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Abstract: Infectious Hospital Agents (IHA) is an individual-based simulation framework that
is able to model wide range of infection spreading scenarios in the hospital environment.
The simulations are agent-based simulations driven by stochastic events, the evolution of the
model is tracked in discrete time. Our aim was to build a general, customisable and extensible
simulation environment for the domain of Hospital-Associated Infections (HAIs). The system
is designed in Object Oriented fashion, and the implementation is in C++. In this paper, the
authors describe the motivations and the background of the framework, sketch the conceptual
framework, and present a demonstration example.
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1 Introduction

Hospital-associated infections (HAI) are infections that patients get while receiving
treatment in healthcare settings. In practice, HAIs are often identified as antibiotic-
resistant bacteria, such as Methicillin Resistant Staphylococcus Aureus (MRSA),
Clostridium difficile, Drug-resistant Streptococcus pneumonia and Vancomycin Re-
sistant Enterococci (VRE). Antibiotic resistance is the ability of bacteria to resist the
effects of an antibiotic [1]. It occurs when bacteria change in a way that reduces the
effectiveness of drugs to cure or prevent infections. The molecular mechanism of
the resistance development is a complex process, and the most frequent type of re-
sistance is acquired and transmitted via the conjugation of plasmid [2]. Furthermore,
the emergence of multidrug-resistant (MDR) bacteria strains increases the serious-
ness of the problem. According to these facts, it is easy to see that the treatment
of these infections are very costly [3] and complicated, that is the reason why pre-
vention gets great emphasis. Surveillance, outbreak investigation and interruption,
HAI prevention are included in hospital infection control. In infection control, it
is essential to understand the dynamics of infection spreading, and to predict the
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effects of the interventions against HAIs. Mathematical modelling and simulations
can help the infection control professionals to improve their understanding of these
complex processes, and make better decisions.

Primarily, our aim was to build a simulation framework that is able to simulate a
wide range of infection spreading scenarios, but we are faced with the problem, that
the spreading process and the infection control processes highly depend on the other
hospital processes. Therefore we have to simulate the hospital processes at the same
level, what is a difficult problem in itself.

1.1 Pathogen Sources and Transmission Routes

In this section, we review the possible pathogen sources and the pathogen trans-
mission routes. Studies have shown that the primary transmission pathway is the
patient – healthcare worker (HCW) – patient route [4,5]. In other words, the HCWs
transmit the pathogens via their hands. Pittet et al. [4] identified the 5 main steps of
pathogen transmission via healthcare workers’ hands (the pathogen sequence steps)
and the evidence supporting each step. The steps are the following:

1. Pathogens are present on the patient’s skin or in the patient’s immediate envi-
ronment.

2. Transfer of pathogens to HCW’s hands.

3. Pathogens must survive on HCW’s hands for at least several minutes.

4. Hand decontamination (hand washing/rubbing or hand antisepsis) by the health-
care worker must be inadequate or omitted entirely.

5. The HCW’s contaminated hand(s) must come into direct contact with another
patient or with a fomite in direct contact with the patient.

In the prevention of HAI transmission, our aim is to break this sequence. Of course
the patient to patient and HCW to HCW routes are also important, if we investigate
the spread of an airborne diseases, such as influenza. There are some special cases,
when we have to consider the patient to patient routes also: when the probability that
two patients come into direct contact is not negligible, such as in a pediatric ward.
A contaminated environment may also be a source of pathogens in hospitals. For
example strains of MRSA can survive and remain viable on dust particles or skin
scales for many weeks and months [6], and it is also proven that low densities of
MRSA can initiate infections [7]. As we have mentioned in the previous subsection,
antibiotic resistant pathogens can emerge caused by the selective pressure of anti-
biotics, but more commonly, newly admitted patients can carry these pathogens to
the hospital [8, 9].

1.2 Infection Control Measures

Infection control measures are all the interventions against HAIs that a hospital can
use to prevent the infections. In this section we briefly overview the most common
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infection control measures:

• Hand hygiene: Obviously, hand hygiene is one of the most important infec-
tion control measures [4, 5]. There are two main factors when we are talking
about hand hygiene: compliance and the quality of hand decontamination. In
brief, the first one refers to the frequency of hand washing/rubbing, the second
refers to the quality of it.

• Staff cohorting: This is a method to restrict the transmission network. If we
assign a caregiver to a subgroup of patients, we can eliminate the transmission
of the pathogen (via the HCW’s hand) between patient groups. In other word,
we can decrease the role of the 2nd and 5th steps of the transmission sequence
discussed before.

• Patient isolation: This is another way to restrict the transmission network. If a
patient is found to be colonized or infected, then isolation is justifiable. In this
case, there are special hygiene and precaution rules for the HCW who enters
or leaves the room of the isolated patient. However, patient isolation is very
costly and often practically impossible as the number of colonized/infected
patients are increasing.

• Surveillance: a collection of methods for collecting every information re-
garding the epidemic process. This can contain a lot of data acquisition
methods: swabbing (microbiological sampling) at admission, periodically re-
peated swabbing of the patients, tracking the patients’ temperature chart, ill-
ness records, computing the risk factors, etc. The result of the surveillance
can be used to ordain special interventions, such as isolation. Recently, there
is a new trend to use information technology tools for monitoring hand hy-
giene compliance and quality [10], and Lehotsky et al. showed that direct,
personal feedback can reduce the rate of inadequate hand rubbing [11].

• Patient decolonization: We suppose that patients are persistent carriers after
colonization, and this fact has an important role in the pathogen transmis-
sion sequence. For example, patients can carry MRSA on their skin, nose
or injured skin, therefore they act as a constant source for MRSA transmis-
sion [12]. MRSA eradication can be effectively done by using mupirocin and
chlorhexidline for decolonization [13].

• Antibiotic usage protocols: antibiotic usage in hospitals has a key role in
emergence and spread of HAIs [14], and the applied protocol has a great
impact [15].

• Cleaning and sterilization.

1.3 Hospital Simulations

The effective operation of hospitals is a key issue for society, and the optimization
of the operation of hospitals is an important question in the practical Operational
Research/Management Science. The “ optimality” has different viewpoints, and the
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resulting healthcare service directly affects the lives of many people. However, hos-
pitals are complex systems, and it is very hard to find an optimal plan to manage
hospital resources, and predict the effects of the interventions or the change of the
environment. A hospital can be also seen as a queuing system, but the direct use
of queuing analytic theory is very hard [16]. One tool, that can help, is computer
simulation. A simulation is a simplified replica of a real-world system, and can be
used to evaluate “what-if?” scenarios before applying the changes. The most com-
mon hospital simulation methods [17] are Discrete Event Simulation (DES), System
Dynamics (SD) and Agent-Based Simulation (ABS). DES is applied to model sys-
tems that change their states dynamically, stochastically, in discrete time intervals.
It is particularly applicable for systems that have queuing structure. System Dynam-
ics is a method of simulating continuous systems. It works on a set of differential
equations. In this method, we usually examine cohorts rather than individuals. SD
models are more appropriate for studying the interrelationship between elements of
the systems. In an Agent-Based Simulation, there are autonomous objects called
agents, who are living in an environment and interact with each other.

1.4 Modelling and Simulations in Infection Control

The most important model types in HAI modelling and simulation are compartment-
based and agent-based models [18–20]. In a compartment-based model, the popu-
lation is divided into groups (compartments), and the number of agents of each
compartment are tracked in the model. Each compartment represents a stage of the
infection history. The most common compartments are Susceptible (S), Exposed
(E), Infectious (I) and Recovered or removed (R). Different combinations of these
compartments lead to different model structures, and the usual model structures, de-
pending on the aims and the level of details are: S-I, S-I-S, S-I-R and S-I-R-S. Inside
a compartment, we suppose homogeneous mixing of the agents. After the compart-
ments are decided, one can define the governing equations of the model therefore
the compartment models are given by closed mathematical equations. These equa-
tions can be differential or stochastic equations, and since the nature of the system
is highly stochastic and the population size in a hospital is relatively low, therefore
the latter one is more common. (Compartment models therefore are very similar to
System Dynamics discussed in the previous subsection).

In the agent-based simulations of HAI spreading, the agents are patients and HCWs,
and the interactions are the treatments. The model is driven by discrete (usually
stochastic) events. A model like this can be used to predict the effect of the interven-
tions, and therefore, it can support decision making. In an ABS we can investigate
models where the population is inhomogeneous, and we can define any interaction
that we can represent with a computer program. Therefore, we have greater flexibil-
ity in the modelling compared to the compartment-based models, but this flexibility
has a price [21]: the simulation time can be very long due to the complexity, the val-
idation of the model is much more difficult, and in addition, it is very hard to plug
an agent-based model into an estimation method to estimate the model parameters
from recorded time series.
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In this paper our focus is on agent-based models. Ferrer et al. [22] built a model that
combines the operational and the epidemiological perspectives to size-up the effect
of understaffing and overcrowding in an Intensive Care Unit (ICU). In their model
they have taken into account the work schedule, sick leaves, workload, fatigue and
occupation state of HCWs. Milazzo et al. [21] tested the effect of spatial and person-
nel cohorting. In [23] the spread of influenza like illness was simulated. The model
contains the immunity of the patients and the spatiality of the ward (emergency
ward), and they tested the effect of infection control policies. Meng et al. [24] built
a transmission model based on patient to patient transmission routes, and tested the
effect of admission and repeat screening tests, shorter test turnaround time, isolation,
and decolonisation. Lee et al. [25] investigated the effect of an MRSA outbreak in
a region (Orange Country, California) containing multiple hospitals, they modelled
patient movement and the MRSA spreading between the institutions. Hernbeck et
al. [26] tracked the motion of HCWs and the patient-HCW, HCW-HCW interactions
using sensor network. They have built an agent-based simulation on the resulting
hospital society network, and investigated the effect of peripatetic HCWs (having
large and diverse set of contacts) on the spread of HAIs.

2 The Elements of The Conceptual Model

Our aim was to build an extensible and robust simulation framework to be able to
model a wide range of different hospital infection spreading scenarios. These mod-
els are infection spreading processes embedded into a hospital simulation. During
the design, we have identified, (1) the main hospital processes affecting the infec-
tion spreading, (2) then the elements of the infection spreading, and finally (3) the
interaction points with each other. The identified processes of (1) - (3) are together
what we call conceptual model.

2.1 Hospital Processes

The basic organization unit of the hospital is the ward. There are two types of in-
dividuals: patients and healthcare workers. We do not deal with visitors, because
our primary interests are HAIs (but the model is open: we can extend it with visi-
tors). The patients belong to a specific ward, but the caregivers can work in multiple
wards.

The identified hospital processes are the following:

1. The admission process: the arrival of new patients to a hospital ward. New
patients can arrive from outside (other hospital, community) or from an an-
other ward of the hospital. Since the characteristic of each ward can be very
different. Therefore, the admission pattern of each ward can be different in
the same hospital.

2. The discharge of patients: the removal of the patients from the ward. In this
framework, we determine (sample from a predefined distribution) the Length-
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of-Stay (LOS) value of each patient at admission, and if the LOS is elapsed,
the patient will be removed from the ward. In some cases, the LOS value can
change later: for example, if a patent become infected, the LOS value will be
increased.

3. Treatment scheduling: every HCW has a list of the treatments that she/he can
perform, and at admission, a list of treatments (demand for treatments) is as-
signed to each patient. Every treatment demand has an urgency value between
0 and 1 (which can change in time). The treatment scheduling process assigns
one (or more, if it is necessary) available HCW(s) to the patients according
to the treatments urgency, and also determines the length of the treatment du-
ration (sample from a predefined distribution). The treatment demands list of
the patients can also change later, again, in case of infection, the infected pa-
tients need more care. In the conceptual model, we do not fix any scheduling
method.

4. Treatment processing: The treatment scheduler generates patient-HCW as-
signments, and assigns a treatment and a treatment duration for each pair. In
this step, the HCWs perform the treatment.

2.2 The Infection Spreading Process

We suppose that there can be multiple pathogen types in the hospital, and an individ-
ual can be clean, colonized or infected for each of the pathogen types. Colonization
means that the pathogen’s strains are in the different parts of the host’s body, but
she/he is asymptomatic. In contrast, if somebody is infected, she/he has symptoms,
which means sickness. We suppose that patients are reservoirs. Therefore, if a pa-
tient becomes colonized, she/he remains colonized (unless we do not do a complete
decolonization), but HCWs are not reservoirs, so for HCWs we define maximum
colonization time.

We have identified the following elements of the spreading process:

1. Admission colonization: a newly admitted patient can be colonized or in-
fected by one or more pathogens. The admission colonization process decides
if an admitted patient is colonized/infected or not.

2. Transmission process: the pathogen transmission from one agent to another.
The transmission routes can be: patient to HCW, HCW to patent, HCW to
HCW, patient to patient, environment to patient, environment to HCW, patent
to environment and HCW to environment. Pathogen transmission or colo-
nization does not mean infection, it means only that the pathogen moves from
one agent to another.

3. Infection process: the process when a colonized patient become infected and
has symptoms. If a patient becomes infected, then it can increase the LOS
and the number of treatment demands.

4. The infection control measures are sub-processes or modifiers of the previ-
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ously defined processes. For example hand washing/rubbing is performed in
the treatment processing part, staff cohorting strategy modifies the treatment
scheduler, surveillance can be part of almost all of the main processes.

3 Implementation Issues

Infectious Hospital Agents is an agent-based programming simulation framework,
where the agents are patients and HCWs. The design is in object-oriented fashion
and the elements of the sketched conceptual model are implemented via (abstract)
classes. We have tried to create a very general and extensible software design, and
gave different implementations for each of the elements. These pre-implemented
classes can be used as building blocks to set up different simulation scenarios.
One can find the details of the object-oriented design in [27]. The implementa-
tion is in C++, and for generating differently distributed random numbers, we use
the Boost.Random [28] library. We can retrieve all the events, statistics and trans-
mission networks from the implemented event-oriented bookkeeping.

4 An Example

Here we present a demonstration simulation example, which is created with the
IHA framework. This example is very simple, and some parameter values are not
verified, but it can give an insight to the system, and some guidance about the
parametrization. We simulate a hypothetical ICU-like ward, with the following
properties:

• Only one ward.

• Pathogen: MRSA.

• Simulate only colonization.

• Do not use any infection control measure.

• Only one treatment type with averaged properties.

• Transmission routes: only patient-to-HCW and HCW-to-patient.

• Time unit is minute, time step: 10 minutes.

• The treatment scheduler is a priority based scheduler, where the priorities are
the treatment urgency values. If the priorities are the same, it uses random
selection.

Model parametrization:

• Admission process: It is a common assumption in hospital simulations, that
the admission process is a Poission-process [16]. In this example we use
this assumption, and set the admission process to a Poission-process with rate
1/180. Therefore, the mean time between two successive patient arrivals is
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180 minutes.

• The Length-of-Stay distribution: Statistical parameter fitting methods shows
that Lognormal, Weibull and Gamma distributions fit best to LOS empirical
data [29]. Here we use the lognormal distribution to sample the LOS values
of the patients. The lognormal distribution is a continuous probability dis-
tribution of a random variable, whose logarithm is normal distributed. The
density function of the lognormal distribution is: lnN (x; µ,σ) = 1

xσ
√

2π
exp

[
−

(lnx−µ)2

2σ 2

]
, where µ and σ are the mean and standard deviation of the variable’s

natural logarithm. Setting µ = 1.3205061822 and σ = 0.3627345555, we get that
E[LOS] = 4 days and SD[LOS] = 1.5 days.

Figure 1
LOS density function

If we plot the probability density function of the LOS values (Figure 1), we
can observe that it is an asymmetric heavy tailed distribution, and on the right
side of the mean, the decreasing of the plot is not so steep, expressing the fact
that greater LOS values may occur with a small, but not negligible probability.

• The probability of admission colonization set to 0.15 according to [30].

• It is a common assumption that the treatment duration is exponentially dis-
tributed [16], but it is a huge simplification, and it is hard to find a good pa-
rameter value. In this example, we set the parameter value of the exponential
distribution to 1/10, expressing that the expected value of the treatment length
is 10 minutes. However, this parameter is the weakest part of this example.

• The pathogen transmission probability is set to 0.05 according to [22]. In a
more accurate model, the pathogen transmission probability should depend
on the contact length, but here, as seen previously, our knowledges about the
treatment duration length is inappropriate, therefore we do not use the time
dependent model. Using fixed transmission probability, we can ensure that
the treatment length does not have a direct effect to the infection spreading
process, unless it is not too high.

• Treatment frequency: 8 times a day.

• HCW decolonization period: 1 day.
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The length of the simulation was 120 days, but we have omitted the first 20 days to
avoid the initial transients. We have run the simulation independently 100 times, and
obtained the result time series by averaging these 100 independent runs: the number
of patients in the ward (Figure 2a), the number of colonized patients (Figure 2b),
the number of newly colonized patients (Figure 2c) and the rate of the colonized
patients (Figure 2d). The number of colonized patients are the number of patients
who were colonized at admission plus the number of newly colonized patients. The
average number of newly colonized patients for this 100 day period is 17.08.

(a)
Average number of patients

(b)
Average number of colonized patients

(c)
Average number of newly colonized patients

(d)
Rate of colonized patients

Figure 2
The simulation results: averaged time series

In the second part of the example, we study the effect of changing the pathogen
transmission probability to the accumulated number of newly colonized patients in
the ward. For this reason, we fix every parameter, except the transmission probabil-
ity, and an S = {0.005,0.01,0.02,0.03,0.04, ...,0.15} test value set for the transmission
probability. For each p ∈ S, we set the pathogen transmission probability to p, ran
the simulation 100 times, and computed the average accumulated number of newly
colonized patients, and additionally the average accumulated number of colonized
patients. The results are summarized in Table 1 and in Figure 3. If p is small,
then practically there are no newly colonized patients in the ward, because we as-
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sume that the HCWs are not reservoirs, and the probability that there is a pathogen
transmission from a colonized patient to a HCW and the same HCW passes on the
pathogen to an another uncolonized patient in a 24 hours length time interval (the
maximum colonization time for a HCW is set to 24 hours) is very small. In this case,
the admission colonization process keeps the pathogen in the ward. As we increase
the transmission probability, the number of newly colonized patients are increasing
(as we expect), and the rate of newly colonized patients is rising in the total number
of colonized patients, and about p = 0.11, the number of newly colonized patients
reaches the number of patients who were colonized at admission (supposing that the
probability that a patient is colonized at admission is 0.15).

Table 1
Results of testing the model in different transmission probabilities

Transmission probability Colonized patients Newly colonized patients
0.005 154.42 0.52
0.01 154.54 1.03
0.02 156.83 3.85
0.03 158.62 6.1
0.04 162.55 11.72
0.05 166.78 17.08
0.06 175.16 28.91
0.07 186.53 44.28
0.08 195.66 56.92
0.09 211.38 75.94
0.1 228.16 99.53

0.11 257.84 135.36
0.12 279.73 162.45
0.13 306.92 195.87
0.14 336.84 229.11
0.15 358.41 255.19

Figure 3
Newly colonized patients in function of transmission probability

Finally we investigate the impact of changing the admission colonization probabil-
ity parameter to the accumulated number of colonized and newly colonized patients.
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Here, we fix the transmission probability to 0.07 (We use higher transmission proba-
bility, to scale up the effect of the change in the admission colonization probability),
set the rest of the parameters as before, and test the system setting the admission
colonization probability to {0.05,0.01,0.02, ...,0.17,0.2}. As before, we run the sim-
ulations for each of the values of the admission colonization probability 100 times,
and obtain the results by averaging the time series. The result are gathered in Table
2 and shown in Figure 4 and Figure 5. We can see in the figures, that the number
of colonized patients and the number of newly colonized patients increase more or
less linearly when we increase the probability of admission colonization, as it is
expected.

Table 2
Results of testing the model against different admission colonization probabilities

Admission colonization Colonized patients Newly colonized patients
0.005 6.67 1.68
0.01 13.06 3.68
0.02 26.15 7.41
0.03 37.09 9.17
0.04 49.1 11.06
0.05 60.3 13.46
0.06 74.19 16.91
0.07 86.52 19.89
0.08 100.81 24.87
0.09 115.44 29.89
0.1 128.77 33.53

0.11 140.31 36.31
0.12 152.32 38.09
0.13 163.93 40.44
0.14 176.42 43.19
0.15 186.53 44.28
0.16 198.63 46.55
0.17 209.7 47.23
0.2 243.83 51.74

Figure 4
Colonized patients in function of admission colonization probability
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Figure 5
Newly colonized patients in function of admission colonization probability

5 Discussion

In this paper we have described the motivations and the background of the IHA
simulation framework, presented the conceptual model, and a simple example of
the usage of the framework. In the conceptual model, we have identified the main
hospital processes affecting the spreading process, we have described the elements
of the spreading process, and the way how the hospital processes and the spreading
process interact with each other. According to these, we can see, that the spreading
process is embedded deeply inside the hospital, and any change of these processes
can cause huge change in the other processes. Here, we have excluded a lot of
factors from the model, for example: the role of visitors, roster pattern of the HCWs
etc., however the conceptual model and the simulation framework are open and
extensible. The described work here is a tool development for future research.

5.1 Future Work

From software development perspective, we have to work on the validation of our
system, because the complexity of the software requires the usage of same system-
atic software validation method. From modelling perspective, we have to extend
the framework with more precise implementation of each sub-processes. Here, we
highlight some of them:

• It is a common assumption that the admission of patients is a Poission-process
[16]. In practice often that is not the case. When we use Poission-process, we
implicitly suppose that the following conditions are true [31]:

1. The probability of more than one arrivals in a short ∆t length time inter-
val is low (o(∆t)).

2. The p(∆t) probability that at least one patient arrives in a ∆t time interval
is ”almost linear” function of ∆t, (p(∆t) = a∆t +o(∆t)).

3. The interarrival times (times between two successive arrivals) are inde-
pendent random variables.

Here a is a positive constant and o is the common asymptotic notion: f (x) ∈
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o(g(x)) means limx→∞
f (x)
g(x) = 0 The consequence of these assumptions is that

the arrival process is a Poission-process. However, as mentioned in [16], these
conditions are often not met. For example, sometimes several patients arrive
in an Emergency Department (ED) at the same time (several people injured
in the same car accident), which clearly violates the condition (1), or the
probability of new patient arrivals could depend on the previous arrivals when
ED is close to its capacity, which contradicts to condition (3), or the average
arrival rate varies during a day, etc. These phenomena may directly effect the
infection spread, for example the sudden increase of the load on the HCWs
may decrease the hand hygiene compliance, causing higher transmission rate.
Consequently, to be able to make the arrival process more precise, we have to
create more accurate statistical models, and collect more data to support these
models.

• The duration of the patient-HCW contacts is an important factor in the trans-
mission process, since obviously the transmission probability increases with
the contact time. However, there is a lack of statistical results about the treat-
ment durations. One way to fix this problem is observing the proximity pat-
terns of the agents in the hospital: collecting data about who is close to whom
at what time. This kind of information is invaluable, when we want to study
the spreading phenomenon, not only to build statistics about the contact du-
rations. For example, the SocioPatterns project has developed a platform that
allows physical proximity measurements using wearable sensors based on ra-
diofrequency identification devices (RFID) [32]. The human body acts as a
shield for the radiofrequency signals, therefore the sensors record only con-
tacts when the individuals are facing each other, and thus a contact can be
considered as indicative of communication and contact between the individ-
uals. Using these sensors, the temporal proximity networks of patients [33],
school children [34], and conference attendees [35] have been successfully
recorded.

• If we have statistics concerning the contact durations, we can build and apply
different time-dependent transmission models.

• There is a lot of question about the infection process itself. What is the prob-
ability, that a colonized patient become infected? Clearly, it depends on not
only the pathogen, but also the patient. This probability is very different for
a patient in a regular Emergency Department from a patient after immuno-
suppressive therapy in a transplantation institute. Furthermore, how does the
infection increases the LOS of the treatment and treatment demand? These
questions lead to the modelling of the immunity of the patients.
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Pessoa-Silva, Liam Donaldson, John M Boyce, et al. Evidence-based model
for hand transmission during patient care and the role of improved practices.
The Lancet infectious diseases, 6(10):641–652, 2006.

[5] Benedetta Allegranzi and Didier Pittet. Role of hand hygiene in healthcare-
associated infection prevention. Journal of Hospital Infection, 73(4):305–315,
2009.

[6] A Rampling, S Wiseman, L Davis, AP Hyett, AN Walbridge, GC Payne,
and AJ Cornaby. Evidence that hospital hygiene is important in the con-
trol of methicillin-resistant staphylococcus aureus. Journal of Hospital Infection,
49(2):109–116, 2001.

[7] SJ Dancer. The role of environmental cleaning in the control of hospital-
acquired infection. Journal of hospital Infection, 73(4):378–385, 2009.

[8] Kepler A Davis, Justin J Stewart, Helen K Crouch, Christopher E Florez, and
Duane R Hospenthal. Methicillin-resistant staphylococcus aureus (mrsa) nares
colonization at hospital admission and its effect on subsequent mrsa infection.
Clinical Infectious Diseases, 39(6):776–782, 2004.

[9] John A Jernigan, Amy L Pullen, Laura Flowers, Michael Bell, and William R
Jarvis. Prevalence of and risk factors for colonization with methicillin-resistant
staphylococcus aureus at the time of hospital admission. Infection Control &
Hospital Epidemiology, 24(06):409–414, 2003.

[10] Tamás Haidegger, Viktor Varga, Ákos Lehotsky, Péter Róna, Róbert Pethes,
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