
Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 127 –

Strategies to Fast Evaluation of Tree Networks

Raed Basbous

Eastern Mediterranean University, Faculty of Arts and Sciences,

Department Mathematics,

Famagusta, North Cyprus via Mersin 10, Turkey, and

Al-Quds Open University, Department of Administrative Affairs,

Jerusalem, PO Box 58100, Palestine

E-mail: rbasbous@qou.edu

Benedek Nagy

Eastern Mediterranean University, Faculty of Arts and Sciences,

Department Mathematics,

Famagusta, North Cyprus via Mersin 10, Turkey, and

University of Debrecen, Faculty of Informatics, Department of Computer Science,

4010 Debrecen, PO Box 12, Hungary

E-mail: nbenedek.inf@gmail.com

Abstract: Special tree graphs could model Cognitive Infocommunication Networks. The

various modalities of the network are represented by various types of vertices, e.g.,

additions, multiplications. Tree graphs/networks are widely used in several other

theoretical and practical fields. Expression trees are well-known tools to visualize the

syntactic structure of the expressions. They are helpful also in evaluations, e.g., decision

trees are widely used. Games and game theory form an important field in Artificial

Intelligence and it has several connections to Optimization, Business and Economy. Game

trees are used to represent games.

In this paper, certain types of tree networks are considered using various operations at

their inner vertices, e.g., multiplication, (constrained) addition and the usual minimum and

maximum (related to conjunction and disjunction of Boolean algebra). Evaluation

techniques are presented, as well as, various pruning algorithms (related to short circuit

evaluation in the Boolean case) that can quicken the evaluation in most cases. Based on the

commutativity of the used operations, the evaluations can be more effective (faster) by

reordering the branches of the tree. The presented techniques are useful to optimize

(minimize) the size of the tree networks in various cases without affecting the final

result/decision of the network.

Keywords: expression trees; game trees; short circuit evaluation; pruning of trees;

decision making; reordered trees

mailto:rbasbous@qou.edu

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 128 –

1 Introduction

Cognitive infocommunications (CogInfoCom) form an interdisciplinary field that

works with various modalities [1]. These multimodal sensors usually form various

networks. In this paper, we deal with special networks that form tree graphs. The

multimodality is modelled by various types of nodes, let us say, operators in the

tree. In our model the leaves may represent some measured data, and via the

network a value (a decision, an evaluation of the situation, etc.) must be

determined/computed. The edges of the tree specify the communication channels

in which some data or (sub)result can be transferred from one node to another.

Our model is also connected to the efficient evaluation process of various

expression-trees that may represent CogInfoCom Networks.

Evaluation of various types of expressions is essential in every field connected to

Mathematics, Computer Science and Engineering. Logical expressions can be

evaluated in a fast way based on the following facts: if a member of a conjunctive

formula is false, then the whole formula is false; if a member of a disjunctive

formula is true, then the whole formula is true [10]. These facts are used in several

programming languages to have a fast evaluation of logical formulae, e.g., in

conditions [4]. This technique is called short circuit evaluation. There is a very

similar idea that is used in game trees in Artificial Intelligence (AI). At the most

investigated zero-sum two-player games, the minimax algorithm gives the best

strategies for the players and it also answers the question, who has a winning

strategy [8]. To compute the minimax algorithm every leaf of the tree is computed

and the whole tree is evaluated. However, in most of the cases, it can be done with

a much less effort, using alpha and beta pruning techniques [5, 8].

We assume that (AI) agents are starting from the leaves of the tree and they are

communicating until the result is given at the root. In our CogInfoCom Network

model the agents are various types of cognitive sensors. The sensors at leaves

measure the environment/receive input data. The sensors/nodes communicate to

each other in a bottom-up direction. When an inner cognitive sensor receives the

data from its children nodes, it computes its task (based on its modality, i.e., type

of operation) and sends its result to its parent node. The root node generates the

final result/decision of the whole CogInfoCom Network. By using pruning

techniques, there, usually a (much) less number of agents is enough to obtain the

same results. We can reduce the communication cost of the network and possibly

we do not need to use all the measured data, some subset of these data could be

enough to infer the exact result of the network/expression tree. In this way fast

evaluation techniques are important not only by saving time and space in a one-

processor system when an expression is evaluated, but they also help to optimize

the parallel resources in (bounded) parallel systems, e.g., CogInfoCom networks.

There is also an enhancement of the previously mentioned pruning techniques: by

reordering the branches of the tree network in such a way that the evaluation starts

with the shortest branch.

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 129 –

Our algorithms can also be applied in artificial decision making systems that are

closely related to systems used in cognitive-informatics and info-communications

[9, 11]. Related human decisions and cognitive systems were also presented in [3].

In this paper, we consider special formula/expression trees (as models of

CogInfoCom Networks) that can be considered a type of extension of the usual

game trees/logical expression trees. Special extensions, as a mixture of decision

and game-trees were already discussed in [6]. Here, by a further step, such

extensions of game-trees are investigated in which some operations may not be

directly connected to games, but with usual (mathematical or logical) expressions

to give more modalities to our systems. We use values 0 and ±1 at the leaves of

the trees. In some cases, it is not necessary to know the value of every descendant

to evaluate a node of the tree, these cases lead to various pruning techniques that

are presented here, in this way simplifying the (evaluation of the) network.

In the next section we recall some analogous techniques (mostly from [6, 8]) and

we also fix our notations. We also show that reordering the branches of the tree

(restructuring a Boolean network based on two modalities represented by

conjunction/minimum and disjunction/maximum) may lead to an even faster

evaluation. In Section 3 we present the results about pruning the tree networks

considered here. In Section 4, it is presented that reordering of the branches of the

tree may lead to a faster exact evaluation of the network. Finally, a short

concluding section closes the paper.

2 Preliminaries

In this section we recall some related concepts, specially decision trees, game

trees, minimax algorithm and alpha-beta pruning. We also present short circuit

evaluation techniques for Boolean logic and, further, in Section 4 we show, as one

of our new results, its more advanced version, based on the reordering of the

branches of the expression tree.

In this paper, we use the term inner node for every node (including the root node)

that is not a leaf.

2.1 Decision Trees

In this subsection we recall decision trees (see, e.g. in [6]); they can also be used

to evaluate games against the “Nature”. Let a person be given who has some

decision points, and some random events with known probabilities, also let us

consider a tree with decision nodes and chance nodes. At decision nodes the

person chooses a successor node. At chance nodes a random event happens: the

successor node is chosen randomly with the probabilities known in advance. The

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 130 –

leaves of the tree represent the payoff values. The aim of the player is to maximize

the payoff value and for this purpose she/he chooses the branch that leads to the

highest expected value at every decision node.

Figure 1

A decision tree

Assume that P(N) denotes the probability of the event N. Figure 1, shows an

example of a decision tree. It includes decision nodes, where the person chooses

among the successor, i.e. children nodes (represented by rectangles). At nodes

represented by ellipses random events will determine the successor node (the

probabilities are written on the edges). A numeric value, the expected outcome, is

assigned to every node of the tree; it is shown under the rectangle/ellipse. These

values are computed by Algorithm 1 (it is from [6]).

Algorithm 1 (Decision)

1. function Dec(N)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let N1, N2, …, Nm be the successors of N

7. if N is a decision node then

8. return max {Dec(N1), Dec(N2), …, Dec(Nm)}

9. if N is a chance node then

10. return P(N1)Dec(N1)+ … + P(Nm)Dec(Nm)

11. end Dec

The technique presented in Algorithm 1 is called expectimax [6], since at decision

points it computes the maximum of the expected values of the successor nodes,

while at chance nodes the expected values of the successor nodes are computed by

finding the sum of the assigned probabilities multiplied by the value of the given

successors.

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 131 –

In this paper we deal only with problems having a bounded set of possible

outcomes {0, ±1}. This restriction/simplification on the input/measured data

allows us to develop some efficient algorithms.

2.2 Game Theory

An important and widely investigated field of game theory is about deterministic,

strategic, two-player, zero-sum, finite games with perfect information. An instance

of a game begins with the first player’s choice from a set of specified alternatives,

called moves. After a move, a new state of the game is obtained; the other player

is to make the next move from the alternatives available to that player. In same

state of the game there is no move possible, the instance of the game has been

finished. In such states each player receives a payoff, such that their sum is zero,

and therefore it is enough to know the payoff of the first player. In some typical

zero-sum games, the value +1 assigned to the player in case of win, -1 in case of

lose, and 0 in case of draw.

Game trees can be used to represent games. The nodes represent the states of the

game, while the arcs represent the available moves. In the game tree there are two

kinds of nodes representing the decision situations of the two players. At the root

node the first player has decision. The leaves represent terminal states with their

payoff values (for the first player).

In every two player, zero sum, deterministic game with perfect information there

exists a perfect strategy for each player that guarantees the at least result in every

instance of the game. The most fundamental result of game theory is the minimax

theorem and the minimax algorithm. The theorem says: If a minimax of one player

corresponds to a maximin of the other player, then that outcome is the optimal for

both players.

2.2.1 Minimax Algorithm

Minimax theorem is a fundamental result of game theory. Players adopt strategies

which maximize their gains, while minimizing their losses. Therefore, the solution

is the optimal for each player that she/he can do for him/herself in the face of

opposition of the other player. These optimal strategies and the optimal payoff can

be determined by the minimax algorithm. It uses simple recursive functions to

compute the minimax values of each successor state [8].

Algorithm 2 represents the way that minimax algorithm works (it is recalled from

[6, 8]), see also, e.g., Figure 2 for examples.

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 132 –

Figure 2

A minimax tree

Algorithm 2 (MIN and MAX)

1. function MAXValue(N)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = -∞

7. for every successor Ni of N do

8. let v= max{v, MINValue(Ni)}

9. return v

10. end MAXValue

1. function MINValue(N)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = +∞

7. for every successor Ni of N do

8. let v= min{v, MAXValue(Ni)}

9. return v

10. end MINValue

2.2.2 Alpha-Beta Pruning

The minimax algorithm evaluates every possible instance of the game, and thus to

compute the value of the game, i.e. its optimal payoff, takes usually exponential

time on the length of the instances of the game. To overcome on this issue special

cut techniques can be used. The alpha-beta pruning helps find the optimal values

without looking at every node of the game tree. While using minimax, some

situations may arise when searching of a particular branch can safely be

terminated. So, while doing search, these techniques figure out those nodes that do

not require to be expanded.

 3

3 -8 -6

max node

min node

leaf

7 -6 3 9 -8 2

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 133 –

The way that this algorithm works can be described as below.

- Max-player cuts off search when she/he knows that Min-player can force

a clear bad (for the first player, i.e. for Max-player) outcome.

- Min-player cuts off search when she/he knows that Max-player can force

a clear good (for Max-player) outcome.

- Applying alpha-pruning (beta-pruning) means the search of a branch is

stopped because a better opportunity for Max-player (Min-player) is

already known elsewhere. Applying both of them is called alpha-beta

pruning technique.

Figure 3 shows an example of beta-pruning, when β becomes smaller than or

equal to α, we can stop expanding the children of N.

These algorithms, shown in Algorithm 3, are recalled from [6, 8].

Algorithm 3 (MIN and MAX PRUNING)

1. function ALPHAPrune(N, α, β)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = -∞

7. for every successor Ni of N do

8. let v= max{v, BETAPrune(Ni, α, β)}

9. if v≥ β then return v

10. let α = max{α,v}

11. return v

12. end ALPHAPrune

1. function BETAPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = +∞

7. for every successor Ni of N do

8. let v= min{v, ALPHAPrune(Ni, α, β)}

9. if v ≤ α then return v

10. let β = max{β,v}

11. return v

12. end BETAPrune

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 134 –

Figure 3

A beta-pruning example

2.3 Short Circuit Evaluation

Short circuit evaluation of a logical expression is widely used in programming

languages for optimization. The short circuit evaluation technique is a type of time

saving and, in some cases, it is also used for safety reasons [7]. For example, if it

is known that all three conditions/variables must be true in order to proceed, it is

not necessary to check the second and third conditions if the first one is already

known to be false. In some programming languages the symbols && and || are

used for the logical operations AND and OR, respectively. These operations are

working in short circuit evaluation.

Figure 4

An example of applying the short circuit evaluation on a tree. Only three inner nodes and three leaves

(total 6 nodes) out of six inner nodes and eight leaves (total 14 nodes) are explored and evaluated to get

the final result in the root.

2.3.1 The AND Version

Let A, B and C be three Boolean expressions. Let them be in a conditional

statement using && as follows.

 if (A && B && C) { statement; }

The only way this expression can be true is if A and B and C are all true. If A is

false, we don't even need to consider B and C because we already know that the

entire expression is false, etc. There is no need for further evaluation, as soon as it

can be determined, through short circuit evaluation that the expression is false.

N

α = 7

5 3 7
β = 10 8 3

10 8 3

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 135 –

2.3.2 The OR Version

Similar to the previously described AND operation, the OR operation can also be

terminated early in some cases. Let us consider the following statement.

 if (A || B || C) { statement; }

In the case of OR, if it is known that the first condition is true, then there is no

need to check the value of second and third conditions. If A is false, but B is true,

then it is not needed to evaluate C to know the truth value of the condition.

2.3.3 The Mixed Version

Let us consider a more complex Boolean formula having only conjunctions and

disjunctions. In this way, these special Boolean formulae can model tree networks

having two types of operations/modalities. Figure 4, shows an example of a

complex tree and also of applying the short circuit evaluation on the tree. As

shown in this example, when evaluating the AND nodes, if a zero value (0)

returned back from one of the children nodes, then we cut the next connected

nodes and leaves and there is no need to evaluate them since their value will not

affect the final result. The same technique is applied in evaluating the OR nodes,

the idea here is to cut-off when the value one (1) returned back from a connected

node or leaf. The final result of evaluating that node will be one (1) regardless the

value of the remaining connected children nodes. See also Algorithm 4 below

which describes how the idea of the short circuit evaluation is used. We allow not

only binary conjunctions and disjunctions and thus, we may assume that they are

alternating by levels.

3 Algorithms for Trees with Several Modalities

Now, various algorithms are proposed to quicken the evaluation of special trees in

which there are specific operations are used. We are dealing with trees with a

bounded set of payoff values: -1, 0, 1. Apart from the usual min and max

operations (that can be seen as AND and OR by restricting the values to the

Boolean set, i.e. to {0,1}) we use the operations multiplication (that can also be

seen as AND on the Boolean set) and sum (that usually can be seen as binary

addition, i.e. OR on the Boolean set), as well. We keep only the sign of the sum to

have the result inside the domain {-1, 0, +1}. The proposed modified minimax,

sum and product pruning, minimax with sum, and minimax with product

algorithms are described below in detail.

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 136 –

Algorithm 4 (OR and AND PRUNING)

1. function ORPrune (N)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = 0

7. for every successor Ni of N do

8. while v ≠ 1 do

9. let v= v + ANDPrune(Ni)

10. return v

11. end ORPrune

1. function ANDPrune (N)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = 1

7. for every successor Ni of N do

8. while v ≠ 0 do

9. let v = v · ORPrune(Ni)

10. return v

11. end ANDPrune

3.1 Modified Alpha-Beta Pruning Algorithm

We start with an obvious modification of Algorithm 3. Since the set of payoff

values is bounded, we can modify the alpha-beta pruning algorithm to do a cut

when the maximum (+1) or the minimum (-1) value of the set is already found in

ALPHAPrune and BETAPrune, respectively, as shown in Algorithm 5 below.

Line 8 of Algorithm 3 is modified in both ALPHAPrune and BETAPrune

functions to test if the values +1 and -1 (the possible maximum and minimum,

respectively) have been found in the evaluated node, thus there is no need to visit

the remaining successors for that node: a cut can be done.

Figure 5 shows an example for the usage of the modified pruning algorithm.

Figure 5

A modified minimax alpha-beta pruning. Only five leaves out of eight are explored to have an exact

evaluation of the tree.

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 137 –

Algorithm 5 (MIN and MAX PRUNING)

1. function MAXPrune(N, α, β)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = -∞

7. for every successor Ni of N do

8. while v < +1 do

9. let v= max{v, MINPrune(Ni, α, β)}

10. if v≥ β then return v

11. let α = max{α,v}

12. return v

13. end MAXPrune

1. function MINPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = +∞

7. for every successor Ni of N do

8. while v > -1 do

9. let v= min{v, MAXPrune(Ni, α, β)}

10. if v ≤ α then return v

11. let β = max{β,v}

12. return v

13. end MINPrune

3.2 Sum and Product Pruning Algorithm

Now let us consider a new type of expression in which product operations follow

the additions and vice versa, e.g., expressions of the form abc+de+fghi and also

more complex expressions with these two operations appearing in the expression

tree. Remember that both the possible values of the variables (leaves) and of the

expressions (other nodes) are restricted to the set {-1, 0, +1} and thus both the

Sum and Product functions can have these three output values.

Ideas similar to the short circuit evaluation can be used to cut during the

evaluations of sum and product (multiplication) functions as they are described in

Algorithm 6, see also, e.g. Figure 6 for examples.

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 138 –

Algorithm 6 (MUL and SUM PRUNING)

1. function SUMPrune (N)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = 0

7. for every successor Ni of N do

8. while |v| (the number of remaining nodes to visit do)

9. let v= v + MULPrune(Ni)

10. if v > 0 then

11. return 1

12. if v< 0 then

13. return -1

14. else

15. return 0

16. end SUMPrune

1. function MULPrune (N)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = 1

7. for every successor Ni of N do

8. while v ≠ 0 do

9. let v = v * SUMPrune(Ni)

10. return v

11. end MULPrune

The possible cuts that are applied here are the following: For the SUM function, if

the absolute value of the actual value is greater than the remaining successors to

visit, then pruning is applied since there is no need to evaluate the remaining

nodes: the result is already known: the return value is 1 if the sum value greater

than zero, and -1 if the sum value is less than zero. This can be done using the

while loop in line 8 in the function SUMPrune.

At the product operator a zero-cut is done, since 0 is the zero element of the

multiplication, as it is written in the function MULPrune.

Figure 6

A sum and product pruning example. Only four inner nodes and two leaves (total 6 nodes) out of five

inner nodes and six leaves (total 11 nodes) are explored and evaluated to get the final result in the root.

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 139 –

3.3 Minimax-Product Pruning Algorithm

In minimax-product case, the evaluation of the tree can be quickened by applying

the zero-cut at product layer when a node with zero value is returned from one of

the connected successors. In addition to this, similarly to the usual alpha-beta

pruning, pruning can be applied in max and min layers. Example for these kinds of

pruning are shown in Figure 7: a cut applied to the second node in min layer when

a zero value (β) returned from the product layer, which is less or equal to the

maximum value (α) that is found in the first node.

Figure 7

A minimax and product pruning example. Only seven inner nodes and three leaves (total 10) out of ten

inner nodes and nine leaves (total 19) are explored and evaluated to get the final result in the root.

The proposed process for pruning is shown in Algorithm 7. The same MULPrune

function that proposed previously in Algorithm 6 is used here with MAXPrune

and MINPrune functions. (They can easily be modified having other order of

layers in the expression tree.)

Algorithm 7 (MUL, MIN and MAX PRUNING)

1. function MAXPrune(N, α, β)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = -∞

7. for every successor Ni of N do

8. while v <+1 do

9. let v= max{v, MINPrune(Ni, α, β)}

10. let α = max{α,v}

11. return v

12. end MAXPrune

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 140 –

1. function MINPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = +∞

7. for every successor Ni of N do

8. while v > -1 do

9. let v= min{v, MULPrune(Ni, α, β)}

10. if v ≤ α then return v

11. let β = max{β,v}

12. return v

13. end MINPrune

1. function MULPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = 1

7. for every successor Ni of N do

8. while v ≠ 0 do

9. let v = v * MAXPRUNE(Ni, α, β)

10. return v

11. end MULPrune

3.4 Minimax-Sum Pruning Algorithm

In expression trees with three layers (max, min and sum), we use the idea of sum

short circuit evaluation initiated in Subsection 3.2.

As mentioned before, the sum function has three output values (-1, 0, +1). When

the absolute value of the sum of the visited successors is more than the number of

remaining successors, then the cut can be done and if the sum is positive, then +1

is returned; if the sum is negative, then -1 is returned.

Furthermore, similar alpha and beta pruning for min and max functions can be

done as in the previous algorithms to cut and quicken the evaluation of the tree

(see Algorithm 8). In Figure 8, in the minimum layer a pruning is applied when

the minimum value (-1) has been found, and after that in maximum layer again,

when the maximum value (+1) has been found. The sum short circuit is applied

too; since the absolute value of the sum function (+2) is greater than the remaining

nodes to evaluate (we have one node remain to evaluate, which is less than 2).

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 141 –

Algorithm 8 (ADD, MIN and MAX PRUNING)

1. function MAXPrune(N, α, β)

2. begin

3. if N is leaf then

4. return the value of this leaf

5. else

6. let v = -∞

7. for every successor Ni of N do

8. while v < +1 do

9. let v= max{v, MINPrune(Ni, α, β)}

10. let α = max{α,v}

11. return v

12. end MAXPrune

1. function MINPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = +∞

7. for every successor Ni of N do

8. while v > -1 do

9. let v= min{v, ADDPrune(Ni, α, β)}

10. if v ≤ α then return v

11. let β = max{β,v}

12. return v

13. end MINPrune

1. function ADDPrune(N, α, β)

2. begin

3. if N is a leaf then

4. return the value of this leaf

5. else

6. let v = 0

7. for every successor Ni of N do

8. while |v| (the number of remaining nodes to visit do)

9. let v= v + MAXPRUNE(Ni, α, β)

10. if v > 0 then

11. return 1

12. if v< 0 then

13. return -1

14. else

15. return 0

16. end ADDPrune

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 142 –

Figure 8

A minimax and sum pruning example. Only four inner nodes and four leaves (total 8) out of nine inner

nodes and nine leaves (total 18) are explored and evaluated to get the final result in the root.

4 Reordering the Branches of the Trees

Notice that each of the used operations are commutative, and thus, the result of the

operand does not depend on the order of the children branches. Therefore, in

addition to the above proposed algorithms to quicken the evaluation of the tree

networks with the presented logical and mathematical operations, a reordering

technique can be applied on these kinds of trees before starting the evaluation.

The intuitive idea behind the reordering is that shorter branches can be computed

faster. Therefore, the aim is to move the node that is the root of a subtree having

least depth to the left side to be evaluated first. The process of reordering must be

started from the lowest layers and goes up to the root. Then, after the reordering is

done, the evaluation process can be started where the previously mentioned

pruning techniques can be applied to quicken the evaluation.

4.1 Reordering the Branches of Boolean Expressions

In this subsection we show how the evaluation of a Boolean

expression/CogInfoCom tree-network with two modalities can be done in a more

efficient way. Figure 9, shows how the evaluation of the tree in Figure 4, is done

after reordering its branches. After applying the reordering process, only two inner

nodes (operators) out of six evaluated to get the final result in the root. While,

only two of the leaves are used instead of the total eight during the evaluation

process using the operators/modalities (AND and OR). The process of reordering

the tree branches described in Algorithm 9. The same idea can be applied if we

have different types of operators/modalities (e.g., SUM).

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 143 –

Algorithm 9 (AND, and OR Tree Reordering)

1. function ORReorder(N)

2. begin

3. if N is leaf then

4. move the leaf to the left side

5. else

6. for every successor Ni of N do

7. ANDReorder(Ni)

8. Count the number of connected leaves and nodes

9. move the node Ni with less leaves and nodes to the left side.

10. end ORReorder

1. function ANDReorder(N)

2. begin

3. if N is leaf then

4. move the leaf to the left side

5. else

6. for every successor Ni of N do

7. ORReorder(Ni)

8. Count the number of connected leaves and nodes

9. move the node Ni with less leaves and nodes to the left side.

10. end ANDReorder

Figure 9

An example of reordering and pruning algorithm. Only 2 inner nodes and 2 leaves out of 4 inner nodes

and 6 leaves were evaluated after the reordering and pruning process.

4.2 Reordering and Pruning Complex Trees

In this subsection we use the reordering technique for tree networks with more

than two modalities and show that it can be used very efficiently in these cases as

well.

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 144 –

In the first example of this subsection an expression tree is shown (see Figure 10

below). This tree includes four different operators (SUM, MULTIPLICATION,

MAX, and MIN) in such a way that in the same level only the same operator is

used. Since, in this case, the order of the operators are fixed (as at game trees), the

evaluation functions call each other in a predefined order. To evaluate the tree of

that example, without applying the reordering technique and pruning algorithms

mentioned and detailed in this paper, 23 inner nodes and 26 leaves must be

explored and evaluated. Figure 11 shows the same tree evaluated after applying

the proposed pruning algorithms without reordering the branches. The same result

of evaluation returned back to the root, but this was by exploring and evaluating

only 19 inner nodes and 19 leaves (total 38) out of 23 inner nodes and 26 leaves

(total 49).

Figure 10

An example of an expression tree with SUM, MULTIPLICATION, MAX, and MIN operators. The

tree contains 23 inner nodes and 26 leaves (total 49 nodes).

Figure 12 shows the same tree evaluated after reordering the branches and then

applying the proposed pruning algorithms. The same result of evaluation returned

back to the root, but this was by exploring and evaluating only 12 inner nodes and

7 leaves (total 19) out of 23 inner nodes and 26 leaves (total 49). This result

shows how fast the evaluation process can be after applying the proposed

technique to evaluate an expression trees that include various modalities (logical

and mathematical operators, here).

In our other example, shown in Figure 13, the operators have no fixed order in the

expression, which maybe much closer to real word applications in some cases.

Also, leaves can be found in various levels (i.e., various depths) of the tree. To

evaluate the tree without applying the reordering technique and pruning

algorithms mentioned above, 11 inner nodes and 13 leaves must be explored and

evaluated (total 24). Using various pruning strategies the number of inner nodes

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 145 –

that must be evaluated is 9, while the number of leaves that must be explored is 7

(total 16 nodes, see Figure 14). The proposed reordering technique together with

the pruning algorithms evaluates the expression tree of this example by exploring

and evaluating only 5 inner nodes and 4 leaves (total 9 nodes are visited for the

evaluation) as it can be seen in Figure 15.

Figure 11

The expression tree of the example of Figure 10 is evaluated by pruning techniques. After applying the

pruning algorithms without reordering the branches, 19 inner nodes and 19 leaves remained (total 38)

out of 23 inner nodes and 26 leaves (total 49 nodes).

Figure 12

The expression tree of Figures 10 and 11 is evaluated by reordering and pruning. After applying the

reordering and then the pruning algorithms, only 9 inner nodes and 7 leaves remained (total 16) out of

23 inner nodes and 26 leaves (total 49 nodes).

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 146 –

Figure 13

An example of an expression tree with SUM, MULTIPLICATION, MAX, and MIN operators in

various order. The tree contains 11 inner nodes and 13 leaves (total 24 nodes).

Figure 14

The example of Figure 13 is evaluated applying the pruning algorithms without reordering the

branches: 9 inner nodes and 7 leaves evaluated and explored (total 16) out of 11 inner nodes and 13

leaves (total 24).

Acta Polytechnica Hungarica Vol. 12, No. 6, 2015

 – 147 –

Figure 15

The expression tree of Figure 13 is evaluated by applying both the reordering and then the pruning

algorithms: only 5 inner nodes and 4 leaves (total 9 nodes) are needed for the evaluation.

Conclusions

We have considered simple network models, in which there are only finite

communication channels. In our tree networks children nodes send their

data/results to their parents and thus, the whole process is finite and can be

modelled by evaluation techniques. There are well-known techniques to quicken

the evaluation of Boolean expressions and similar techniques are used at game

trees in alpha-beta pruning algorithms. In this paper, we have shown other pruning

strategies: techniques for expressions where sum, product, minimum and

maximum modeling various modalities in CogInfoCom networks. Similar

optimization techniques could help in fast evaluations of various expressions

(other types of trees and networks). Reordering the branches, by evaluating first,

the shorter ones, may also help a lot to save time and energy, especially, when the

evaluation costs of the leaves (or other nodes) consumes a large amount of energy

or other limited source.

Considering a kind of parallel approach in which various agents can work together

on the evaluation, these types of techniques can easily reduce the number of

required agents and also to reduce their communication costs. Therefore, the

presented algorithms can reduce algorithmic costs (time, space, number of

agents/processors) in decision making systems and in various extensions of two-

player zero-sum games. Artificial cognitive systems, CogInfoCom systems and

other systems based on artificial/computational intelligence can be used in a more

efficient way.

R. Basbous et al. Strategies to Fast Evaluation of Tree Networks

 – 148 –

Acknowledgement

Some parts of the results of this paper were already presented in the conference

CogInfoCom 2014, [2].

References

[1] Péter Baranyi, Ádám Csapó: Cognitive Infocommunications, CogInfoCom,

Proceedings of 11
th

 CINTI: IEEE International Symposium on

Computational Intelligence and Informatics, Budapest, Hungary, pp. 141-

146, 2010

[2] Raed Basbous, Benedek Nagy: Generalized Game Trees and their

Evaluation, Proceedings of CogInfoCom 2014: 5
th

 IEEE International

Conference on Cognitive Infocommunications, Vietri sul Mare, Italy, pp.

55-60, 2014

[3] Peter Földesi, János Botzheim: Computational Method for Corrective

Mechanism of Cognitive Decision-Making Biases, Proceedings of

CogInfoCom 2012: IEEE 3
rd

 International Conference on Cognitive

Infocommunications, Kosice, Slovakia, pp. 211-215, 2012

[4] Brian Kernighan, Dennis Ritchie: The C Programming Language. Prentice

Hall, Englewood Cliffs, NJ, 1988

[5] Donald Knuth, Ronald Moore: An Analysis of Alpha-Beta Pruning,

Artificial Intelligence, Vol. 6, pp. 293-326, 1975

[6] Ervin Melkó, Benedek Nagy: Optimal Strategy in Games with Chance

Nodes, Acta Cybernetica, Vol. 18, pp. 171-192, 2007

[7] Benedek Nagy: Many-valued Logics and the Logic of the C Programming

Language, Proc. of ITI 2005: 27
th

 International Conference on Information

Technology Interfaces (IEEE) Cavtat, Croatia, pp. 657-662, 2005

[8] Stuart Russell, Peter Norvig: Artificial Intelligence, a Modern Approach.

Prentice-Hall, 2003

[9] David Schum, Gheorghe Tecuci, Dorin Marcu, Mihai Boicu: Toward

Cognitive Assistants for Complex Decision Making under Uncertainty,

Intelligent Decision Technologies, Vol. 8, pp. 231-250, 2014

[10] Joseph Shoenfield: Mathematical Logic, A K Peters, 2001

[11] Yingxu Wang, Guenther Ruhe: The Cognitive Process of Decision Making,

International Journal of Cognitive Informatics and Natural Intelligence

(IJCINI) Vol. 1, pp. 73-85, 2007

