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Abstract: Artificial Pancreas (AP) is an expression referred to a set of techniques for the
closed-loop control of the plasma glucose concentration by means of exogenous insulin ad-
ministration in diabetic patients. Diabetes comprises a group of metabolic disorders char-
acterized by high blood sugar levels over a prolonged period, due to pancreas failure to
produce enough insulin and/or insulin resistance, so that higher amounts of insulin are usu-
ally required in order to keep glycemia in a safe range. In this work, we face the problem
of glucose control for a class of Type-2 diabetic patients, in the presence of sampled glucose
measurements and without any information about the time course of insulinemia. A compact
physiological model of the glucose-insulin system is reviewed, then an observer (based on
this model) is designed to estimate the insulin trajectory from the glucose samples. Finally,
a feedback control law (based on the reconstructed state) is designed to deliver exogenous
intra-venous insulin to each individual. Simulations have been performed in-silico on models
of virtual patients, whose parameters are tuned according to real data, and aim at validating
the method in the presence of parameter variations and quantization errors.
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1 Introduction

In the past twenty years, with the improvement in technology allowing both direct
measurement of glucose concentrations in the interstitium (or signals strongly cor-
related with it) and the availability of miniaturized hormonal pumps with acceptable
autonomy, weight and precision of delivery, the automatic, closed-loop control of
glycemia has become a real possibility. Together with the opening of technologi-
cal opportunities there has naturally been the emergence of the need for theoretical
analysis of the control algorithms to be employed in the practical industrial applica-
tions. This heterogeneous collection of devices, techniques, technology and theory,
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is known under the umbrella term “Artificial Pancreas” (AP). The main approach
(though not the only one) to the regulation of the levels of glucose in blood has been
the administration of carefully titrated amounts of the hormone insulin [1–3], which
is notably completely lacking in Type-1 Diabetes Mellitus (T1DM) patients. In-
sulin promotes the uptake of glucose by peripheral tissues (particularly muscle and
adipose tissue) and inhibits the release of autonomously synthesized glucose (from
glycogen or other precursors) in the liver and kidney. Insulin is naturally formed in
pancreatic beta cells, which are destroyed by the autoimmune processes typically
characterizing the development of T1DM. To this lack of endogenous insulin, tra-
ditional medical therapy supplies with the administration of human or human-like
hormone intravenously (IV) or subcutaneously (SC). The relevance of this topic
is determined by the fact that T1DM affects approximately the 1% of the world
population, with a huge impact on health expenditure by industrialized countries.
While not so dramatic in its onset as T1DM, adult-onset or Type-2 Diabetes Mel-
litus (T2DM) also represents a huge burden on the health system due to the fact
that its prevalence is not only vastly greater than that of T1DM (about 10 times as
frequent), but also that T2DM incidence is increasing, to epidemic proportions, due
to the spreading of excessively rich dietary habits from western to emerging Coun-
tries. In T2DM, the original defect consists in a lack of effect of insulin (“insulin
resistance”): the hormone is initially secreted in higher than normal amounts by the
pancreas, in an attempt to correct hyperglycemia resulting from insulin resistance.
With the progression of disease, however, glucose toxicity and possibly other fac-
tors determine first a relative, then an absolute deficiency of insulin secretion, with
an accelerated worsening of the individual conditions and the development of the
clinical picture of frank diabetes mellitus. In this situation, the patient undergoes a
progressive step-up of the therapeutic measures employed, going from simple diet-
ing and increase in physical exercise, to oral hypoglycemic agents of different kinds
to supplemental insulin therapy.

In this framework, the theory on the artificial control of glycemia has had to address
a number of problems, stemming from the nonlinear and delayed insulin response
[4,5], the availability of observations on glucose only, and the high variability of the
insulin determinations that can be obtained with radio-immunological methods [6].
One fruitful way to address these problems has been through the shift from model-
less to model-based control algorithms, in which the controller is synthesized using
the model equations themselves. It is clear that, in this procedure, the smaller, the
more general, the easier to implement, and the more robust the physiological model
is, the better the resulting characteristics of the controller will be. It is clear therefore
that the physiological model used to interpret the data and realize the controller must
be relatively small and have easily identifiable parameters; it must, in other words,
be a “compact” model [14], possibly even allowing to find an analytical solution
to the control problem. In order to validate the controller based on the compact
model, however, some “extended” model of the same physiological system must
be used, more realistic, with parameters taken from the literature or decided upon
by physicians to represent the kind of patients under investigation. In this way, the
possible control strategies can be directly simulated and tested in silico.

We will use as a compact model a Delay-Differential Equations (DDE) model we
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have previously published [7,8], which has been demonstrated to exhibit much bet-
ter properties than alternative “minimal” models [13], and which we have already
used in several different situations [9–12]. It must be noticed that the use of DDE-
based glycemia-control algorithms can be equally well applied to both T1DM and
T2DM patients, where in the latter case pancreatic Insulin Delivery Rate (IDR) also
needs to be modelled, and in which IDR exhibits random variability [5]. Previous
work published on this DDE model include having demonstrated that it can be used
to safely control glycemia down to normal levels in T2DM subjects [9] and hav-
ing validated observer-based controls against a widely known extended model [10],
while current research effort is being dedicated to new therapeutic insulin dosing
approaches for T2DM patients [16].

The goal of the present work is to consider the problem of controlling glycemia
based upon sampled measurements. Unlike most of the contributions having ap-
peared in the literature so far, we will assume not only non-availability of serum
insulin determinations, but also the availability of glycemia measurements only
at discrete sampling times, as it happens in the Continuous Glucose Monitoring
(CGM) [17] technique of patient surveillance, which is the motivating reason of
the present analysis. The observer we will use is constructed as shown in Cacace
et al. [18, 19]. In contrast with previous work [9], we will therefore not assume
glycemia to be measurable over continuous time. Strictly speaking, Cacace’s con-
struction cannot be applied when the compact model is delayed, so we limit our
analysis to the situation in which the delay in insulin response is small (shorter than
one minute). The control algorithm, based on the estimated state, will deliver ex-
ogenous intra-venous insulin continuously, with changes in insulin administration
rate happening at sampling times. In order to make our simulations more real-
istic, we introduce further real-life complications, such as quantization (modeling
the possible lack of accuracy of the instrument as well as the analog-to-digital and
digital-to-analog conversion processes) both in the measurement and in the control
phases.

The paper is structured as follows: in Section 2, we review some theoretical re-
sults about observer-based closed-loop control methods; in Section 3, we describe
a model of the glucose-insulin system in terms of ordinary differential equations;
in Section 4, we apply the methods described in Section 2 to the glucose-insulin
model to find a control strategy (in terms of exogenous insulin rate) aiming at track-
ing desired glucose trajectories; Section 5 illustrates preliminary in-silico validation
results for the described framework, obtained in an experimental setup utilizing data
coming from real patients. Some final remarks and comments on future work con-
clude the article.
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2 Review of Observer-based Closed-Loop Control
Design

Consider a system of nonlinear differential equations in the form{
ẋ(t) = f (x(t))+g(x(t))u(t), t ≥ 0
y(t) = c(x(t −δ (t))), t ≥ ∆

(1)

where x(t) ∈Rn denotes the state vector, ẋ(t) := dx(t)
dt is its time derivative, u(t) ∈ IR

is the input function, y(t) ∈ IR is the measured output, δ (t) ∈ [0,∆] is the output
time-varying measurement delay (known), x0 ∈ IRn is the initial state, g(x) and f (x)
are C∞ vector fields and c(x) is a C∞ function.

The problem of asymptotic state observation consists in the design of a causal sys-
tem producing a vector variable x̂(t), which is called observed state, asymptotically
converging to the real state x(t) (i.e., ∥x(t)− x̂(t)∥→ 0), from the knowledge of the
pair (u(t),y(t)). Such a system is called an asymptotic observer; additionally, it is
said to be an exponential observer if there exist µ > 0 and α > 0 such that

∥x(t)− x̂(t)∥ ≤ µ e−αt∥x(0)− x̂(0)∥, (2)

for any x(0) and x̂(0) in Rn.

With the aim of designing such an observer, we first define the drift-observability
map z = ϕ(x), stacking the first n Lie derivatives (from 0 to n− 1) of the output
function c(x) along the drift vector field f (x), and its Jacobian Q(x), as

z =


z1
z2
...

zn

= ϕ(x) :=


h(x)

L f c(x)
...

Ln−1
f c(x)

 , Q(x) :=
∂ϕ(x)

∂x
. (3)

The observer in [18, 19], also reviewed in [20], takes the following expression:

˙̂x(t) = f (x̂(t))+g(x̂(t))u(t)+ e−ηδ (t)Q−1(x̂(t))K
{

y(t)− c(x̂(t −δ (t)))
}
, (4)

where the gain matrix K assigns the n eigenvalues of (A−KC) so that the estimation
error x(t)− x̂(t) asymptotically vanishes, with

A :=
[

0(n−1)×1 I(n−1)×(n−1)
0 01×(n−1)

]
, C :=

[
1 01×(n−1)

]
, (5)

and η > 0 is a design parameter, whose role is to assign a larger weight to the more
recent measurements with respect to the older ones.

Under some technical hypotheses (including, in particular, uniform Lipschitz drift-
observability and uniform input boundedness), if the system has full relative degree,
it is possible to demonstrate the following theorem, establishing the exponential
convergence to zero of the observation error.
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Theorem 1. [19] Given the system (1), with δ (t) ∈ [0,∆], for any assigned η > 0,
there exists K and a positive ∆̄ such that the system in (4) is a global exponential
observer for the system in (1), provided that ∆ < ∆̄, with η being the estimation
error decay rate (namely, (2) holds with α = η and some µ > 0).

We remark that the previous result allows to employ the observer (4) if the sampling
interval is smaller than or equal to ∆. If this is not the case, as shown in [19], a chain
of sampled observers can be built.

In order to close the control loop, an input-output linearization approach is adopted,
assuming that the relative degree of the system is n (see, e.g., [22]). The observabil-
ity map dynamics in (3) rewrites:

ż =
∂ϕ(x)

∂x
ẋ = Q(x)( f (x)+g(x)u). (6)

We impose the virtual input v := żn = Ln
f c(x)+LgLn−1

f c(x)u, in order to obtain the
linearizing feedback law:

u =
v−Ln

f c(x)

LgLn−1
f c(x)

. (7)

The virtual input v needs to be chosen with the aim of tracking desired trajectories
for the closed-loop system. To this end, a smooth reference output signal yre f (t) is
defined, along with the vector of its first n time derivatives

zre f (t) =


z1,re f (t)
z2,re f (t)

...
zn,re f (t)

=


yre f (t)
ẏre f (t)

...
y(n−1)

re f (t)

 ,

and defining e := z− zre f , the error equation is

ė = Ae+B(v− żn,re f ), with B :=
[

0(n−1)×1
1

]
.

Since the Brunovsky pair (A,B) is reachable, it is sufficient to set

v = He+ żn,re f (8)

to guarantee the exponential convergence to zero of the linearized error dynamics,
with rate determined by the n eigenvalues of matrix (A+BH), assigned by means
of H.

As a final remark, we notice that the control law reported in Eq. (7)–(8) is a con-
tinuous state-feedback control strategy, which depends on the continuous state x(t),
which is usually not available, except for its estimate x̂(t) provided by the observer
(4). So, it is possible to restate the control law in (7)–(8) in terms of a feedback
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from the reconstructed state, but this is not guaranteed to work, in general, in the
non-linear case, although local convergence results exist in the literature. In the
linear case, instead, the separation principle would guarantee the asymptotic con-
vergence of the output y(t) to its reference value yre f (t).

3 A Continuous-Discrete Model of the Glucose-Insulin
System

Continuous-discrete models refer to physical continuous-time systems with mea-
surements acquired at discrete sampling times. These models often appear in clin-
ical/medical applications like those related to the Artificial Pancreas, with control
design problems related to the lack of a continuous stream of output data. According
to [19], discrete measurements can still be formalized by means of a continuous-
time output function. To this end, for a sampling sequence {ti} and assuming to
measure plasma glucose concentration G(ti), the piecewise-constant output func-
tion y(t) defined as

y(t) = G(ti) t ∈ [ti, ti+1), i = 0,1, ...

can be restated as a delayed output in the equivalent form

y(t) = G(t −δ (t)) t ≥ 0, (9)

where the delay δ (t) within any two consecutive sampling instants is time-varying:

δ (t) = t − ti, t ∈ [ti, ti+1), i = 0,1, ..., (10)

with t0 = 0. The sampling interval has a uniform upper bound equal to ∆ :=
max

i
(ti+1 − ti).

As shown in the previous section, this formal setting of the model output function
allows to design exponential observers and observer-based control laws, which have
been recently exploited also in the context of the artificial pancreas [9, 10, 21]. To
this end, we consider a modified version of the DDE model presented in [7, 8] and
exploited in [9, 10], which contains an explicit discrete delay modeling the sec-
ondary insulin released for varying plasma glucose concentration. Since we need
to restate into the form of Eq. (1), the delay of the glucose-stimulated insulin pro-
duction rate is neglected. This fact clearly limits the proposed feedback control law
applicability and refers to further developments of the mathematical theory possibly
including time-delay systems. Nonetheless, this work aims at showing the proof of
concept of an observer-based control law in such continuous-discrete systems.

In absence of delay, the equations of model [7, 8] are particularized as follows:{
dG(t)

dt =−KxgiG(t)I(t)+ Tgh
VG

,
dI(t)

dt =−KxiI(t)+
TiGmax

VI
h
(
G(t)

)
+u(t),

t ≥ 0 (11)

with initial conditions G(0) = G0, I(0) = I0, where:
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• G(t) is the glucose concentration in the plasma at time t [mM];

• I(t) is the insulin concentration in the plasma at time t [pM];

• Kxgi is the rate of glucose uptake by tissues per unit of plasma insulinemia
[min−1 pM−1];

• Tgh is the net balance between hepatic glucose output and zero-order glucose
tissue uptake [min−1(mmol/KgBW )];

• VG is the apparent distribution volume for glucose [L/kgBW ];

• Kxi is the apparent linear insulin clearance rate [min−1];

• TiGmax is the maximal second-phase insulin release rate [min−1(pmol/kgBW )];

• VI is the apparent insulin distribution volume [L/kgBW ];

• h(·) is a nonlinear function representing the endogenous pancreatic Insulin
Delivery Rate (IDR) as

h(G) =
(G/G∗)γ

1+(G/G∗)γ ,

where γ (dimensionless) denotes the progressiveness of the pancreas reaction
to circulating glucose concentrations and G∗ [mM] is the glucose concentra-
tion at which the insulin release reaches half of its maximal rate;

• u(t) is the exogenous intra-venous insulin delivery rate at time t, which takes
the role of control input [pM/min].

The model in (11) enjoys some interesting properties:

• it is statistically robust, in that its parameters are statistically identifiable with
very good precision by means of standard perturbation experiments, such as
the Intra-Venous Glucose Tolerance Test (IVGTT) [7, 13];

• it is a compact model, in the sense that according to a “minimal” set of in-
dependent parameters, it allows to very well resemble the physiology of the
glucose/insulin kinetics [7];

• it is mathematically consistent, in that exhibits satisfactory properties of the
solutions [8]; in particular: positivity, boundedness, and a unique positive
stable equilibrium.

Identification issues and statistical robustness of this model are discussed in [7],
whilst the work [8] exhaustively treats its structural properties and the qualitative
behavior of its solutions.

4 The Artificial Pancreas

We now apply the control design methodology illustrated in Section 2 to the glucose-
insulin model described in Section 3. By restating in the vector form x(t)= [x1(t),x2(t)]T =
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[G(t), I(t)]T the already defined state variables, a compact expression in the form (1)
is obtained for (10)–(11):

ẋ(t) = f (x(t))+Bu(t), t ≥ 0
y(t) =Cx(t −δ (t)), t ≥ ∆
δ (t) = t − ti, t ∈ [ti, ti+1), i = 0,1, ...

(12)

where

f (x) =
[

f1(x)
f2(x)

]
=

[
−Kxgix1x2 +

Tgh
VG

−Kxix2 +
TiGmax

VI
h(x1)

]
,

δ (t) ∈ [0,∆], B = [0 1]T , C = [1 0].

The drift-observability map z = ϕ(x) and its Jacobian are

z =
[

z1
z2

]
= ϕ(x) :=

[
Cx

C f (x)

]
=

[
x1

f1(x)

]
=

[
x1

−Kxgix1x2 +
Tgh
VG

]
, (13)

Q(x) :=
∂ϕ(x)

∂x
=

[
1 0

−Kxgix2 −Kxgix1

]
, (14)

where invertibility is guaranteed for x1 ̸= 0.

The observer equation in (4) is

˙̂x(t) = f (x̂(t))+Bu(t)+ e−ηδ (t)Q−1(x̂(t))K
{

y(t)−Cx̂(t −δ (t))
}
, (15)

where the eigenvalues λ1 < 0, λ2 < 0 of (A−KC) are assigned by means of K =[
−(λ1 +λ2)

λ1λ2

]
with the aim of ensuring the exponential convergence to zero of the

error x(t)− x̂(t), and where A =

[
0 1
0 0

]
.

By explicitly rewriting x̂(t) = [x̂1(t), x̂2(t)]T = [Ĝ(t), Î(t)]T , for all times t ∈ [ti, ti+1)
and i = 0,1, ..., the observer (4) is component-wise rewritten as

dĜ(t)
dt =−KxgiĜ(t)Î(t)+ Tgh

VG
+ e−ηδ (t)(λ1 +λ2)(G(ti)− Ĝ(ti)),

dÎ(t)
dt =−Kxi Î(t)+

TiGmax
VI

h
(
Ĝ(t)

)
+u(t)+ e−ηδ (t) Kxgi(λ1+λ2)Î(t)−λ1λ2

KxgiĜ(t)
(G(ti)− Ĝ(ti)).

(16)

The technical assumptions of Theorem 1 are fulfilled for the glucose-insulin system
in (10)–(11), which ensures that the observation error exponentially vanishes.
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We now detail the algorithm of glucose control. The observability map evolution in
(13) rewrites:

ż =
[

ż1
ż2

]
=

∂ϕ(x)
∂x

ẋ = Q(x)( f (x)+Bu) =
[

1 0
−Kxgix2 −Kxgix1

][
f1(x)

f2(x)+u

]
=

[
1 0

−Kxgix2 −Kxgix1

][
z2

−Kxix2 +
TiGmax

VI
h(x1)+u

]
, (17)

so one obtains{
ż1 = z2,

ż2 =−Kxgix2

(
−Kxgix1x2 +

Tgh
VG

)
+Kxgix1

(
Kxix2 − TiGmax

VI
h(x1)

)
−Kxgix1u.

(18)

We now get the linearizing feedback law by setting ż2 := v to obtain

u = Kxix2 −
TiGmax

VI
h(x1)−

v+Kxgix2(−Kxgix1x2 +
Tgh
VG

)

Kxgix1
(19)

which is computable for positive glycemias x1, in agreement with the Jacobian ma-
trix Q(x) in (14) being invertible.

The reference glycemia trajectory is

yre f (t) = Gre f (t) = Gd +(Gb −Gd)e−λ t ,

with λ > 0, and its goal is to lead the glycemia of an individual from a high basal
value Gb of a subject to a lower healthier value Gd . By defining

zre f =

[
z1,re f
z2,re f

]
:=

[
yre f
ẏre f

]
,

its dynamics is readily computed:

żre f (t) =
[

ż1,re f (t)
ż2,re f (t)

]
=

[
z2,re f (t)
ż2,re f (t)

]
=

[
−λ (Gb −Gd)e−λ t

λ 2(Gb −Gd)e−λ t

]
.

The error e := z− zre f is described by the equation

ė =
[

ż1 − ż1,re f
ż2 − ż2,re f

]
=

[
z2 − z2,re f
v− ż2,re f

]
= Ae+B(v− ż2,re f ).

Finally, we assign

v = He+ ż2,re f (20)

to guarantee the convergence to zero of the linearized error dynamics, whose con-
vergence rate is determined by the eigenvalues λ3 < 0, λ4 < 0 of matrix (A+BH),

assigned by H =

[
−λ3λ4

(λ3 +λ4)

]T

.
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As discussed at the end of Section 2, in the spirit of separation principle, we re-
state Eqs. (19)–(20) in terms of a control from the estimated state, leading to the
following continuous feedback law

u = max

0,Kxix̂2 −
TiGmax

VI
h(x̂1)−

H(ẑ− zre f )+ ż2,re f +Kxgix̂2(−Kxgix̂1x̂2 +
Tgh
VG

)

Kxgix̂1


(21)

where ẑ :=
[

x̂1
f1(x̂)

]
, and x̂ =

[
x̂1
x̂2

]
=

[
Ĝ
Î

]
is the output of the observer in (16). We

remark that the possibility of a negative exogenous insulin rate in (21) is formally
inhibited.

5 In-silico Evaluation

We here evaluate the performance of the techniques illustrated in the previous sec-
tions in a non-ideal experimental context. We start from the data obtained from 3
healthy subjects, whose samples of glucose and insulin are included in the data col-
lected in [7]. Some anthropometric data for these subjects are summarized in Table
1. Each individual underwent an Intra-Venous Glucose Tolerance Test (IVGTT), ac-
cording to which a glucose bolus is administered intra-venously after an overnight
fasting period, and then plasma glucose and serum insulin concentration are sam-
pled for the following 3 hours, at varying sampling time. IVGTT is also considered
among the most affordable and commonly used perturbation procedures used to
estimate insulin sensitivity. Measurements of glycemia and insulinemia from this
experiment are used to identify the parameters of the ODE model (11), which is
coincident with the DDE model in [7], [8] in the particular case τg = 0. As a matter
of fact, as already mentioned before, just subjects with negligible delay in the glu-
cose action on pancreatic IDR are considered, following the sample-based approach
in [19], and in absence of theoretical results for this method when applied to systems
expressed by delayed differential equations.

After the identification phase, since some of the considered subjects are pre-diabetic
and not diabetic, we artificially perturbate the parameters in order to simulate a po-
tential natural progression of the disease towards diabetes (see also [9]). In partic-
ular, we reduced the insulin resistance (up to about Kxgi < 10−4) and the pancreatic
glucose sensitivity TiGmax, to then recompute some of the other parameters via the
algebraic steady-state conditions obtained from the model in Eq. (11). In more de-
tails, the basal values of glycemia Gb and insulinemia Ib, representing the equilibria
of (11) in absence of exogenous insulin administration (u = 0), are obtained from:{

KxgiVGGbIb = Tgh,

KxiVIIb = TiGmaxh
(
Gb

)
.

Table 2 collects the parameter values for the three individuals. Note that the pa-
rameters of each model are assumed to be known (up to some uncertainty) in the

– 88 –



Acta Polytechnica Hungarica Vol. 14, No. 1, 2017

Table 1
Numerical values of some anthropometric parameters

(in the respective units of measurement) for the 3 patients considered.

Parameter Patient 1 Patient 2 Patient 3
Sex Male Female Female

Age [years] 32 26 27
Height [m] 1.69 1.57 1.56

Body Weight [kg] 68 48 57
Body Mass Index [kg/m2] 23.81 19.47 23.42

Table 2
Model parameters values (and units of measurement)

used in the in-silico evaluation.

Parameter Patient 1 Patient 2 Patient 3
Gb 8.96 8.78 8.44
Ib 27.82 24.04 7.04

Kxgi 7.45 ·10−5 9.96 ·10−5 5.39 ·10−5

Tgh 0.0025 0.0027 0.0003
VG 0.13 0.13 0.10
Kxi 0.10 0.06 0.25

TiGmax 1.39 0.75 0.94
VI 0.24 0.25 0.25
γ 2.30 2.52 1.52

G∗ 9 9 9

construction of the artificial pancreas tailored to the particular patient, in the spirit
of the so-called personalized medicine approach.

In addition to the hypotheses dealt with in the theoretical part, we consider a more
realistic simulation setting and assume a quantization error both in the measuring
and in the control procedure, accounting for the processes of analog-to-digital and
digital-to-analog conversion in digital devices. Quantization steps of 0.1 mM for
the glycemia measurements and 20pM/min for the exogenous Insulin Delivery Rate
(IDR) are assumed, respectively. Accordingly, quantization errors affect the initial
values of the observer-based controller. The sampling time of the glycemia mea-
surements is assumed constant and equal to ti+1 − ti = ∆, for all observations i, so
that we can write more simply ti = i ·∆, with ∆ = 5 [min], which is a typical value
for many Continuous-Glucose-Monitoring (CGM) devices currently available on
the market [23]. We also assume that control samples are held for the same interval,
without any phase shifts.

The Artificial Pancreas is designed by considering the individual parameters for
each patient in Table 2, but an additional random uncertainty (up to ±5%) is con-
sidered with respect to the real values. The parameter η in (16) is set equal to 5,
the target glycemia is equal to Gd = 5 mM, the decay rate is λ = 1/30. The same
closed-loop eigenvalues for all patients are set: λ1 = −0.8, λ2 = −1.6, λ3 = −1,
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Figure 1
Top panel: trajectories of glycemia for 3 virtual patients: basal values (dash-dotted lines) and patients

controlled by means of the Artificial Pancreas (solid lines).
Bottom panel: trajectories of insulinemia for 3 virtual patients: basal values (dash-dotted lines) and

patients controlled by means of the Artificial Pancreas (solid lines).

λ4 = −0.5, uniquely determining the values of the observer gain K in (4) and the
control gain H in (21).

Figures 1 and 2 illustrate the results in terms of glycemia and insulinemia trajec-
tories, glucose percent error and IDR input. We note that the glucose trajectories
(Fig. 1, top panel) monotonically decrease towards the target value Gd , which is
reached, in all the subjects, within the experiment time horizon (3 hours). Corre-
spondingly, the insulinemia trajectory (Fig. 1, bottom panel) shows an initial peak
(exceeding 150 pM for the three patients), to then recover towards levels below the
50-pM value. Higher values of insulinemia (patient 3) correspond to higher exoge-
nous insulin infusions (Fig. 2, bottom panel). In spite of the different parameters
and initial conditions, the error falls below 10% (with respect to the target glycemia
Gd) within about 1 hour for all the patients (Fig. 2, top panel), due to the common
choice of the closed-loop eigenvalues.

– 90 –



Acta Polytechnica Hungarica Vol. 14, No. 1, 2017

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80
Glycemia Percent Error

Time [h]

E
rr

or
 [%

]

 

 

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

Time [h]

ID
R

 [p
M

/m
in

]

Applied Control Input

 

 

Patient 1
Patient 2
Patient 3

Patient 1
Patient 2
Patient 3

Figure 2
Top panel: glycemia percent error for the 3 virtual patients.

Bottom panel: exogenous IDR input for the 3 virtual patients.
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Discussion and Further Work

In this work, we proposed a solution to a glucose control problem with partial/inaccurate
information, in the direction of the development of the so-called Artificial Pancreas.
After a general review of nonlinear output-feedback techniques, we considered a
compact existing model constituted by nonlinear ordinary differential equations,
which is known to represent adequately the evolution of the glucose-insulin sys-
tem in people in which the apparent delay in the pancreatic second-phase insulin
secretion can be approximately neglected. In this context, we designed an observer,
which estimates the continuous dynamics of glucose and insulin from sparse mea-
surements of glycemia. Then, the loop was closed by designing a feedback law
from the observer state, and actuated in terms of exogenous insulin delivery, with
the goal of tracking a proper trajectory of glycemia. A preliminary in-silico evalua-
tion of the proposed methods has been performed on virtual patients whose param-
eters have been computed starting from real data, in a non-ideal simulation setup
including quantization and parameter variations. The obtained results highlight that
the approach can constitute a promising tool for studying and realizing an Artificial
Pancreas in more realistic scenarios. In view of this goal, research studies will fo-
cus in the future on the validation of the techniques illustrated in this paper in the
context of more comprehensive models (such as [15]), to better understand the way
a real patient would react to the proposed treatment. In addition, formal extensions
of the observer-based control to more general cases (state delays, discretized input
and output) are under investigation.
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