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Abstract: The paper introduces a novel conceptualization algorithm optimized for a 

distributed, Big Data environment. The proposed method uses a concept generation module 

based on clique detection in the context graph. The presented work proposes a novel 

incremental version of the Bron-Kerbosch maximal clique detection method. The efficiency 
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even comparable with the usual batch methods. The analysis of the clique detection 

algorithm in MapReduce architecture provides efficiency comparison for large scale 

contexts. 
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1 Introduction 

One of the big challenges of current information technology is the efficient 

information management and knowledge engineering in Big Data environment. 

With the spread of new technologies like the Internet of Things, the amount of 

gathered data steadily increases and new data repository techniques are needed to 

provide an efficient data management. Another trend to be witnessed is the 

increased demand on intelligent smart applications. The adaption of knowledge 

engineering methods on Big Data collection is a real challenge for the IT 

community. The term ’ontology’ in information science is defined as “a formal, 

explicit specification of a shared conceptualization” [10]. The term 

conceptualization refers to determination of the concept classes and concept 

relationships at an abstract model level for the phenomenon in the domain world. 

The ontology models cover not only concepts, but they also include the 

corresponding constraints on their usage, too. The ontologies emphasize aspects, 

such as, inter-agent communication and interoperability [25]. From the viewpoint 
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of engineering, the term 'concept' is used as an identifier or a descriptor for a 

cluster of objects. In this sense, the concept describes besides the naming also the 

properties of the cluster. In the history of knowledge engineering, a great variety 

of data structures was developed to represent the meaning of concepts. Nowadays, 

these models exist parallel and are used for different purposes. 

According to [19], ontology models can be classified into very different model 

categories, based on the purpose, specificity and expressiveness. Application 

ontology is used to control some computational applications and has a 

methodological emphasis on fidelity. Reference ontology has a theoretical focus 

on representation and it is used primarily to reduce terminology ambiguity among 

members of a community. Based on the abstraction level, generic (upper level) 

and core and domain ontologies can be distinguished. According to [22], the main 

representation levels of ontologies are ƒ  

- Taxonomy: Objects are hierarchically classified, e.g. A is child of B.  

- Thesaurus: Objects are related (e.g. A is a B; A is related with B). ƒ  

- Logic-mathematical representation: Object relations are presented in 

formal notations (e.g. synonym(a, b):=synonym(b, a);). 

Analogously to a database, wherein structure and data form the whole, an 

ontology consists of rules and concepts. Languages for the description of 

ontologies are RDF-S, DAML+OIL, F-Logic, OWL, WSML or XTM. Using rule-

based representations in deductive databases ensures further facts can be deduced 

from stored relations. 

Current ontology languages, like OWL, provide efficient tools to perform 

complex operations on the ontology database, like consistency verification, rule 

induction or reasoning process. The main application area of ontology frameworks 

is the area of knowledge engineering [11], where the ontology engine is integrated 

into internal module of expert systems. The efficiency of the ontology engines is 

based primarily on the correctness, completeness and integrity of the ontology 

database. From this point of view, the key element in ontology management is 

application of efficient and proper ontology database construction methods. 

There are many difficulties in ontology construction, for instance, huge amounts 

of information to be collected, huge diversity of information sources and 

inconsistency within the different information sources. The ontology database 

construction usually contains the following steps [23, 42]: 

1. Ontology scope  

2. Ontology capture  

3. Ontology encoding  

4. Ontology integration  
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5. Ontology evaluation  

6. Ontology documentation. 

The current ontology construction methods are mainly based on automated 

ontology construction methods. In the automated ontology construction methods, 

the information is usually extracted from documents in natural language. This step 

requires a complex knowledge extraction engine including among others a natural 

language processing (NLP) module and a concept identification module. 

The main goal of the paper is to introduce a novel conceptualization algorithm 

optimized for a distributed, Big Data environment. The next section provides a 

survey on the development of the text to ontology methods. The main goal of text 

to ontology module is to assign the best matching concept cluster to the new 

words found in the source text. The third section introduces some approaches for 

concept assignment. The most sophisticated and most complex one is based on 

clique detection mechanism in the context graph. The paper presents a novel 

incremental version of Bron-Kerbosch maximal clique detection method. The 

efficiency of the method is evaluated with random context test. The fourth section 

contains the analysis of the distributed Big Data architecture. This architecture 

provides an efficient implementation framework to process a large amount of 

heterogeneous text document sources. The proposed architecture and map-reduce 

processing models are implemented in a test environment where the efficiency of 

the prototype system could be evaluated. 

2 Process of Word to Concept Mapping 

The Word Sense Disambiguation (WSD) [18] is a method to select the appropriate 

meaning for a given context. The Word Category Map method [13] clusters the 

words based on their semantic similarity. The words having similar contexts 

belong to the same cluster or they appear close to each other on the map. The 

context of a word can be constructed in many different ways. In the simplest case, 

the context is equal to the set of neighboring words within the sentences [21]. In 

this model, the context is converted into a vector representation calculating the 

average neighborhood vector. The main benefit of this method is the cost 

efficiency and the simplicity. On the other hand, this model cannot manage the 

ambiguity of the words, i.e. a word can carry many different meanings. In this 

model, the semantic similarity is measured using the standard vector distance 

methods. Beside the simple vector similarity methods, there are approaches to use 

more sophisticated clustering methods, like the SOM method [21]. In the other 

group of approaches, the context is given with a graph instead of a simple vector. 

In ontology management, the thesaurus graphs are used to denote the higher level 

semantics. 
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The WSD ontologization process can work in one the following modes [4]: 

dictionary based, supervised, semi-supervised and unsupervised. In the first mode, 

a dictionary containing the definitions of the different concepts is used as 

background knowledge. The similarity of two words is measured with the overlap 

of their dictionary definitions [16]. In the case of supervised mode, a background 

ontology is referenced to get information on existing semantic clusters. In the 

ontology database, a word can be assigned to several meanings. In order to 

distinguish the different concepts related to a word, a specific component is 

introduced which represents the meaning. The most widely used implementation 

of this component is the synset component defined in a wordnet ontology 

database. 

Wordnets are usually based on architecture presented first in [8] and they organize 

semantic-lexical knowledge into a graph knowledge base. Nowadays, Wordnet 

knowledge bases are available for many different languages. 

The synset can be considered as the set of words carrying a common meaning. 

The elements of a synset are synonyms and a word can be an element of different 

synsets. Using the wordnet knowledge base, the ontologization process performs a 

pattern matching task, where the matching method locates the synset most similar 

to the given word. Within this method, the key parameters refer to the similarity 

measure applied to compare a word and a synset. In most approaches, the 

similarity measure between the word and the synset is aggregated from the 

similarity values between the target word and the words in the synset. 

In the literature there are different approaches to measure similarity between a 

word and a synset. The extension of the related proportion approach [20] yields 

the neighborhood similarity measured with: 
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Where 

w: the target word 

C: the synset 

v: word in the knowledge base 

r: relation in the semantic graph 

nCrv : the number of edges from elements of C to v along with an edge type r 

Nwr : the set of words connected to w along with an edge of type r 

r: the weight factor of the relationship r. 

The average cosine method (see for example [3]) calculates distance as the 

average cosine value between the description vectors: 
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Where 

vN : the adjacency vector for word v (describing the words connected to v). 

Having an ontology graph, an important step in text to semantic conversion is to 

select the proper meaning of the word. 

The supervised approach requires the development of a background knowledge 

base in the form of a dictionary or of an annotated text corpus. The quality of the 

WSD process depends on the quality of the background knowledge base. The 

main problem of this approach is the high cost in the generation of a 

comprehensive and valid knowledge base. The unsupervised methods provide 

automatic approaches for construction of the knowledge base. 

The first important result on the field of unsupervised WSD was the semi-

supervised proposal in [27]. The proposed method is based on two main properties 

of human languages: 

- Nearby words provide strong and consistent clues as to the sense of a 

target word 

- The sense of a target word is highly consistent within any given 

document. 

The algorithm first generates a small set of seed representative of the different 

senses of a word. This step is a supervised phase to assign the semantic label to 

some of the word occurrences. In the next step, a supervised classification 

algorithm is used to learn the differences between the contexts of the different 

word senses. In the last step, all word occurrences are classified with the generated 

classifier to one of the sense labels. 

The unsupervised method of [4] requires only the WordNet sense inventory and 

unannotated text to determine the meaning category of a target word. The 

algorithm includes the following processing steps. First, a pool of application 

context is collected from the web. In the next step, the sentences containing the 

target word are parsed with the help of a dependency parser in a parser tree. The 

third phase is used to merge these trees into a dependency graph. In the last step a 

graph matching algorithm is applied to find the appropriate meaning. This phase is 

based on the idea that if a word is semantically coherent with its context, then at 

least one sense of this word is semantically coherent with its context. 

In the case of fully unsupervised methods, no background knowledge base is 

available, only an unannotated source text can be used. In this case, only the 

unsupervised clustering method can be used to create synsets for the words in the 

document pools. Clustering methods are used to partition objects into groups 

where the objects within the same group are similar to each other while objects 

from different groups are dissimilar. In general, the mentioned clustering methods 

do not usually meet this basic constraint of clustering, as they allow building of 

large clusters containing object pairs with low similarity. One way to provide 
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better clustering is the application of Quality Threshold Clustering [12]. The QTC 

method ensures that the distance between any two elements within a cluster 

should be below a given threshold. 

All of the mentioned clustering algorithms generate non-overlapping clusters. 

There are some application areas where the constraint that every element must 

belong to only one cluster that is not met. In the semantic clustering, for example, 

a word may belong to different clusters, i.e. to different meanings at the same 

time. Clustering in social networks or in distributed networking are other 

application areas where non-overlapping clustering yields in significant loss of 

information. It is shown in [15] that overlapping improves the approximation 

algorithms significantly for minimizing graph conductance. 

Overlapping clustering can be considered as a generalization of the standard 

clustering methods. The first important approach for overlapping clustering is 

given in [14]. In this approach, the input structure is a graph where the edges 

denote object pairs having a similarity value above a given threshold. A cluster is 

considered as a maximal complete subgraph, i.e. all of the members are connected 

to each other. The proposed cluster detection method is based on the k-

ultarmetrics. 

Another group of approaches is based on the extension of the classical clustering 

methods. In [5], the k-means method is adjusted for overlapping clustering. 

Initially, random cluster centers are specified. In the next phase, the elements are 

assigned to a subset of clusters. For a given element x, the set of container clusters 

is generated in the following way. First, sort the cluster centers based on the 

increasing distances from the given element. Calculate the set A of the first k 

container clusters for which: 
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mc : the cluster prototype for cluster c. 

In the third step, the new positions of the cluster centers are calculated. The 

performed tests show that this method is a good alternative of the more 

sophisticated complex techniques. 

The third important category of overlapped clustering methods is based on the 

mixture model. In general, the key input source for a mixture model is the 

observation matrix X. The unknown parameter set is denoted with Θ. The basic 

assumption is that each data Xi point belongs to the following probability density 

[1]: 
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where 

k: the number of mixture components 

Θh: the parameters of the h-th mixture component 

h: the probability of the h-th mixture component. 

The parameter values are usually calculated with the EM method where the goal is 

to maximize likelihood of the given observation set: 
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3 Incremental Bron-Kerbosch Algorithm 

Our investigation focuses on the clustering with the clique detection approach 

originated from the work of [14]. The observation graph can be considered as a 

similarity graph. The nodes are objects of the problem domain and there is an 

undirected edge between two vertices (vi,vj) if and only if the d(vi,vj) < ε for a 

given threshold ε. A clique, i.e. maximal complete subgraph corresponds to a 

cluster. A cluster symbolizes a concept in the target ontology knowledge base. 

The goal of the investigated algorithm is to detect all maximal cliques in the 

observation graph. 

The Bron-Kerbosch algorithm is one of the most widely known and most efficient 

algorithms for maximal clique detection. The algorithm was presented first in [2]. 

The Bron–Kerbosch algorithm uses a recursive backtracking method to search for 

all maximal cliques in a given graph G(V,E). The pseudocode of the algorithm: 

BronKerbosch(R, P, X): 

if |P| = |X| = 0 

report R as a maximal clique 

v   P: 

BronKerbosch(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v)) 

P = P \ {v} 

X = X ⋃ {v} 

In the pseudocode, the following notations are used: 

P: the subset of V that can have some common elements with the 

investigated clique 

R: the subset of V that share all of its elements with the investigated clique 
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X: the subset of V that is disjoint with the investigated clique  

N(v): the set of vertices connected to v. 

Initially, the set P contains all of vertices of G and both R and X are empty sets. In 

every iteration call, an element of P is processed and the sets P, R, X are refined 

based on the current neighborhood set. For the recursive call, the set of possible 

clique members are restricted to the elements in the neighborhood set. Similarly, 

the set of possible excluded elements are reduced to a subset of the neighborhood 

set. In the main loop, the elements of P are tested in a predefined order. After 

testing an element v from P, it will be removed from the set of candidate vertices. 

The basic version of the Bron-Kerbosch algorithm uses a large number of 

recursive calls, resulting in an execution complexity of worst-case running time 

O(3
n/3

) [7] [24]. The updated method uses a specific pivoting strategy to cut 

computational branches. The pivot element is selected as the element with highest 

number of neighbors. 

TomitaBronKerbosch(R, P, X): 

if |P| = |X| = 0 

report R as a maximal clique 

let u P  X: |N(u)  P |  max 

 v  P\N(u) 

TomitaBronKerbosch(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v)) 

P = P \ {v} 

X = X ⋃ {v} 

The presented methods generate the output structure for a fixed given input 

context. This approach is used for static investigation when there is no change in 

the input context. The incremental construction method is used for such problems 

where the initial context is extended incrementally. The incremental methods are 

used for applications where context changes from time to time. The modeling of 

cognitive learning processes is a good example of such dynamic problem 

domains. 

Our investigation focuses on the incremental clique generation method. For the 

analysis of the proposed method, the following initial notations are used: 

G(V,E) : context graph 

V : set of vertices in G 

E : set of edges in G 

N : number of vertices in V. 
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It is assumed that there exists a total ordering of the vertices, .i.e. 

]}..1[|{ NivV i  . 

Taking only the first n elements of V, we get a reduced context graph Gn(Vn,En), 

where 

},|{ niVvvV iin   

},,),(|),{( njijijin VvvEvvvvE  . 

Let C(Gn) denote the set of maximal cliques related to Gn. The cliques in C(Gn) 

can be separated into two disjoint groups, depending on the property whether they 

are new cliques or old cliques related to C(Gn-1). 

)()()( n
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n
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)}()(|{)( 1 nnn
o GCGCccGC  

)(C\)()( o
nnn
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It can be easily verified that for every c  C
u
(Gn), 

cvn  . 

Regarding  C
u
(Gn), the following proposition can be used in the incremental clique 

generation method. 

Proposition 1: 

The set of new cliques of Gn is equal to the clique set generated for the inclusive 

neighborhood of the new vertex. 

)()( nSCGC n
u   

where 

Sn(x) = (V'n, E'n) 

V'n = {vi | vi  V, i < n, (vi, vn)  E} {vn} 

E'n = {(x,y) | (x,y)  E, xV'n, y  V'n}. 

The inclusive neighborhood set Sn is defined as the neighborhood of vn extended 

with the element vn. 

Proof. 

Let us take a new clique in Gn: 

)( n
u GCc . 
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It can be seen that 

cvn  , 

i.e. vn is connected to all other elements of c. Thus, all elements of c are in the 

inclusive neighborhood of vn and all the edges in Gn are also edges in Sn. This 

means that c is a complete subgraph of Sn, too. As the assumption that c is 

maximal in Gn and not maximal in Sn, imply a contradiction, the clique c is a 

maximal complete subgraph in Sn. Thus 

)()( nSCGC n
u  . 

On the other hand, taking a c clique from C(Sn), c will be complete in Gn, because 

all the edges in Sn are also edges in Gn. If c is not maximal in Gn then there exists a 

vertex vi such that 

nninii EvvVvcv  ),(,, . 

Thus, i < n and 

n
n Vv  . 

This means that c is not maximal in S
n
, and this is a contradiction, i.e. 

)()( nn
u SCGC  . 

Based on the considerations shown in the proof, we get: 

)()( nn
u SCGC  .                                                                                             

Proposition 1 can be used to generate the new cliques in an effective way, but not 

only the insertion of the new cliques is the required update operation on C(Gn-1). 

Namely, some of the cliques in C(Gn-1) may become invalid as they are not 

maximal anymore. For example, in Figure 1, the clique set of G4 is 

{(1,3),(2,3),(3,4)}. After adding v5, S5 is equal to ({2,3,4,5}, {(2,3), (2,5), (3,4), 

(3,5), (4,5)}). The clique set for S5 is {(2,3,5),(3,4,5)}. The resulting clique set for 

G5 is {(1,3), (2,3,5), (3,4,5)}. Thus, the clique (2,3) is covered by (2,3,5) and (3,4) 

is covered by (3,4,5). 

Thus, the update of C(Gn-1) after generation of C(Sn) includes the removal of some 

existing cliques and the insertion of some new cliques. As the covered clique is 

the same as the new clique except the vn vertex, it is worth to reduce S
n
 to the 

elements of the neighborhood and to exclude vn. This new graph is denoted with 

Sn-.The incremental clique generation algorithm can be summarized in the 

following listing: 

IncrementalBronKerbosch(Gn-1, C(Gn-1), Sn): 

C(Sn-) = BronKerbosch(Sn-) 

C(Gn) = C(Gn-1) 
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 c  C(Sn-): 

C(Gn) = C(Gn) \ {c} 

c’ = c   {vn} 

C(Gn) = C(Gn)  {c’} 

return C(Gn) 

The lookup operation in the set C(Gn) has a central role in optimization of the 

algorithm. Instead of a naive sequential lookup operation having a cost O(D) 

where D denotes the number of elements in the set, a prefix tree structure is used. 

In the prefix tree structure, the clique sets are represented with an ordered list of 

vertex identifiers. The tree stores these ordered lists where the lists having the 

same prefix part share the same prefix segments in the tree. 

 

Figure 1 

Extension of the similarity graph 

The results of the performed direct tests show that the proposed method provides 

an efficient solution for incremental clique detection tasks. In Figure 2, the 

comparison of the naive incremental method and the proposed incremental 

method is presented. The time shows the execution time in logarithmic scale. As 

the result shows, the proposed algorithm is about 100 times faster than the naive 

method. In the naive method, for every new incoming object, the whole clique set 

is recalculated from scratch. In Figure 2, the data set NI denotes the naive method 

and symbol I is for the proposed incremental method. 

 

Figure 2 

The comparison of the naive and the proposed methods 
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The method outperforms not only the other incremental approaches but it has 

better cost characteristics than the standard batch method. For larger input graphs, 

the proposed method is significantly faster than the basic Bron-Kerbosch method 

(see Table 1, Table 2). The runtime is displayed in seconds. 

Table 1 

Comparison of the basic Bron-Kerbosch and the proposed methods for edge probability 0.5 

Vertices Cliques 
BK 

Runtime  
Incremental 

Runtime 

100 5407 0.41 0.32 

150 23440 2.47 1.91 

200 76838 10.42 8.36 

250 214457 38.1 28.6 

300 496754 103.5 82.4 

Table 2 

Comparison of the basic Bron-Kerbosch and the proposed methods for edge probability 0.3 

Vertices Cliques 
BK 

Runtime  
Incremental 

Runtime 

100 749 0.04 0.04 

150 2277 0.12 0.08 

200 5126 0.18 0.12 

250 9566 0.41 0.24 

300 16858 0.80 0.51 

The efficiency of the proposed incremental algorithm is based on the divide and 

conquer paradigm. The algorithm generates the clique set only for the 

neighborhood graph during each iteration. The size of the neighborhood graph 

depends on the edge probability in the input graph. If the cost function of the basic 

Bron-Kerbosch algorithm is denoted with 

))(( nCO b  

then the complexity of the proposed incremental method belongs to 

)))'()'((( nDnCnO bb   

where 

n’ : the average size of the neighborhood graph, 

Db(n): the number of cliques in a graph containing n vertices. 
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The first term in the formula corresponds to the generation of the cliques for the 

neighborhood graph while the second term relates to the elimination of the 

covered cliques from the result set. The presented formula provides an acceptable 

approximation of the measured cost values but further investigation is needed to 

work out a more accurate cost function involving the additional parameters, too. 

4 Implementation in the MapReduce Architecture 

Although the speed of computers is increasing rapidly, the fact that using several 

machines in an interconnected system can be more effective in certain cases was 

recognized many years ago. There are many solutions in the literature that can be 

used in Big Data analysis. MPP (Massively Parallel Processing) systems [29] store 

data after splitting it according to its features, for example we could store regional 

data split by the country or state. In-memory database systems [30] are very 

similar, except that they store data in memory, thus speeding up the retrieval of 

the records. This area is the topic of active research by Big Database vendors such 

as Oracle. BSP (Bulk Synchronous Parallel) systems [31] use multiple 

transformation processes that run in parallel on different nodes. Each process gets 

data from a master node and then sends the result back. After this barrier-like 

synchronization the next iteration can be executed. 

The big breakthrough came when Google published their scientific article 

involving a new architecture for processing huge amounts of data. This 

architecture is called MapReduce. The article called MapReduce: Simplified Data 

Processing on Large Clusters [28] created a whole new concept that became the 

basis for the most popular framework of Big Data analysis to date. The concept 

itself is very simple. We all know that parallel tasks are most effective when we 

can run in parallel for a long time without any synchronization barriers. This 

means that if we can divide our algorithms in such a manner, the result can 

outperform the single-threaded version. Conversely, if we need to communicate 

between the threads, these synchronization points can slow down the algorithm. 

MapReduce got its name from its two most important phases: map and reduce. 

The map phase produces key-value pairs which become the input of the reducer 

phase that yields the final results. Although Google's implementation is not open 

source, there are multiple open source implementations among which the most 

popular one is Apache Hadoop. This framework is actively developed, constantly 

improving and has many technologies built on top of it like Apache Pig (SQL-like 

interface), Apache Hive (data warehouse infrastructure), Apache HBase 

(distributed NoSQL database), etc. that specializes the Hadoop platform to more 

specific problems. 
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The base concept of MapReduce and Apache Hadoop [32] is to split the incoming 

data to multiple nodes and process them locally. This way ‒ after the initial data 

copies ‒ the mapper tasks can work on their local data instead of retrieving them 

during processing. To make sure that the data is not lost on node failures, every 

data chunk is stored on multiple nodes, but in case of normal work without 

failures every node works on its local hard disk. These low-level interactions are 

abstracted by the Hadoop Distributed File System (HDFS), inspired by the Google 

File System (GFS) [9]. This is the most important component of Hadoop as it 

provides a distributed file system for the MapReduce tasks. The input data must 

be copied to this file system ‒ which makes sure that every data chunk is persisted 

on multiple nodes ‒, then the mappers get data from this file system and the 

reducers write the results back to HDFS. Figure 3 displays an overall view of a 

very simplified MapReduce task. On the left side of the image we can see the 

input records that come from HDFS. Next to them there are some mapper tasks 

that receive one input record at a time and produce key-value pairs from them. For 

simplicity the figure only has two types of keys (green and blue). The reducers 

receive objects with common keys and create the final output of the application 

that is persisted back to HDFS. 

 

Figure 3 

The MapReduce architecture 

There are many scientific research areas that are directly or indirectly related to 

MapReduce and Apache Hadoop. During literature research we can find scientific 

articles from the area of agriculture [33] through telecommunication [34] to AI-

based recommendation systems [35] that use Hadoop as the application platform. 

It is not surprising that graph algorithms can be ported to this parallel architecture 

and thus speeds up different search methods. 

The main research areas of Hadoop based graph processing are the semantic web 

related problems and processing of social network data. This work [36] tries to 

solve the problem of maintaining and querying huge RDF graphs by using 

Hadoop, and provides an interface on top of it to answer SPARQL queries. 

(SPARQL [37] is the W3C standard language for querying ontologies based on 
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RDF triplets.) This is a classic ontology related problem that can be integrated 

with MapReduce to make the processing distributed. 

There are  also proposals [38] on a Hadoop based solution to the problem of 

processing huge graphs in parallel. Unlike most solutions that try to separate the 

nodes in the form of classic MapReduce jobs, this article presents a system that 

has a highly flexible self-defined message passing interface that makes it easier to 

port graph algorithms on top of the MapReduce platform. GPS (Graph Processing 

System) [39] is a complete open-source system similar to Google's Pregel [40], 

extending it to provide an interface for processing huge graphs in parallel with 

global communication among the nodes. As we can see, these two research results 

combine Big Data analysis with graph processing, thus connecting to our research 

area and results presented in this article. 

The Spider system [41], tries to solve the problem of processing data on the 

semantic web. The system has two modules: one that loads the graph and one that 

can query the previously loaded graph leveraging the Hadoop framework. 

Considering the implementation of the clique detection algorithm, two different 

approaches were tested. In the first approach, the task unit is the processing of the 

neighborhood graph of a node. Here, for every node a separate task is generated. 

The mapper calculates the clique set in the neighborhood. The drawback of this 

approach is that it generates the same clique several times. The main benefit of the 

method is that every node can work separately with a smaller amount of local 

data. 

In the second approach, all of the nodes work with the global data set and, share 

the global graph. The work is separated in such way that every clique is generated 

only once. Here, the merging process can be executed with low cost. Alternately, 

every node requires the whole dataset. 

Regarding the first approach (A), the full graph is divided by its nodes. After the 

GraphRecordReader reads the input file from HDFS and reconstructs the graph 

object, it takes each node from the graph and all of its neighbors and yields a new 

subgraph from these nodes. This way if we find a maximal clique in the subgraph, 

it will be a maximal clique of the full graph as well. The Hadoop framework 

distributes these subgraphs based on the system configuration and it makes sure 

that every mapper node gets approximately the same number of subgraphs. Each 

mapper process gets one subgraph at a time with a null key, and executes one of 

the Bron-Kerbosch variations on it. After getting the maximal cliques, it calculates 

the hash code of the resulting cliques and yields key-value pairs consisting of the 

hash code as the key and the clique as the value. Since the mapper node might 

produce the same clique multiple times, a combiner is used on each node that 

drops every repeated result to optimize speed so that these don’t have to be sent 

over the network to the reducer nodes. 
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The reducer then gets one hash code at a time and the list of cliques that have that 

hash code. Ideally this list only contains one clique, but if multiple mappers 

produced the same clique, the size of the list can be more than one. Therefore the 

reducer yields only the first element of the list. The Hadoop framework then 

writes the resulting cliques from the reducer’s output to HDFS. 

In the second approach (B), the set of cliques is divided by the smallest node 

index value within the clique. This method yields in a disjoint partitioning, thus 

the merge phase can be implemented with a minimal cost. In the implementation 

of the method a shared HDFS storage is used to store the input similarity graph. 

The map component performs a Bron-Kerbosch clique detection algorithm where 

the main loop is restricted to the nodes assigned to this mapper process. The key 

value in the MapReduce framework is equal to the set of minimum index values 

assigned to a node for processing. Every mapper node works with the common 

shared input graph to generate the corresponding clique set. 

We tested the two approaches on randomly generated graphs with fixed node 

counts and edge probabilities to verify their correctness in practice. Although we 

didn’t have a full Hadoop cluster up and running, we simulated such environments 

with the help of Docker, a lightweight virtualization software. We set up two 

docker images and initiated one master and related slave containers, both 

executing map and reduce tasks. In the future we would like to set up a physical 

Hadoop cluster and verify our assumptions in a real distributed environment. 

The cost models of the proposed methods can be approximated with the following 

formulas: 

NNNCNNC
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)(
cos  

where 

N: the number of nodes in the input graph 

Nn : the number of nodes in a neighborhood graph 

L: the number of mapper nodes 

C(n) : the number of cliques for a graph having n vertices. 

The formula is based on the fact that the cost of clique detection algorithm is a 

linear function of the number of generated cliques. The experimental function of 

C(N) is shown in Figure 4, while Figure 5 presents the corresponding execution 

costs. These formulas and the test results show that method A is suitable for those 

architectures where the neighborhood graph is relatively small (sparse input 

graph) and the L value is large. The method B is optimal for the cases where L is 

small and the graph is relatively dense. 
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Figure 4 

The number of generated cliques 

 

Figure 5 

The cost function of the proposed iterative method 

Conclusions 

One option to generate concepts in an ontology framework, is to build clusters of 

similar objects. The cliques in a similarity graph can be considered as overlapping 

quality threshold clusters. The proposed incremental clique detection algorithm 

provides an efficient clustering method for dynamic contexts changing from time 

to time. The presented incremental model is comparable even with the usual batch 

methods. The cost analysis for large contexts shows that the optimal 

implementation in the MapReduce architecture depends on the basic parameters of 

the input similarity graph. 
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