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Abstract: This paper presents a theoretical examination of acoustic metamaterials and 

their application in vibration absorption. Acoustic metamaterials are concerned as analogy 

to electromagnetic metamaterials which are suitable for refraction and decline of 

electromagnetic waves at certain frequencies. Due to the analogy with these materials, the 

acoustic metamaterials is required to have negative effective (dynamic) mass to enable 

vibration elimination at the certain frequency. The concept of negative effective mass is 

explained based on the motion of an externally excited mass-in-mass system where the 

vibration elimination at the certain frequency is due to the mass-spring unit. Using these 

vibration absorber units, the acoustic metamaterial beams are made. Depending on the 

way how the units are attached to the beam, the structure may absorb waves in one-

direction (for example, longitudinal waves) or waves in two directions (such as, for 

instance, transversal and longitudinal waves). Moreover, according to the frequency 

properties of the absorber units the acoustic metamaterial beams may give one, two or 

multi-frequency gaps. This work provides an overview of the mathematical models of 

acoustic metamaterial beams and also contains some suggestions for future work. 

Keywords: elastic metamaterial; acoustic metamaterial beam; spring-mass systems; 

negative effective mass 

1 Introduction 

One of the requirements of environmental and occupant health protection is noise 

reduction and elimination of sources of sound pollution. Various methods are 

developed to damp and reduce the acoustic influence on the health of a 

population. One of the most often applied methods is based on the use of materials 

for acoustic isolation which absorb the acoustic energy. It is known that acoustic 

waves which come to a surface generate waves in the surface itself and these 

waves transmit sound power through the surface to the other side [1]. The fraction 

of the sound power that is transmitted to the other side is known as the 

transmission coefficient Tc and the isolation effectiveness is expressed through the 

transmission loss TL which is defined as: 
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𝑇𝐿 = 10𝑙𝑜𝑔10 (
1

𝑇𝑐
)       (1) 

where TL is in dB. The frequencies which are of interest to be absorbed are in the 

low range of human hearing, approximately 100 Hz to 1 kHz, as for these values 

the irritation to health occurs. Usually, the acoustic wave transmission loss is 

controlled by the so-called ‘mass law’: the isolation mechanism is the inertia 

provided by the mass of the isolating partition. The transmission loss for normally 

incident wave propagation through a homogenous solid is estimated as: 

𝑇𝐿 = 10𝑙𝑜𝑔10 [1 + (
𝜋𝜌ℎ𝑓

𝑐𝜌𝑎
)

2

]      (2) 

where ρ is the density and h is the thickness of the solid, f is the frequency, ρa  is 

the density of air and c is the speed of sound in the air. In [1] it is stated that at a 

given frequency the level of sound transmitted through a partition will be reduced 

by 5-6 dB for every doubling of the mass of the partition. 

To improve the reduction of the acoustic effect in buildings, machinery, ships and 

other applications instead of acoustic isolators the novel acoustic absorbers are 

suggested. Their working mechanism is based on the concept of conventional 

vibration absorbers. As it is well known, the conventional vibration absorber 

consists of a lumped mass m2 attached with a linear spring k2 to the mechanical 

system with mass m1 (see Fig. 1). If the excitation force acts on the mass m1 

differential equations of motion are: 

𝑚1𝑢̈1 + 𝑘2(𝑢1 − 𝑢2) = 𝐹0exp⁡(𝑖𝜔𝑡)                (3) 

𝑚2𝑢̈2 + 𝑘2(𝑢2 − 𝑢1) = 0                  (4) 

Solutions of (3) and (4) have the form: 

⁡𝑢1 = 𝑎1 exp(𝑖𝜔𝑡) ,⁡⁡⁡⁡⁡⁡⁡𝑢2 = 𝑎2 exp(𝑖𝜔𝑡)                (5) 

where: 

𝑎1 =
𝐹0(𝑘2−𝑚2𝜔2)

(𝑘2−𝑚1𝜔2)(𝑘2−𝑚2𝜔2)−𝑘2
2  

          

𝑎2 =
𝐹0𝑘2

(𝑘2−𝑚1𝜔2)(𝑘2−𝑚2𝜔2)−𝑘2
2                                                                        (6)               

and i=√−1  is the imaginary unit. For this model only one local resonance 

frequency exists. The vibration absorber uses the 1:1 external resonance between 

the forcing frequency on the main system ω and the local resonance frequency of 

the absorber 𝜔2 = √𝑘2/𝑚2 to transform the vibration energy to the absorber and 

stop the main system motion (u1=0). Based on this conception an idea of a new 

material, which would be the acoustic absorber is developed. Moreover, motivated 

by the mathematical analogy between acoustic and electromagnetic waves the 

investigation were directed toward so-called metamaterials which exhibit 

exceptional properties not observed in nature or in the constituent materials [2]. 
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Figure 1 

Mass-in-mass model [3] 

Acoustic (elastic) metamaterials have to be the counterpart to electromagnetic 

metamaterials. The main property of electromagnetic metamaterials is that they 

have negative permittivity and magnetic permeability which result in a negative 

refractive index [4-7]. According to analogy it has to be asked the acoustic 

metamaterial to be with negative mass density and negative modulus. The 

negative effective mass/mass density is not the physical property of the material 

but is the result of inaccurate modeling of acoustic metamaterials. 

2 Effective Mass Density for Mass-in-Mass System 

Let us consider the mass-in-mass model (Fig.1) as a subunit of a metamaterial 

which is suggested to be identified with a single mass with effective mass meff  

whose motion is the same as that of m1. The effective mass is defined by treating 

this two-degree-of-freedom system as a one-degree-of-freedom one by assuming 

the internal absorber being unknown to the observer. In other words, the identity 

of the internal mass m2 would be ignored and its effect would be absorbed by the 

introduction of an effective mass meff  as shown in Fig. 2. 

 

Figure 2 

Identity of the mass-in-mass model and of the model with effective mass [8] 

If the motion of the mass m1 is u1, the effective mass has also the motion u1. 

Linear momentums for the both models given in Fig. 2 have to be equal, i.e.: 
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𝑚𝑒𝑓𝑓
𝑑𝑢1

𝑑𝑡
⁡= 𝑚1

𝑑𝑢1

𝑑𝑡
⁡+ 𝑚2

𝑑𝑢2

𝑑𝑡
⁡                                                 (7) 

Substituting the assumed solution (5) into (7) it is: 

𝑚𝑒𝑓𝑓𝑎1 ⁡= 𝑚1𝑎1 ⁡+ 𝑚2𝑎2             (8) 

Motion of the mass m2 is given with the equation (4). Substituting the assumed 

solutions (5) we have 

−𝑚2𝜔
2𝑎2 + 𝑘2(𝑎2 − 𝑎1) = 0                     (9) 

After some modification equations (8) and (9) yield the effective mass [8-10]: 

𝑚𝑒𝑓𝑓 = 𝑚1 + 𝑚2
𝑘2

𝑘2−𝑚2𝜔2                                                     (10) 

which is for: 𝜔2 = √𝑘2/𝑚2 

 𝑚𝑒𝑓𝑓 = 𝑚1 + 𝑚2
𝜔2

2

𝜔2
2−𝜔2                                           (11) 

Analyzing the relation (11) it is obvious that the effective mass depends on the 

ration between the excitation frequency ω and natural frequency of the system ω2: 

𝑚𝑒𝑓𝑓 = 𝑚1 + 𝑚2
1

1−
𝜔2

𝜔2
2

                                                                          (12) 

For the system three modes of motion are evident: 1) acoustic mode when ω<ω2, 

2) resonant mode when ω=ω2 and 3) optic mode when ω>ω2. For the acoustic 

mode the effective mass is positive. In the resonant mode the effective mass is 

theoretically infinite. In the optical mode the effective mass is negative for: 

𝑚1 + 𝑚2
1

1−
𝜔2

𝜔2
2

< 0.                                                                     (13)                                            

Otherwise, it is positive. In Fig. 3, according to (12) the effective mass - frequency 

diagram is plotted  

Differentiating the relation (7) we have: 

(𝑚𝑒𝑓𝑓 − 𝑚1)𝑢̈1 = 𝑚2𝑢̈2                                                                                     (14) 

Substituting (14) into (4) we obtain: 

𝑘2(𝑢2 − 𝑢1) = −(𝑚𝑒𝑓𝑓 − 𝑚1)𝑢̈1                         (15)                                                                 

Equation (3) and (15) give: 

−𝑚𝑒𝑓𝑓𝑢̈1 = 𝐹0exp⁡(𝑖𝜔𝑡)                                                                                     (16) 

The effective mass is the ratio between the excitation force and acceleration of the 

mass m1: 

𝑚𝑒𝑓𝑓 =
𝐹

𝑢̈1
=

𝐹0

−𝜔2𝑎1
= −

𝐹

𝜔2𝑢1
                                                                             (17) 



Acta Polytechnica Hungarica Vol. 13, No. 7, 2016 

 – 47 – 

 

Figure 3 

Dimensionless effective mass meff/m1 as a function of ω/ω2 [10] 

According to Fig. 3 it is obvious that for ω2=ω the effective mass tends to infinity. 

For that value the motion of mass m1 is zero and the inertial force of the mass m2 

is equal to the excitation force: 𝐹(𝑡) = 𝑚2𝑢̈2. So, the external force is eliminated 

with the inertia force -𝑚2𝑢̈2 through the spring k2. This is the concept of vibration 

absorbers. 

Finally, the following is concluded: 

In the acoustic mode, when ω<ω2, the effective mass meff is positive and the 

motions u1 and u2 are in phase. For the optical mode, when ω>ω2, the effective 

mass meff  may be positive or negative, while the displacements u1 and u2 are 1800 

out of phase. Then, the absorber works efficiently in the optical mode against the 

external acting on the mass m1. The excitation is absorbed with the inertial force. 

3 Mechanical Structure with Negative Effective Mass 

Mechanical structures are designed by incorporating of the previously mentioned 

mechanical subunits in a natural material with the aim to resonate during 

mechanical wave propagation in it. For the local mechanical resonance the 

designed structures have negative effective masses. The negative mass behavior is 

generated by oscillating of resonant structures within the material with 1800 out of 

phase to the acoustic waves which apply to surface. It causes existence of 

frequency bands where wave propagation is theoretically impossible. These bands 

are usually called band gaps. The aim of the designed structure is to overcome the 

limitations of the mass law for solids by creating engineered materials with useful 

acoustic band gaps, and the key to the generation of these band gaps is an 

inhomogeneous structure. Huang et al. [10] composed a one-dimensional lattice 

which contains mass-in-mass lattices (Fig. 4). The model is based on those with 

negative mass as explained in [7] and [8]. Equations of motion for the unit cell 

are: 
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𝑚1
(𝑗)

𝑢̈1
(𝑗)

+ 𝑘2(𝑢1
(𝑗)

− 𝑢2
(𝑗)

) + 𝑘1 (2𝑢1
(𝑗)

− 𝑢1
(𝑗−1)

− 𝑢1
(𝑗+1)

) = 0 

𝑚2
(𝑗)

𝑢̈2
(𝑗)

+ 𝑘2(𝑢2
(𝑗)

− 𝑢1
(𝑗)

) = 0                                                                           (18) 

where k1 is the rigidity of connection. 

 

Figure 4 

Model of subunits connected in lattice [11] 

The harmonic wave solution for (18) is assumed in the form: 

𝑢1
(𝑗)

= 𝑈1 exp(𝑖𝛽𝑥 − 𝑖𝜔𝑡) 

𝑢2
(𝑗)

= 𝑈2 exp(𝑖𝛽𝑥 − 𝑖𝜔𝑡) 

𝑢1
(𝑗+1)

= 𝑈1 exp(𝑖𝛽𝑥 − 𝑖𝜔𝑡)exp⁡(𝑖𝛽𝐿) 

𝑢1
(𝑗−1)

= 𝑈1 exp(𝑖𝛽𝑥 − 𝑖𝜔𝑡)exp⁡(−𝑖𝛽𝐿)                                                            (19)  

Substituting (19) into (18) two homogenous equations for U1 and U2 follow which 

give the dispersion equation: 

𝑚1𝑚2𝜔
4 − [(𝑚1 + 𝑚2)𝑘2 + 2𝑚2𝑘1(1 − cos(𝛽𝐿))]𝜔2 + 2𝑘1𝑘2(1 − cos(𝛽𝐿)) = 0   

                    (20)                                                                        

In Fig. 5, both branches of the band structure (20) which correspond to the optical 

mode, when ω>ω0, and to the acoustic mode, when ω<ω0, are plotted. The 

parameter values are m2/m1=9, k2/k1=0.1 and ω0=√𝑘2/𝑚2=149.07s-1. The 

frequency distribution is given as a function of the wave number βL. 

The displacements in (19) are functions of exp(𝑖𝛽𝑥). For the case when the wave 

number has a complex form: 

𝛽𝐿 = 𝛾 + 𝑖𝛼                                                                                                  (21)   

it is 

𝑢 ∝ exp (
𝑖𝛾𝑥

𝐿
) exp (−

𝛼𝑥

𝐿
).                                                                                   (22) 
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Figure 5 

Nondimensional dispersion curve for the mass-in-mass lattice model [10] 

The amplitude of the displacement decays as the exponential function exp⁡(−
𝛼𝑥

𝐿
) 

if the attenuation factor 𝛾 is positive. It is of interest to analyze the case when 

wave frequency approaches the local resonance frequency ω0 and the attenuation 

factor 𝛾 theoretically becomes unbounded. 

If the lattice system is reduced to a homogenous mono-atom lattice system in 

which only effective masses meff  are connected by springs with rigidity k1, the 

homogenous lattice system has the dispersion equation: 

𝜔2 =
2𝑘1

𝑚𝑒𝑓𝑓
(1 − cos(𝛽𝐿))                                                                                    (23) 

The suggested model is equivalent to the original mass-in-mass system if their 

dispersion equations (20) and (23) are identical. Substituting (23) into (20) the 

effective mass is obtained: 

 𝑚𝑒𝑓𝑓 = 𝑚𝑠𝑡 +
𝑚2(

𝜔

𝜔0
)2

1−(
𝜔

𝜔0
)2

                                                                                        (24) 

where 𝑚𝑠𝑡 = 𝑚1 + 𝑚2.⁡ Comparing (24) with the result (12) it is seen that they 

are identical and that the diagram shown in Fig. 3, is also valid here. Let us extend 

the discussion of the mentioned diagram. Especially the vibrations out of resonant 

region are considered. Thus, for frequencies far below the local resonance, the 

internal masses oscillate in phase with the solid in which they are embedded. But 

as the excitation frequencies passes through the resonance and the effective mass 

becomes negative near the local resonance frequency ω0, the phase angle of the 

response changes by close to 1800. That means that near this frequency the 

acceleration of the resonant structures within the metacomposite will have a 

component whose direction is opposite to that of the force of pressure applied to 

the surface of the metacomposite. 
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However, the most important rule is the resonant one. Analyzing relations (23) 

and (24) it is obvious that the effective mass is negative only when (1-cos(βL)) is 

negative and when k1 and ω2 are positive. It means that the dimensionless 

wavenumber βL has to be complex. Thus, frequencies corresponding to the 

negative mass are in the stopping band. In other words, a negative effective mass 

in the equivalent mass-spring lattice system yields spatial attenuation in wave 

amplitude. For a material with a negative mass density the speed of sound is 

imaginary, and therefore, only evanescent waves, which decay exponentially from 

the surface, can exist. 

 

Figure 6 
A one-dimensional material where the mass depends on the frequency ω and can be negative [8]. 

Based on this theoretical consideration, Milton and Willis [8], developed a bar-

like acoustic metamaterial with heterogeneous material properties which are valid 

for waves of wavelengths much longer than the sizes of subunits. Milton and 

Willis [8] concluded that solids containing many identical small resonators [8] 

exhibit band gap behavior near their resonance frequency, even though the size 

and spacing of the resonators were over a 100 times smaller than the wavelength 

at the band gap frequency. Furthermore, lack of order of periodicity in the 

arrangement of the resonators did not materially affect the results, and the band 

gap frequencies could be tuned through changes to the resonators natural 

frequencies. These locally resonant sonic materials (LRSM), shown in Fig. 4, are 

considered to be a type of acoustic absorbers [11-13]. The model of the structure 

is one-dimensional [8]. From a bar, made of rigid material, cylindrical cavities of 

length d have been carved out. Each cavity is modeled as a sphere of mass m and 

radius r. The sphere is attached to the ends of the cavity with two possibly 

viscoelastic springs each having the same complex spring constant K. It is 

assumed that everything is varied harmonically with time with frequency ω. The 

model is plotted in Fig. 6. 

In Fig. 7 the fabricated lattice beam is shown. The model is suitable to describe 

the propagation of the dispersive wave in the lattice. 
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Figure 7 

a) The fabricated chiral lattice beam and its zoomed unit cell and b) the topology of the hexagonal 

chiral lattice [14] 

This structure is non-homogenous. If it is required that the metamaterial behave 

like a homogeneous material described by its averaged material properties, its 

subunits must be much smaller than the shortest wavelength of waves propagating 

in it. The averaging may result in the existence of a useful but mysterious 

phononic stop-band that allows no waves within that frequencies range to 

propagate forward, and most current designs of acoustic metamaterials are based 

on the stop-band effect [10]. For manufacturing such metamaterials with tiny 

subunits in order to have stop-bands, expensive manufacturing techniques are 

required including micro and nano-manufacturing technologies. 

4 Design of Metamaterial Beams for Broadband 

Absorption and Isolation 

To eliminate the lack of the previously mentioned beam-absorbers made of LRSM 

and of the chiral lattice beam, acoustic absorber based on a metamaterial beam is 

developed. The metamterial beam consists of a uniform isotropic beam with many 

small spring-mass-damper subsystems integrated at separated locations along the 

beam to act as vibration absorbers (Fig. 8). The spring-mass-damper subsystems 

create a stop-band in which no elastic waves in this frequency range can propagate 

forward. The concepts of negative effective mass and stiffness is applied for 

metamaterial design. 
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Figure 8 
Model of a metamaterial beam for vibration absorption [2]. 

The proposed metamaterial beam is based on the concept of conventional 

mechanical vibration absorbers. It uses the incoming elastic wave in the beam to 

resonate the integrated spring-mass-damper absorbers to vibrate in their optical 

mode at frequencies close to but above their local resonance frequencies to create 

shear forces and bending moments to straighten the beam and stop the wave 

propagation. Metamaterials usually designed as metacomposites have unusual 

response to elastic waves. 

4.1 Metamaterial Beams for Broadband Absorption of 

Longitudinal Elastic Waves 

In Fig. 9, a metamaterial beam for acoustic absorption is presented. In the 

longitudinal beam spring-mass subsystems are integrated. The beam has to absorb 

low and high frequency elastic waves [3]. The absorption of the longitudinal 

elastic waves is based on the negative mass effect. The concept of the negative 

effective mass and vibration absorbers with two-degrees-of-freedom, mass-in-

mass system, forced with harmonic excitation is demonstrated in Section 2. It is 

shown that the negative effective mass density gives the stop band when the 

incoming wave frequency is slightly higher than the local frequency. 

 

Figure 9 

Wave propagation in a metamaterial beam [12]. 

Using the concept of vibration absorbers, the unit cell model is shown in Fig. 10. 

The equations for a unit cell of an infinite metamaterial beam can be derived using 

the extended Hamiltonian principle. 

∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝑛𝑐) = 0
𝐿

0
                                                                                   (25) 

where T is kinetic energy, U is the elastic energy and Wnc is the work of the 

nonconservative forces. 
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Figure 10 
The unit cell model 

For the unit cell the kinetic energy is: 

𝛿𝑇 = −∫ 𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2 𝛿𝑤
𝐿

2

−
𝐿

2

− 𝑚2
𝜕2𝑢2

𝜕𝑡2 𝛿𝑢2                                                            (26)    

the elastic energy is: 

𝛿𝑈 = 𝑘2(𝑢2 − 𝑤0)𝛿(𝑢2 − 𝑤0) + ∫𝐸𝐼
𝜕4𝑤

𝜕𝑥4
𝑑𝑥𝛿𝑤

𝐿
2

−
𝐿
2

 

+𝐸𝐼 (
𝜕2𝑤1

𝜕𝑥2
)𝛿 (

𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2
)𝛿 (

𝜕𝑤−1

𝜕𝑥
) 

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1 + 𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) 𝛿𝑤0 + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) 𝛿𝑤0      

                    (27)                                                                           

and the work of the nonconservative forces is:            

𝛿𝑊𝑛𝑐 = 𝐸𝐼 (
𝜕2𝑤1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤−1

𝜕𝑥
)           

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1                                                                  (28)  

where (
𝜕𝑤

𝜕𝑥
) = 𝜃. It is 𝐸𝐼 (

𝜕3𝑤0+

𝜕𝑥3 ) ≠ 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) because the vibration absorber 

creates a concentrated shear force at x=0. Substituting (26) – (28) into (25) and 

separating the terms with δw and δu2 the following equations are obtained: 

0 = −𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + [𝑘2(𝑢2 − 𝑤0) + 𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 )] 𝛿(𝑥)  

𝑚2
𝜕2𝑢2

𝜕𝑡2 + 𝑘2(𝑢2 − 𝑤0) = 0                                                                                (29)    

where δ(x) is the Dirac function. Due to periodicity along x direction, flexural 

wave propagation through the infinite periodic beam can be expressed in a 

harmonic form: 

𝑤(𝑥, 𝑡) = 𝑊𝑒𝑥𝑝(𝑖𝛽𝑥 − 𝑖𝜔𝑡), 𝑤0(𝑥, 𝑡) = 𝑊0𝑒𝑥𝑝(−𝑖𝜔𝑡) 
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𝑢2(𝑥, 𝑡) = 𝑈2𝑒𝑥𝑝(−𝑖𝜔𝑡)                                                                                     (30) 

where i=√−1  is the imaginary unit, β is the wave number and ω is the vibration 

frequency. 

If the metamaterial is treated as a homogenized uniform beam the integration over 

the whole length gives: 

0 = 𝑘2(𝑢2 − 𝑤0) − ∫ 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 𝑑𝑥
𝐿

2

−
𝐿

2

− 𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 )                           (31)                                                                                                                                                                                                                                                                                                

Using the harmonic wave solution and the assumption that the beam segment is a 

lumped mass 𝑚̃ and a spring 𝑘̃ system, we have: 

𝑚̃
𝜕2𝑤0

𝜕𝑡2 + 𝑘̃𝑤0 + 𝑘2(𝑢2 − 𝑤0) = 0                                                                     (32)                                                                               

where: 

𝑚̃ = −
2𝜌𝐴𝑠𝑖𝑛(

𝛽𝐿

2
)

𝛽
,⁡⁡⁡⁡⁡⁡⁡ 𝑘̃ = −2𝐸𝐼𝛽3𝑠𝑖𝑛 (

𝛽𝐿

2
)                                                       (33)                                                             

The values 𝑚̃ and 𝑘̃ depend on the wavenumber β. Substituting (30) into (29) and 

(32), and equating the determinant of corresponding parameters with zero, we 

have: 

[
−𝑚̃𝜔2 + 𝑘̃ + 𝑘2 −𝑘2

−𝑘2 −𝑚2𝜔
2 + 𝑘2

] = 0                                                              (34)                                                                   

The dispersion equation follows as: 

(−𝑚̃𝜔2 + 𝑘̃ + 𝑘2)(−𝑚2𝜔
2 + 𝑘2) − 𝑘2

2 = 0                                            (35) 

To each specific value of ω the positive value of β has to be determined. If no 

positive values for β exist, the value of ω is the stop band. Namely, if β=iα and 

α>0, and: 

𝑤(𝑥, 𝑡) = 𝑊𝑒𝑥𝑝(−𝛼𝑥)exp⁡(−𝑖𝜔𝑡)                                                         (36) 

there is an evanescent non-propagating wave and the stop band exists. 

4.2 Metamaterial Beams with Two Spring-Mass Systems for 

Broadband Absorption of Longitudinal Elastic Waves 

The metamaterial previously considered has single-mass absorbers and produces a 

stop band at the high-frequency side. Pai et al., [12] presented a new metamaterial 

beam based on multi-frequency vibration absorbers for broadband vibration 

absorption. 

The metamaterial beam consists of a uniform isotropic beam and small two-mass 

spring-mass-damper subsystems at many locations along the beam to act as multi-

frequency vibration absorber. This type of absorber produces two stop-bands. 
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The existence of stop-bands is caused by spring-mass-damper subsystems and 

their existence is explained according to negative effective mass and effective 

stiffness. 

For an incoming wave with a frequency in one of the two stop-bands, the 

absorbers are excited to vibrate in their optical modes to create shear forces to 

straighten the beam and stop the wave propagation. For an incoming wave with a 

frequency outside of but between the two stop-bands, it can be damped by the 

damper with the second mass of each absorber. So, the stop-bands are connected 

into a wide stop-band. 

To show the use of multi-frequency vibration absorbers to design broadband 

metamaterials Pai et al. [2] consider the three-degree-of-freedom oscillating 

system shown in Fig. 11. On the mass m1, connected with the spring k1 and 

damping c1, a harmonic excitation force acts. The vibration absorber uses two 

lumped masses m2 and m3 connected with springs k2 and k3 and damping 

coefficients c2 and c3. 

 

Figure 11 
Three-degree-of-freedom oscillatory system [2] 

We describe the motion of the system with a system of coupled differential 

equations 

𝑚1𝑢̈1 + (𝑐1 + 𝑐2)𝑢̇1 − 𝑐2𝑢̇2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 𝐹0exp⁡(𝑖𝜔𝑡) 

𝑚2𝑢̈2 + (𝑐2 + 𝑐3)𝑢̇2 − 𝑐2𝑢̇1 − 𝑐3𝑢̇3 + (𝑘2 + 𝑘3)𝑢2 − 𝑘2𝑢1 − 𝑘3𝑢3 = 0 

𝑚3𝑢̈3 + 𝑐3(𝑢̇3 − 𝑢̇2) + 𝑘3(𝑢3 − 𝑢2) = 0                                                (37) 

The aim of the absorber is to make u1=0 by adjusting one of two local natural 

frequencies equal to the excitation frequency ω. For the undamped system for 

which u1=0 equations (37) simplify to: 

𝑚2𝑢̈2 + (𝑘2 + 𝑘3)𝑢2 − 𝑘3𝑢3 = 0 

𝑚3𝑢̈3 + 𝑘3(𝑢3 − 𝑢2) = 0                    (38)                                                                 
where the natural frequencies are: 
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𝜔1𝑛 , 𝜔2𝑛 = 𝜔2
√𝑚̅+𝑘̅+𝑚̅𝑘̅±√(𝑚̅+𝑘̅+𝑚̅𝑘̅)2−4𝑚̅𝑘̅

2𝑚̅
                                               (39) 

where 𝑚̅ =
𝑚3

𝑚2
, 𝑘̅ =

𝑘3

𝑘2
, 𝜔2 = √

𝑘2

𝑚2
. Around these two frequencies two stop-bands 

exist. 

The goal is to design metamaterial beam based on the vibration absorber shown in 

Fig. 12 that can stop propagation of elastic waves. The unit cell model is plotted in 

Fig. 12a. Using the relation (25), equations for a unit cell model are derived. 

 

Figure 12 
Model of an infinite metamaterial beam: a) a unit cell, b) an infinite beam [2] 

The kinetic energy, elastic energy and the work of the non-conservative forces are: 

𝛿𝑇 = −∫ 𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2 𝛿𝑤
𝐿

2

−
𝐿

2

− 𝑚2
𝜕2𝑢2

𝜕𝑡2 𝛿𝑢2 − 𝑚3
𝜕2𝑢3

𝜕𝑡2 𝛿𝑢3                              (40) 

𝛿𝑈 = 𝑘2(𝑢2 − 𝑤0)𝛿(𝑢2 − 𝑤0) + ∫ 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 𝑑𝑥𝛿𝑤
𝐿

2

−
𝐿

2

          

+𝐸𝐼 (
𝜕2𝑤1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤−1

𝜕𝑥
) + 𝑘3(𝑢3 − 𝑢2)𝛿(𝑢3 − 𝑢2)                   

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1 +𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) 𝛿𝑤0 + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) 𝛿𝑤0       (41)                                                                          
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𝛿𝑊𝑛𝑐 = 𝐸𝐼 (
𝜕2𝑤1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤−1

𝜕𝑥
)  

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1                                                       (42) 

where (
𝜕𝑤

𝜕𝑥
) = 𝜃. It is 𝐸𝐼 (

𝜕3𝑤0+

𝜕𝑥3 ) ≠ 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) because the vibration absorber 

creates a concentrated shear force at x=0. Substituting (40) – (42) into (25) and 

separating the terms with δw, δu2 and δu3 the following three equations are 

obtained: 

0 = −𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝐸𝐼
𝜕4𝑤

𝜕𝑥4  + [𝑘2(𝑢2 − 𝑤0) + 𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 )] 𝛿(𝑥)      (43)                                                                   

𝑚2
𝜕2𝑢2

𝜕𝑡2 + 𝑘2(𝑢2 − 𝑤0) + 𝑘3(𝑢2 − 𝑢3) = 0                                              (44) 

𝑚3
𝜕2𝑢3

𝜕𝑡2 + 𝑘3(𝑢3 − 𝑢2) = 0                                                                   (45) 

where δ(x) is the Dirac function. Due to periodicity along x direction, wave 

propagation through the infinite periodic beam can be expressed in a harmonic 

form: 

𝑤(𝑥, 𝑡) = 𝑊𝑒𝑥𝑝(𝑖𝛽𝑥 − 𝑖𝜔𝑡), ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤0(𝑥, 𝑡) = 𝑊0𝑒𝑥𝑝(−𝑖𝜔𝑡),⁡⁡⁡       

𝑢2(𝑥, 𝑡) = 𝑈2𝑒𝑥𝑝(−𝑖𝜔𝑡),              𝑢3(𝑥, 𝑡) = 𝑈3𝑒𝑥𝑝(−𝑖𝜔𝑡)                      (46) 

where i=√−1 is the imaginary unit, β is the wave number and ω is the vibration 

frequency. If the metamaterial is treated as a homogenized uniform beam the 

integration over the whole length (see Fig. 12b) gives: 

0 = 𝑘2(𝑢2 − 𝑤0) − ∫ 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 𝑑𝑥
𝐿

2

−
𝐿

2

− 𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 )                       (47) 

Using the harmonic wave solution and the assumption that the beam segment is a 

lumped with mass 𝑚̃ and spring rigidity 𝑘̃, we obtain the equation (32) with 

explanation (33). The values 𝑚̃ and a spring 𝑘̃ depend on the wavenumber β. 

Substituting (46) into (32), (44) and (45), and separating the terms with W0, U2 

and U3 the determinant of the system is formed. The solution of the system is non-

trivial if the determinant is zero, i.e., 

[

−𝑚̃𝜔2 + 𝑘̃ + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 − 𝜔2𝑚2 −𝑘3

0 −𝑘3 𝑘3 − 𝜔2𝑚3

] = 0                           (48) 

Developing the determinant (48) the dispersion equation is obtained: 

(−𝑚̃𝜔2 + 𝑘̃ + 𝑘2)[(−𝑚̃𝜔2 + 𝑘̃ + 𝑘2)(𝑘3 − 𝜔2𝑚3) − 𝑘3
2] − 𝑘2

2(𝑘3 − 𝜔2𝑚3) = 0   (49) 

For the solution of the dispersion equation in which the wave number β=iα and 

α>0, the function w has the form (36). It is obvious that the amplitude decreases 

and tends to zero, i.e., the stop-band exists. 
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4.3 Multi-Flexural Band Gaps in an Euler-Bernoulli Beam 

with Lateral Local Resonators Transformation of the 

Flexural into Longitudinal Vibrations 

In the previous text, single and double band gap metamaterials are shown, which 

are not suitable for the multi-frequency wave suppression. Further, in the 

configurations the local resonators are attached to continuum beams to generate 

band gaps for stopping the propagation of waves in one (longitudinal or lateral or 

torsional) direction. Wang et al. [15] suggested an acoustic metamaterial beam 

which is based on the multi-frequency vibration absorption and transformation of 

the flexural waves into longitudinal, i.e., the flexural vibration is attenuated into 

another direction in a beam. For theoretical consideration of the dynamic 

characteristics of the flexural wave propagation in an Euler-Bernoulli beam with 

lateral local resonators (LLR) the mathematical model is formed. Namely, it is of 

interest to suppress the flexural vibration in such a beam. The LLR structures 

substructures partially transform the flexural waves into longitudinal waves and 

block the wave propagation in another direction. In Fig. 13 a simple model of an 

Euler-Bernoulli beam with periodical LLR substructures in x direction is plotted. 

One LLR consists of two lateral resonators with spring and mass constant of k2 

and m2 and a vertical resonator with spring and mass constant k1 and m1 and a four 

link mechanism with rigid and massless trusses. The beam and the vertical 

resonator vibrate in z direction and the lateral resonators vibrate in x direction with 

displacement w, u1 and u2, respectively. 

 

Figure 13 
Construction of metamaterial beam: a) an infinite beam, b) a typical unit cell [15] 

The unit cell of an infinite periodic metamaterial beam is shown in Fig. 13b. 

Inertial force in z direction of the elementary beam is: 

𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2
 



Acta Polytechnica Hungarica Vol. 13, No. 7, 2016 

 – 59 – 

Inertial forces of masses are: 𝑚1
𝜕2𝑢1

𝜕𝑡2  and 𝑚2
𝜕2𝑢2

𝜕𝑡2 .  Then, the elementary kinetic 

energy is: 

𝛿𝑇 = −𝑚1
𝜕2𝑢1

𝜕𝑡2 𝛿𝑢1 − 2𝑚2
𝜕2𝑢2

𝜕𝑡2 𝛿𝑢2 − ∫ 𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2 𝛿𝑤
𝐿/2

−𝐿/2
                          (50)      

The elastic force of the unit beam is 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 𝑑𝑥 and the elastic forces in springs are 

𝑘1(𝑢1 − 𝑤0) and  𝑘2(𝑢2 − 𝑣) where w0 is the flexural displacement of the center 

of beam and v is the displacement of the truss end connected the lateral resonators. 

Based on the assumption of small displacements, we have: 

𝑣 = −
𝐻

2𝐷
(𝑤0 − 𝑢1)                                                                              (51)     

Introducing the boundary conditions for the elementary unit, the elementary 

elastic energy of the system is: 

𝛿𝑈 = 𝑘1(𝑢1 − 𝑤0)𝛿(𝑢1 − 𝑤0) + ∫ 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 𝑑𝑥𝛿𝑤
𝐿

2

−
𝐿

2

 +2𝑘2(𝑢2 +
𝐻

2𝐷
(𝑤0 −

𝑢1))𝛿(𝑢2 +
𝐻

2𝐷
(𝑤0 − 𝑢1)) +𝐸𝐼 (

𝜕2𝑤1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤−1

𝜕𝑥
) 

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1 +𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) 𝛿𝑤0 + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) 𝛿𝑤0      (52)                                              

The elementary work of the non-conservative forces is: 

𝛿𝑊𝑛𝑐 = 𝐸𝐼 (
𝜕2𝑤1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤1

𝜕𝑥
) − 𝐸𝐼 (

𝜕2𝑤−1

𝜕𝑥2 ) 𝛿 (
𝜕𝑤−1

𝜕𝑥
)    

−⁡𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) 𝛿𝑤1 + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) 𝛿𝑤−1                                                       (53) 

Because of a concentrated shear force created by LLR structure at x=0, it is 

𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) ≠ 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ). Using the extended Hamilton’s principle (25) with (51)-

(53) and separating the terms with δw, δu1 and δu2 the following equations are 

obtained: 

0 = −𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + [𝑘1(𝑢1 − 𝑤0) −
𝐻

𝐷
𝑘2 (𝑢2 +

𝐻

2𝐷
(𝑤0 − 𝑢1)) +

𝐸𝐼 (
𝜕3𝑤0+

𝜕𝑥3 ) 𝛿𝑤0 + 𝐸𝐼 (
𝜕3𝑤0−

𝜕𝑥3 ) 𝛿𝑤0] 𝛿(𝑥)                                                  (54)                                                                

−𝑚1
𝜕2𝑢1

𝜕𝑡2 − 𝑘1(𝑢1 − 𝑤0) +
𝐻

𝐷
𝑘2 (𝑢2 +

𝐻

2𝐷
(𝑤0 − 𝑢1)) = 0                          (55) 

𝑚2
𝜕2𝑢2

𝜕𝑡2 + 𝑘2 (𝑢2 +
𝐻

2𝐷
(𝑤0 − 𝑢1)) = 0                                                    (56) 

Using the wave propagation function (46) and treating the system as a 

homogenized uniform metamaterial beam, the integration over the whole length 

gives: 
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0 = −∫ 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 𝑑𝑥
𝐿

2

−
𝐿

2

− 𝐸𝐼 (
𝜕3𝑤1

𝜕𝑥3 ) + 𝐸𝐼 (
𝜕3𝑤−1

𝜕𝑥3 ) +𝑘1(𝑢1 − 𝑤0) −
𝐻

𝐷
𝑘2 (𝑢2 +

𝐻

2𝐷
(𝑤0 − 𝑢1))                                                                                     (57) 

𝑚̃
𝜕2𝑤0

𝜕𝑡2 + 𝑘̃𝑤0 + 𝑘1(𝑢1 − 𝑤0) −
𝐻

𝐷
𝑘2 (𝑢2 +

𝐻

2𝐷
(𝑤0 − 𝑢1)) = 0                    (58) 

where: 

𝑚̃ = −
2𝜌𝐴𝑠𝑖𝑛(

𝛽𝐿

2
)

𝛽
,⁡⁡⁡⁡⁡⁡⁡ 𝑘̃ = −2𝐸𝐼𝛽3𝑠𝑖𝑛 (

𝛽𝐿

2
)  

Combining (58) with (55) and (56) we obtain: 

[
 
 
 
 −𝑚̃𝜔2 + 𝑘̃ − 𝑘1 −

1

2
(
𝐻

𝐷
)
2
𝑘2 𝑘1 +

1

2
(
𝐻

𝐷
)
2
𝑘2 −

𝐻

𝐷
𝑘2

𝑘1 +
1

2
(
𝐻

𝐷
)
2
𝑘2 𝑚1𝜔

2 − 𝑘1 −
1

2
(
𝐻

𝐷
)
2
𝑘2

𝐻

𝐷
𝑘2

−
𝐻

2𝐷
𝑘2

𝐻

2𝐷
𝑘2 𝑚2𝜔

2 − 𝑘2]
 
 
 
 

× {

𝑊0

𝑈1

𝑈2

} = 0   (59)                                                                                     

To obtain the non-trivial solution, the determinant of the coefficient matrix should 

be set to 0. If the solution of the determinant is a function of the wavenumber 

which is non-positive or even imaginary the wave propagation is stopped. So, the 

flexural waves are partially transformed into longitudinal waves and then totally 

blocked. It stimulates the lateral resonance to create inertial forces to 

counterbalance the shear forces resulting in wave suppression in the other 

directions. This type of beams is promising to be applied in the flexural absorber 

and isolator for vibration and noise control. 

Conclusions 

It can now be concluded: 

1)  The theory of a conventional vibration absorber (spring - mass system) is 

suitable for explanation of the basic concept of acoustic metamaterial with 

negative effective (dynamic) mass. 

2)  Acoustic metamaterial beams contain an isotropic beam with built-in spring-

mass vibration absorbers.  Depending on the way how the units are attached 

to the beam, the structure may absorb waves in one-direction (such as, for 

example, longitudinal waves) or waves in two directions (such as, for 

instance, transversal and longitudinal waves).  

3)  Usually, acoustic metamaterial beams may produce one or two frequency 

gaps. At the moment, it is of interest to produce beams for multi-frequency 

gaps. The stop-bands are rather small. They need to be enlarged. 

4)  We suggest introducing the construction of the acoustic metamaterial beams 

units which would have springs with nonlinear elastic properties instead of 

linear ones. Some investigation are already done (see [16-20]). The distinctive 

feature of this non-linear absorber would be that the vibration energy 
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transferred to the absorber, would be either localized or dissipated internally 

and would not re-enter the main system, even if the excitation of the main 

system is halted. 
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