4)
to acquireAB|K], followed by a numerical integration

Blk+1] = 6K + ahb[K (5)
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to update the joint variable vector. The numerical intdgraused in (5) is the
explicit Euler method [13]. Since (4) only describes vdies, but the goal is to
track the desired path, i.e. to minimize the difference leetwthe elements of the
seriesf(0[0]), f(0[1)), f(0[2]),... andx4[0],X4[1],X4[2], ..., it IS necessary to take
the tracking erroxy[Kk] — f(O[K]) into consideration as well. We add this feedback
term after multiplication with the feedback parameteto the desired velocities, so
that (4) becomes

DMK+ a(xg[k] — f(O[K])) =I(O[K)AB[K], k=0,1,2,... (6)
thus the joint variable differena®6[K] is calculated as
A6K = J*(B[K]) (AB[K + a(xalk] — f(B[K))) @)

where theJ* denotes the (generalized) inverse of the Jacobian. Thisidig is
called the CLIK algorithm that has better tracking perfoncathan the differential
inverse kinematics algorithm without the feedback terme Plerformance of the
algorithm increases, i.e. the speed of the convergenceaftiesf (6(0]), f (6[1]),
f(0]2]) to the seriexq[0],%4[1],%4[2], ... becomes faster asis increased, until the
stability margin is reached, at which point the algorithradraes unstable, thus the
increase of the performance by changing the feedback pteaimdimited. How-
ever, further increase in the tracking performance can hiaed by replacing the
numerical integration step (5) by a different techniquel[B+hat will be discussed
in the upcoming sections.

We supposed that the task is to achieve the desired positib@entation of the
end effector of the manipulator. However, the task can beerapecific, for example
only the position or the orientation of the end effector imgidered, or the robot
moves only in a plane (i.e. it is a planar manipulator). Irstbése, the functions
Xq and f can be described such that they map to the space relevard spdcific
task, we will call this space the task space. Similarly, we dafine the Jacobian
of the new functionf that maps to the task space, we will call this Jacobian the
task Jacobian. The sum of the desired velocity and the fe&dieam defined in
the task space will be called the task vector and denotetd @], k), where the
first argument means that the task vector is considered rat yariable6[k], and
the second argument shows that the desigeahdAxy values are considered at the
discrete time instark, i.e.

t(O[K], k) = Axa[K + o (xa[K] — F(8[K]))- ®)
The first step (7) of the CLIK algorithm is written with thisrteinology as

AB[K = J*(B[K)t(6[K], k) )
wherelJ is the task Jacobian. In the remaining sections we will sepgbat the

corresponding functions map to the task space, thus th&apph of the discussed
methods does not depend on the task space.
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3 Implicitand Second-Order Numerical Integration Al-
gorithms

The tracking performance of the numerical solution of thesise kinematics al-
gorithm can be increased by using implicit or second-ordenerical integration
techniques instead of the explicit Euler method in (5). Tiwbars in [9] considered
the application of higher-order explicit methods. Howewemplicit methods may
yield better tracking performance [10, 11], thus we considestly implicit meth-

ods here, i.e. the update law that replaces (5) dependsken 1] as well. Let the

general form of the update law be

Olk+1] = @(6k],0]k+1]) (10)

for some functiorp. Some of the results (iteration to calculate the impliciugon,
bounds for the convergence of the iteration) will be giventfe general update
law. However we will consider specifig functions (standing for specific numerical
integration techniques) in the simulations.

Note that an implicit update law depends 6fk + 1] that is the solution we are
looking for (that makes the method implicit), and the ungied expressions are
usually complex and nonlinear, so the update law can notdreareged to express
6[k+ 1] explicitly, thus we need an iteration to calculate the irtipgolution 8k +
1].

Suppose that the update lagmcan be written in the form
@ = 0K + Ts(AB[K], A8k + 1]). (12)
Then an iteration to calculate the update law is shown in Allga 1 [11].
Algorithm 1. Iteration for implicit solution with update law (11).
1. First, calculateA8[K] using the expression
28]k = J*(O[K)t(B[K], k) (12)
and calculateAB8[k+ 1] using the expression
AB[k+1] = F*(B[K))t(B]K], k+ 1), (13)
and computé [k + 1] using the update law (11).
2. Calculate the difference

ABlk+1] = J*(Blk+ 1))t (B[k+ 1],k +1). (14)

3. Updatef[k+ 1] using the expression (11) as
Blk+1] = B[k + Ts(AB[K, AB K+ 1)). (15)

4. Repeat steps 2 and 3 until the alteration@jk + 1] is small enough or a
certain number of iterations is reached.
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The following theorem gives an upper bound for the feedbatk g so that Algo-
rithm 1 is convergent [11], i.e. the alteration &k + 1] becomes arbitrarily small
after the appropriate number of iterations.

Theoreml. Suppose, that the manipulator is far from singular configpuna, i.e.

it is moving in the connected subdétof the joint space, such that there exists a
positive numben > 0 so that]| J%(6)||, < n for all & € U. Moreover, there exists
a positive numbev so that

miaxH(?aJ(e)Hm <v (16)

forall 6 € U. Let AB[k+ 1] be the implicit difference anA8[k] be the explicit dif-
ference of joint variables. Suppose thjais a continuously differentiable function
of ABlk+1]. Then ifa satisfies the inequality
- 1

Ts || Onopc- W (AB[K, 86k + 1)),

wheren is the number of the joints of the robot, théfk + 1] is the fix point of
the function (10) withAB[k + 1] = J*(6[k+ 1])t(8[k+ 1],k + 1) and Algorithm 1
converges to this fixed point.

a

—nvn ||A6[k+1] a7

oo

Proof. We will show that with the above conditions the mappipdn (10) is a
contraction mapping (in the-norm), i.e. if the conditions of the theorem hold then
there exists a numberQ q < 1 such that for alp,b € U

lo(@) — @(0) |l < qlla—bl|,. (18)

Sincey in (11) is continuously differentiable, the mapping (10iso continuously
differentiable due to the conditions of the theorem (sidds nonsingular thus,
J# exists and is continuously differentiable), so conditiaB)(is equivalent to the
existence of a Lipschitz-constagsuch that

96119, < (19)

We will show that]| dgy,1@||, < 1 implies (17) if the other conditions of the theo-
rem hold. Applying the chain rule, the differentig, ;@ can be written as

ok 1P = TsOnojks 1 Y (AOK+ 1]) gy yAB[K+ 1], (20)
where we have omitted the argumét[k] of g for clarity.

The derivativedg ., A8 K+ 1] is a matrix with itsith column beingg . 1 AB K+
1]. For the sake of simplicity, in the remainder of the proof wi# @mit the argu-
ment[k+ 1] and use the notatior®:= 0]k + 1] andAf := AB[k+ 1]. SinceABb is
calculated a&0 = J#(0)t(6,k+ 1), the derivative oA with respect to the scalar
6 is

0g00 = dg (J*(O)(6,k+1))
(9g (3%(0)))t(6,k+1)
+3%(0)04 (t(0,k+1)). (21)
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The differential of the task vector is

g (1(6.k+1)) = g (Dxalk+1]+a (xa[k+1] - f(8)))
= —0adgf(0)
= —ad(0)(-i), (22)

whereJ(0)(-,i) denotes théth column of the matrixJ(8) with the notation used,
e.g. in [14,15]. Substituting this into the second term ih)(#elds

J(6)dg (t(8,k+1)) = J(6)(—ad(8)(-i))
= —0eg, (23)

whereg is theith unit vector ofR".

The differential of the Jacobian pseudoinverse is

dg (37(0)) = —J%(0) (9(0)) I*(6), (24)
so the first term in (21) becomes

(90 (3%())) 1(8,k+1) = —3(8) (39(6)) A6, (25)
S0 (21) reduces to

0g 00 = —J*(0) (35 J(0)) A6 — ae. (26)
The norm of the functio@g @ can be bounded from above by

1069l < Ts[|OnoY|lcs 0626 | (27)

provided thafls > 0. Since theo-norm of a matrix is its maximal absolute column
sum,

19646, = max{1y| —ae — 3*(8)35(6)26 |} (28)

where 1, is a row vector of lengtm whose each element is one ahd is the
element-wise absolute value function. Due to the triangejuality

}, (29)

1068)|,, < o +max{1,|—-J%(6)dg I ()26
I

and since the absolute column sum is not greater than theigroéithe length of
the column and the absolute value of the element of the cothatrhas the greatest
absolute value, the inequality becomes

10628, < a +nmax||J*(8)dg ()28, (30)
|
from which we obtain

1966]l,, < @ +n|[3¥(6)],, 146, maxda I(6). (31)
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Substituting the bounds from the conditions of the theonetm (31), and substitut-
ing the result into (27) yields

1069l < Tsl|Ono Yl (@ +nvn [|A6]) - (32)

This derivative is smaller than one and thgss contractive and has a unique fixed-
point 6 if

1
0O< ——7
TSHdAGIﬁUHoo

that is the result we were looking for. O

—nvn (A8, (33)

The parameteq in (18) characterizes the speed of convergence, since skende
of the implicit solution and the approximate solution in titk iteration is

qn

|AB[k+ 1] —AB[k+ 1™ < -

q||Aé[k+ 1O —ABk+ 1)WY (34)

whereAB[k + 1] is the implicit solution and\@[k + 1] is the solution resulting
from Algorithm 1 aftern number of iterations. Thus, the required number of itera-
tions in Algorithm 1 depends on the valuegthat depends on the value of if o

is closer to the limit defined by Theorem 1, thegis closer to 1, so more number of
iterations are required to get solutions that are suffitfaribse to the real solution.

Condition (17) of Theorem 1 contains the norm of the part&ahdtive of the func-
tion W in the update law that depends on the joint velocities. Handor specific
numerical integration techniquel@aep 1|, is usually a constant as it will be
shown in the upcoming subsections.

3.1 Implicit Euler Method

The update law in (10) in the case of implicit Euler integyatbecomes

@ = 0K + TAO[k+ 1] (35)
so the functioryp in (11) is

Y(AB[K,AB[k+1]) = AO[k+ 1], (36)
and theo-norm of the differential of this function with regard &0 [k + 1] is
|9nepsy |, = 1. (37)

Thus, the iteration described in Algorithm 1 converges fedback gairor that
satisfies

1
a <= —nvn|A8|, (38)
Ts
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that is much smaller than the limit/Zs for the explicit Euler integration (since the
guantities in the second term on the right-hand side of tieguiality are all positive,
so the limit is less than/ITs), so the application of the implicit Euler method makes
the CLIK algorithm unstable for smaller values than in the case of explicit Euler
integration. Note that if the CLIK algorithm becomes ungdbr 1/Ts < a < 2/Ts
(and it does not become unstable if explicit Euler integrats used) it is because the
iteration for the implicit solution becomes unstable sitteconditions of Theorem

1 does not hold.

3.2 Trapezoid Methods

The update law in the case of trapezoid methods is the averfape explicit and
implicit difference, i.e.

1
Q= 6[k]+§TS(A9[k]+A9[k+ 1). (39)
The trapezoid method is called the explicit trapezoid metifithe solution is ap-

proximated without iteration, so only the first step of Aliglom 1 is carried out.

If the iteration in Algorithm 1 is used, then the trapezoidthoal is called the im-
plicit trapezoid method, and if the iteration is convergghen the result of the
algorithm converges to the implicit solution. The functigrin the update law is

1
Y(AOk],ABk+1]) = > (ABK| +A6(k+1]) (40)
and thewo-norm of its derivative with respect ™0k + 1] is
1
19ne ], = 5 (42)

Thus the upper bound for the feedback gaifrom the condition of Theorem 1 is
2

a < =—nvn|Ag), (42)
Ts

that is smaller than the limit/Zs. However, it can be close to that limit if the second
term on the right-hand side of the inequality is small enough

3.3 Weighted Average ord-Method

The update law in the case of the weighted average method is
©=0[K+Ts((1—9)A0[K] +3A6k+1]) (43)
with & € [0,1], thus, the functiony becomes

Y(ABK],ABlk+1]) = (1—8)A6[K| + 3 A6[k+1]. (44)

Note that the three special cases of the weighted averagmdate
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e 9 = 0 that corresponds to the explicit Euler method;
e 3 = 1/2 that corresponds to the implicit trapezoid method;
e 9 =1 that corresponds to the implicit Euler method.

Theo-norm of the derivative of (44) with respect&®[k+ 1] is

| Onops ||, =9 (45)

Thus, the upper bound for the feedback gaifrom the condition of Theorem 1 is

1
a< o9 nvn ||A6], (46)
that depends on the value 8f Note that as% — 0, the result converges to the
explicit Euler solution, and for the explicit Euler solutiono iteration is needed,
thus, the range of the convergence for the iteration tendditoty. This inequality
also shows that choosing < 0.5 may give a bound foer that is higher than 2T,
so the stability of the CLIK algorithm is not harmed. Howe\as we will see in the
following section;9 = 0.5 (which special case corresponds to the implicit trapezoid
method) gives the best tracking performance, and diffefevdlues result in worse
tracking performance.

4 Simulation Results

The numerical integration techniques are tested on a besmhpnoblem where the
solution of the inverse positioning problem of an elbow rpatator is considered;
the manipulator consists of three revolute joints, the first joint axes intersect
each other and are perpendicular, while the second andjdimtcaxes are parallel.
This architecture is widely used in the practice. The thodat axes of the manipu-
lator in the home configuration (i.e. in the configuration veh@ = 0) defined in a
fixed frame are

()] .

while some points on the joint axes 1, 2 and 3 respectively are

0 0 0
Q1=(0) CI2=<0> Q3=(0), (48)
0 0 I1

with 11 = 1 being the length of the second segment of the manipulatate ihe
position of the end effector in the home configuration is

0
p(O):( 0 ) (49)
1412
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with I, = 1 being the length of the third segment of the manipulatoseBaon these
design parameters one can calculate the forward kinemaggsin the task space
and the task Jacobian in every configuration using techgiffoen, e.g. [1, 16].

The initial configuration of the robot arm w#40] = (0,0, 7/2) " that is a nonsin-
gular configuration, i.eJ(6[0]) is regular. The desired end effector path and end
effector velocity were

0 [ O
xal = [ -1 )+5| 08 (50)
1 1
A
Ml = S| 05 ). (51)
1

The number of iterations for the CLIK algorithm whis= 30, so in the simulations
the discrete time steps= 0,1,...,N were considered, while the sampling time
wasTs = 0.1 sec. The CLIK algorithm was solved for differemtfeedback gain
parameters. The number of iterations in Algorithm 1 usedHerimplicit methods
was chosen to depend onas

M=|5(1+a)] (52)

in order to ensure good convergence (note that axreases and gets closer to the
limit given in Theorem 1 the parametgrin (18) gets close to 1, so the speed of
convergence decreases, and more iterations are requitediever, this influences
the computation time, since the implicit methods requingrapimately 14 M times
more computation than the explicit methods.

For every value ofr the tracking error was calculated and transformed into eiipe
coordinate system for each discrete tikne 0,1,...,N whose basis vectors are:

1. The regular path direction, that 4s¢y[K] after normalization for eack =
0,1,...,N; components of this basis are denoted by the subsegpt

2. The first singular path direction, that is a unit vectomeedicular taAxy[K]
foreachk=0,1,...,N; components of this basis are denoted by the subscript
sinl.

3. The second singular path direction, that is a unit vectp@ndicular to
Axq4[K] and the first singular path direction for eakh= 0,1,...,N; compo-
nents of this basis are denoted by the subserija.

Note that for each value af, the tracking error is a series in the three new com-
ponents{ereglK]}, {€sir K] }, {&sine K|} for k=0,1,...,N, so along each component,
the absolute value is taken and the maximal element is chd$ess, for eaclor we
take theco-norms of the serie$eeglK| }, {esin1 [k} and{esip[k]} that are the values
max||&reg||, Max||esin1|| and max|esinz||. This way, we can characterize each simu-
lation (i.e. the result of the CLIK algorithm for the desinedth tracking task) with
three numbers: the maximum absolute values of the trackiogsein the direction
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Figure 1
The logarithm of the maximal absolute values of the trackimgrsralong the regular and the two
singular path directions for different values of the feezkbgain parametew, with the application of
the explicit Euler (EE), implicit Euler (IE), explicit trageid (ET) and implicit trapezoid methods (IT)

of the desired movement ( the regular path direction) andviibenutually orthog-
onal directions perpendicular to the direction of the dmbimovement (the singular
path directions).

In the first case, the CLIK algorithm was solved using the iekpEuler [8], im-
plicit Euler [10, 11], explicit trapezoid [9] and implicitapezoid [10, 11] methods
for different a feedback parameters. The initial valuemfwas zero, then it was
increased by @ in each step until it reached the valae= 21. Note that since the
sampling time wags = 0.1 sec, the stability limit forr in the case of the explicit
Euler method isx = 2/Ts = 20, so the explicit Euler method must become unstable
if a > 20.

The logarithm of theo-norms of the different error components for different feed
back parameters are in Fig. 1. The tracking errors starctease atr = 9.3 for the
implicit Euler method, since the iteration in Algorithm ldmenes unstable for that
value ofa. The tracking errors start to increase for the implicit &apid method
ata = 185 for the same reason. The explicit methods provide statdeatipn for

o < 20 as expected.

All the four methods have similar performance in their stadglgion in the regular
path direction, however there are differences in the sargphth directions. The
explicit and implicit Euler methods have same performanaié singular path di-
rections as well until the implicit Euler method becomestabke. For low values of
a, the explicit trapezoid method has better performanceersthgular path direc-
tions than the Euler methods, however &or> 6 its performance becomes similar
to the performance of the Euler methods. The implicit trajpeémethod outper-
forms all the other methods, and has better performance atiteast two orders
of magnitude than the other methods (exceptdoclose to zero, in this case the
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Figure 2
The logarithm of the maximal absolute values of the trackimgrsralong the regular and the two
singular path directions for different values of the feezkbgain parametew, with the application of
the weighted average method withe {0.1,0.35,0.5,0.65,0.9}

explicit trapezoid method has similar performance) unitibécomes unstable for
o > 185. Thus, the implicit trapezoid method has the best tracgar@prmance in
the singular path directions for a wide rangeoof

The CLIK algorithm was simulated with the application of theighted average
method as well, in order to find the optimal valueSofvith which the algorithm has
the best performance. The simulation results in this ctis#gnation showed that
9 = 0.5 has the best performance that corresponds to the impépetroid method.
The simulation results witlh = 0,0.1,0.2,0.3,...,20 with five differentd values,
i.e. 3 € {0.1,0.35,0.5,0.65,0.9} are in Fig. 2. Note that the results for the other
values ofd are not depicted so that the data on the figure remain intaiges

The figure shows that th& = 0.5 choice (i.e. the implicit trapezoid method) gave
the best tracking performance. The differences are notaetan the regular path
direction, however th@ = 0.5 solution has much better performance in the singular
path directions. As the distance of the paramétérom 0.5 increases, the tracking
error in the singular path directions increases as well.tk@pairsd = {0.1,0.9}
andd = {0.35,0.65} (i.e. whose difference from.B is the same), the performance
is same in their stable region. F&r < 0.5 the iteration in Algorithm 1 did not
become unstable as it can be observed from (46) and sinceattiéng errors did
not increase as the valee= 20 was approached. However, #r> 0.5 the tracking
errors started to increase far< 20 because the iteration for the implicit solution
became unstable, i.e. f&r = 0.65 the tracking error starts to increasenat 14.5
and ford = 0.9 the tracking error starts to increaseaat= 10.2. Note that as
3 — 1, thed-method tends to the implicit Euler method, and the value ofhere
the iteration becomes unstable tendsite: 9.3, the stability margin for the implicit
Euler method. Thus, the simulation results showed thatthe 0.5 choice gives
the best results.
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Conclusions

Application of second-order and implicit numerical intation methods in the CLIK
algorithm were presented and the effect of the differergrdtion methods on the
tracking performance were examined. It turned out that deeisd-order methods
give better tracking performance than the first order methadd the implicit trape-
zoid method has the best performance. In order to exploteeifrhplicit solution
can be used more efficiently by taking its convex combinatvith the explicit so-
lution, the application of the weighted average method k& lzonsidered as well
and it turned out that the implicit trapezoid method (tha&ispecial case of the
weighted average method) has the best performance amdadhg albssible choices.

An iteration was presented to calculate the implicit sologi, and the region of
convergence for the iteration was given. Symbolic caléoet showed that the
implicit methods decrease the range of stability of the Chalgorithm which was
verified by simulations as well. Simulation results showat the decrease of the
stability margin in the case of implicit trapezoid methodsisall. However, the
implicit Euler method greatly decreases the stability rirargrhile the decrease of
the stability margin for the weighted average method depemdhe parametet.

The results clearly show that the tracking performance@fhlK algorithm can be
increased by replacing the first-order numerical integretiechnique with a second-
order one. Moreover, simulation results showed that intgecond-order methods
give the best performance. The drawback of the implicit roéstis that they require
iteration to calculate the implicit solution that decreafiee stability margin. As
o tends to the stability margin for the iteration required &dcalate the implicit
solution, the number of required iterations increases ds Wewever, the results
demonstrated that the decrease in the stability margiddtwely small, i.e. it does
not affect the utility of the results, moreover, the inceesthe computation time is
only linear, thus do not harm real-time implementationeci#, while the increase
in the tracking performance is significantly larger.
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