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Abstract: Special tree graphs could model Cognitive Infocommunication Networks. The 

various modalities of the network are represented by various types of vertices, e.g., 

additions, multiplications. Tree graphs/networks are widely used in several other 

theoretical and practical fields. Expression trees are well-known tools to visualize the 

syntactic structure of the expressions. They are helpful also in evaluations, e.g., decision 

trees are widely used. Games and game theory form an important field in Artificial 

Intelligence and it has several connections to Optimization, Business and Economy. Game 

trees are used to represent games.   

In this paper, certain types of tree networks are considered using various operations at 

their inner vertices, e.g., multiplication, (constrained) addition and the usual minimum and 

maximum (related to conjunction and disjunction of Boolean algebra). Evaluation 

techniques are presented, as well as, various pruning algorithms (related to short circuit 

evaluation in the Boolean case) that can quicken the evaluation in most cases. Based on the 

commutativity of the used operations, the evaluations can be more effective (faster) by 

reordering the branches of the tree. The presented techniques are useful to optimize 

(minimize) the size of the tree networks in various cases without affecting the final 

result/decision of the network. 

Keywords: expression trees; game trees; short circuit evaluation; pruning of trees; 

decision making; reordered trees 
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1 Introduction 

Cognitive infocommunications (CogInfoCom) form an interdisciplinary field that 

works with various modalities [1]. These multimodal sensors usually form various 

networks. In this paper, we deal with special networks that form tree graphs. The 

multimodality is modelled by various types of nodes, let us say, operators in the 

tree. In our model the leaves may represent some measured data, and via the 

network a value (a decision, an evaluation of the situation, etc.) must be 

determined/computed. The edges of the tree specify the communication channels 

in which some data or (sub)result can be transferred from one node to another. 

Our model is also connected to the efficient evaluation process of various 

expression-trees that may represent CogInfoCom Networks. 

Evaluation of various types of expressions is essential in every field connected to 

Mathematics, Computer Science and Engineering. Logical expressions can be 

evaluated in a fast way based on the following facts: if a member of a conjunctive 

formula is false, then the whole formula is false; if a member of a disjunctive 

formula is true, then the whole formula is true [10]. These facts are used in several 

programming languages to have a fast evaluation of logical formulae, e.g., in 

conditions [4]. This technique is called short circuit evaluation. There is a very 

similar idea that is used in game trees in Artificial Intelligence (AI). At the most 

investigated zero-sum two-player games, the minimax algorithm gives the best 

strategies for the players and it also answers the question, who has a winning 

strategy [8]. To compute the minimax algorithm every leaf of the tree is computed 

and the whole tree is evaluated. However, in most of the cases, it can be done with 

a much less effort, using alpha and beta pruning techniques [5, 8]. 

We assume that (AI) agents are starting from the leaves of the tree and they are 

communicating until the result is given at the root. In our CogInfoCom Network 

model the agents are various types of cognitive sensors. The sensors at leaves 

measure the environment/receive input data. The sensors/nodes communicate to 

each other in a bottom-up direction. When an inner cognitive sensor receives the 

data from its children nodes, it computes its task (based on its modality, i.e., type 

of operation) and sends its result to its parent node. The root node generates the 

final result/decision of the whole CogInfoCom Network. By using pruning 

techniques, there, usually a (much) less number of agents is enough to obtain the 

same results. We can reduce the communication cost of the network and possibly 

we do not need to use all the measured data, some subset of these data could be 

enough to infer the exact result of the network/expression tree. In this way fast 

evaluation techniques are important not only by saving time and space in a one-

processor system when an expression is evaluated, but they also help to optimize 

the parallel resources in (bounded) parallel systems, e.g., CogInfoCom networks. 

There is also an enhancement of the previously mentioned pruning techniques: by 

reordering the branches of the tree network in such a way that the evaluation starts 

with the shortest branch. 



Acta Polytechnica Hungarica Vol. 12, No. 6, 2015 

 – 129 – 

Our algorithms can also be applied in artificial decision making systems that are 

closely related to systems used in cognitive-informatics and info-communications 

[9, 11]. Related human decisions and cognitive systems were also presented in [3]. 

In this paper, we consider special formula/expression trees (as models of 

CogInfoCom Networks) that can be considered a type of extension of the usual 

game trees/logical expression trees. Special extensions, as a mixture of decision 

and game-trees were already discussed in [6]. Here, by a further step, such 

extensions of game-trees are investigated in which some operations may not be 

directly connected to games, but with usual (mathematical or logical) expressions 

to give more modalities to our systems. We use values 0 and ±1 at the leaves of 

the trees. In some cases, it is not necessary to know the value of every descendant 

to evaluate a node of the tree, these cases lead to various pruning techniques that 

are presented here, in this way simplifying the (evaluation of the) network. 

In the next section we recall some analogous techniques (mostly from [6, 8]) and 

we also fix our notations. We also show that reordering the branches of the tree 

(restructuring a Boolean network based on two modalities represented by 

conjunction/minimum and disjunction/maximum) may lead to an even faster 

evaluation. In Section 3 we present the results about pruning the tree networks 

considered here. In Section 4, it is presented that reordering of the branches of the 

tree may lead to a faster exact evaluation of the network. Finally, a short 

concluding section closes the paper. 

2 Preliminaries 

In this section we recall some related concepts, specially decision trees, game 

trees, minimax algorithm and alpha-beta pruning. We also present short circuit 

evaluation techniques for Boolean logic and, further, in Section 4 we show, as one 

of our new results, its more advanced version, based on the reordering of the 

branches of the expression tree. 

In this paper, we use the term inner node for every node (including the root node) 

that is not a leaf. 

2.1 Decision Trees 

In this subsection we recall decision trees (see, e.g. in [6]); they can also be used 

to evaluate games against the “Nature”. Let a person be given who has some 

decision points, and some random events with known probabilities, also let us 

consider a tree with decision nodes and chance nodes. At decision nodes the 

person chooses a successor node. At chance nodes a random event happens: the 

successor node is chosen randomly with the probabilities known in advance. The 
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leaves of the tree represent the payoff values. The aim of the player is to maximize 

the payoff value and for this purpose she/he chooses the branch that leads to the 

highest expected value at every decision node. 

 

Figure 1 

A decision tree 

Assume that P(N) denotes the probability of the event N. Figure 1, shows an 

example of a decision tree. It includes decision nodes, where the person chooses 

among the successor, i.e. children nodes (represented by rectangles). At nodes 

represented by ellipses random events will determine the successor node (the 

probabilities are written on the edges). A numeric value, the expected outcome, is 

assigned to every node of the tree; it is shown under the rectangle/ellipse. These 

values are computed by Algorithm 1 (it is from [6]). 

Algorithm 1 (Decision) 

1. function Dec(N)  

2. begin 

3. if N is leaf then 

4.    return the value of this leaf 

5. else 

6.   let N1, N2, …, Nm be the successors of N 

7.   if N is a decision node then 

8.      return max {Dec(N1), Dec(N2), …, Dec(Nm)} 

9.   if N is a chance node then 

10.      return P(N1)Dec(N1)+ … + P(Nm)Dec(Nm) 

11. end Dec 

The technique presented in Algorithm 1 is called expectimax [6], since at decision 

points it computes the maximum of the expected values of the successor nodes, 

while at chance nodes the expected values of the successor nodes are computed by 

finding the sum of the assigned probabilities multiplied by the value of the given 

successors. 
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In this paper we deal only with problems having a bounded set of possible 

outcomes {0, ±1}. This restriction/simplification on the input/measured data 

allows us to develop some efficient algorithms. 

2.2 Game Theory 

An important and widely investigated field of game theory is about deterministic, 

strategic, two-player, zero-sum, finite games with perfect information. An instance 

of a game begins with the first player’s choice from a set of specified alternatives, 

called moves. After a move, a new state of the game is obtained; the other player 

is to make the next move from the alternatives available to that player. In same 

state of the game there is no move possible, the instance of the game has been 

finished. In such states each player receives a payoff, such that their sum is zero, 

and therefore it is enough to know the payoff of the first player. In some typical 

zero-sum games, the value +1 assigned to the player in case of win, -1 in case of 

lose, and 0 in case of draw. 

Game trees can be used to represent games. The nodes represent the states of the 

game, while the arcs represent the available moves. In the game tree there are two 

kinds of nodes representing the decision situations of the two players. At the root 

node the first player has decision. The leaves represent terminal states with their 

payoff values (for the first player). 

In every two player, zero sum, deterministic game with perfect information there 

exists a perfect strategy for each player that guarantees the at least result in every 

instance of the game. The most fundamental result of game theory is the minimax 

theorem and the minimax algorithm. The theorem says: If a minimax of one player 

corresponds to a maximin of the other player, then that outcome is the optimal for 

both players. 

2.2.1 Minimax Algorithm 

Minimax theorem is a fundamental result of game theory. Players adopt strategies 

which maximize their gains, while minimizing their losses. Therefore, the solution 

is the optimal for each player that she/he can do for him/herself in the face of 

opposition of the other player. These optimal strategies and the optimal payoff can 

be determined by the minimax algorithm. It uses simple recursive functions to 

compute the minimax values of each successor state [8]. 

Algorithm 2 represents the way that minimax algorithm works (it is recalled from 

[6, 8]), see also, e.g., Figure 2 for examples. 
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Figure 2 

A minimax tree 

Algorithm 2 (MIN and MAX) 

1. function MAXValue(N)  

2. begin 

3. if N is leaf then 

4.      return the value of this leaf 

5. else 

6.     let v = -∞ 

7.     for every successor Ni of N do 

8.          let v=  max{v,  MINValue(Ni)} 

9. return v 

10. end MAXValue 

1. function MINValue(N) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.     let v = +∞ 

7.     for every successor Ni of N do 

8.         let v=  min{v,  MAXValue(Ni)} 

9. return v 

10. end MINValue 

2.2.2 Alpha-Beta Pruning 

The minimax algorithm evaluates every possible instance of the game, and thus to 

compute the value of the game, i.e. its optimal payoff, takes usually exponential 

time on the length of the instances of the game. To overcome on this issue special 

cut techniques can be used. The alpha-beta pruning helps find the optimal values 

without looking at every node of the game tree. While using minimax, some 

situations may arise when searching of a particular branch can safely be 

terminated. So, while doing search, these techniques figure out those nodes that do 

not require to be expanded. 

 3 

3 -8 -6 

 

max node 

min node 

leaf 

7 -6 3 9 -8 2  
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The way that this algorithm works can be described as below. 

- Max-player cuts off search when she/he knows that Min-player can force 

a clear bad (for the first player, i.e. for Max-player) outcome. 

- Min-player cuts off search when she/he knows that Max-player can force 

a clear good (for Max-player) outcome. 

- Applying alpha-pruning (beta-pruning) means the search of a branch is 

stopped because a better opportunity for Max-player (Min-player) is 

already known elsewhere. Applying both of them is called alpha-beta 

pruning technique. 

Figure 3 shows an example of beta-pruning, when β becomes smaller than or 

equal to α, we can stop expanding the children of N. 

These algorithms, shown in Algorithm 3, are recalled from [6, 8]. 

Algorithm 3 (MIN and MAX PRUNING) 

1. function ALPHAPrune(N, α, β)  

2. begin 

3. if N is leaf then 

4.     return the value of this leaf 

5. else 

6.     let v = -∞ 

7.     for every successor Ni of N do 

8.         let v=  max{v,  BETAPrune(Ni, α, β)} 

9.         if v≥ β then return v 

10.         let α = max{α,v} 

11. return v 

12. end ALPHAPrune 

1. function BETAPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.     let v = +∞ 

7.     for every successor Ni of N do 

8.        let v=  min{v,  ALPHAPrune(Ni, α, β)} 

9.        if v ≤ α then return v 

10.        let β = max{β,v} 

11. return v 

12. end BETAPrune 
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Figure 3 

A beta-pruning example 

2.3 Short Circuit Evaluation 

Short circuit evaluation of a logical expression is widely used in programming 

languages for optimization. The short circuit evaluation technique is a type of time 

saving and, in some cases, it is also used for safety reasons [7]. For example, if it 

is known that all three conditions/variables must be true in order to proceed, it is 

not necessary to check the second and third conditions if the first one is already 

known to be false. In some programming languages the symbols && and || are 

used for the logical operations AND and OR, respectively. These operations are 

working in short circuit evaluation. 

 

Figure 4 

An example of applying the short circuit evaluation on a tree. Only three inner nodes and  three leaves 

(total 6 nodes) out of six inner nodes and eight leaves (total 14 nodes) are explored and evaluated to get 

the final result in the root. 

2.3.1 The AND Version 

Let A, B and C be three Boolean expressions. Let them be in a conditional 

statement using && as follows. 

 if ( A && B && C ) {   statement; } 

The only way this expression can be true is if A and B and C are all true. If A is 

false, we don't even need to consider B and C because we already know that the 

entire expression is false, etc. There is no need for further evaluation, as soon as it 

can be determined, through short circuit evaluation that the expression is false. 

  

N 

   

α = 7 

5 3 7 
β = 10  8  3 

10 8 3  
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2.3.2 The OR Version 

Similar to the previously described AND operation, the OR operation can also be 

terminated early in some cases. Let us consider the following statement. 

  if (A || B || C)  {   statement; }  

In the case of OR, if it is known that the first condition is true, then there is no 

need to check the value of second and third conditions. If A is false, but B is true, 

then it is not needed to evaluate C to know the truth value of the condition. 

2.3.3 The Mixed Version 

Let us consider a more complex Boolean formula having only conjunctions and 

disjunctions. In this way, these special Boolean formulae can model tree networks 

having two types of operations/modalities. Figure 4, shows an example of a 

complex tree and also of applying the short circuit evaluation on the tree. As 

shown in this example, when evaluating the AND nodes, if a zero value (0) 

returned back from one of the children nodes, then we cut the next connected 

nodes and leaves and there is no need to evaluate them since their value will not 

affect the final result. The same technique is applied in evaluating the OR nodes, 

the idea here is to cut-off when the value one (1) returned back from a connected 

node or leaf. The final result of evaluating that node will be one (1) regardless the 

value of the remaining connected children nodes. See also Algorithm 4 below 

which describes how the idea of the short circuit evaluation is used. We allow not 

only binary conjunctions and disjunctions and thus, we may assume that they are 

alternating by levels. 

3 Algorithms for Trees with Several Modalities 

Now, various algorithms are proposed to quicken the evaluation of special trees in 

which there are specific operations are used. We are dealing with trees with a 

bounded set of payoff values: -1, 0, 1. Apart from the usual min and max 

operations (that can be seen as AND and OR by restricting the values to the 

Boolean set, i.e. to {0,1}) we use the operations multiplication (that can also be 

seen as AND on the Boolean set) and sum (that usually can be seen as binary 

addition, i.e. OR on the Boolean set), as well. We keep only the sign of the sum to 

have the result inside the domain {-1, 0, +1}. The proposed modified minimax, 

sum and product pruning, minimax with sum, and minimax with product 

algorithms are described below in detail. 
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Algorithm 4 (OR and AND PRUNING) 

1. function ORPrune (N)  

2. begin 

3. if N is leaf then 

4.     return the value of this leaf 

5. else 

6.   let v = 0 

7.   for every successor Ni of N do 

8.      while v ≠ 1  do 

9.          let v= v + ANDPrune(Ni) 

10.      return v 

11. end ORPrune 

1. function ANDPrune (N) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.    let v = 1 

7.    for every successor Ni of N do 

8.         while v ≠ 0  do 

9.             let v = v · ORPrune(Ni) 

10. return v 

11. end ANDPrune 

3.1 Modified Alpha-Beta Pruning Algorithm 

We start with an obvious modification of Algorithm 3. Since the set of payoff 

values is bounded, we can modify the alpha-beta pruning algorithm to do a cut 

when the maximum (+1) or the minimum (-1) value of the set is already found in 

ALPHAPrune and BETAPrune, respectively, as shown in Algorithm 5 below. 

Line 8 of Algorithm 3 is modified in both ALPHAPrune and BETAPrune 

functions to test if the values +1 and -1 (the possible maximum and minimum, 

respectively) have been found in the evaluated node, thus there is no need to visit 

the remaining successors for that node: a cut can be done. 

Figure 5 shows an example for the usage of the modified pruning algorithm. 

 

Figure 5 

A modified minimax alpha-beta pruning. Only five leaves out of eight are explored to have an exact 

evaluation of the tree. 
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Algorithm 5 (MIN and MAX PRUNING) 

1. function MAXPrune(N, α, β)  

2. begin 

3. if N is leaf then 

4.     return the value of this leaf 

5. else 

6.    let v = -∞ 

7.    for every successor Ni of N do 

8.       while v < +1  do 

9.          let v=  max{v,  MINPrune(Ni, α, β)} 

10.          if v≥ β then return v 

11.          let α = max{α,v} 

12. return v 

13. end MAXPrune 

1. function MINPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.    let v = +∞ 

7.    for every successor Ni of N do 

8.        while v > -1  do 

9.            let v=  min{v,  MAXPrune(Ni, α, β)} 

10.            if v ≤ α then return v 

11.            let β = max{β,v} 

12. return v 

13. end MINPrune 

3.2 Sum and Product Pruning Algorithm 

Now let us consider a new type of expression in which product operations follow 

the additions and vice versa, e.g., expressions of the form abc+de+fghi and also 

more complex expressions with these two operations appearing in the expression 

tree. Remember that both the possible values of the variables (leaves) and of the 

expressions (other nodes) are restricted to the set {-1, 0, +1} and thus both the 

Sum and Product functions can have these three output values. 

Ideas similar to the short circuit evaluation can be used to cut during the 

evaluations of sum and product (multiplication) functions as they are described in 

Algorithm 6, see also, e.g. Figure 6 for examples. 
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Algorithm 6 (MUL and SUM PRUNING) 

1. function SUMPrune (N)  

2. begin 

3. if N is leaf then 

4.     return the value of this leaf 

5. else 

6.   let v = 0 

7.   for every successor Ni of N do 

8.      while |v| (the number of remaining nodes to visit do) 

9.          let v= v + MULPrune(Ni) 

10.       if v > 0 then 

11.                return 1 

12.       if v< 0 then  

13.                return -1 

14.       else 

15.                return 0 

16. end SUMPrune 

1. function MULPrune (N) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.    let v = 1 

7.    for every successor Ni of N do 

8.         while v ≠ 0  do 

9.             let v = v * SUMPrune(Ni) 

10. return v 

11. end MULPrune 

The possible cuts that are applied here are the following: For the SUM function, if 

the absolute value of the actual value is greater than the remaining successors to 

visit, then pruning is applied since there is no need to evaluate the remaining 

nodes: the result is already known: the return value is 1 if the sum value greater 

than zero, and -1 if the sum value is less than zero. This can be done using the 

while loop in line 8 in the function SUMPrune. 

At the product operator a zero-cut is done, since 0 is the zero element of the 

multiplication, as it is written in the function MULPrune. 

 

Figure 6 

A sum and product pruning example. Only four inner nodes and  two leaves (total 6 nodes) out of five 

inner nodes and six leaves (total 11 nodes) are explored and evaluated to get the final result in the root. 
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3.3 Minimax-Product Pruning Algorithm 

In minimax-product case, the evaluation of the tree can be quickened by applying 

the zero-cut at product layer when a node with zero value is returned from one of 

the connected successors. In addition to this, similarly to the usual alpha-beta 

pruning, pruning can be applied in max and min layers. Example for these kinds of 

pruning are shown in Figure 7: a cut applied to the second node in min layer when 

a zero value (β) returned from the product layer, which is less or equal to the 

maximum value (α) that is found in the first node. 

 

Figure 7 

A minimax and product pruning example. Only seven inner nodes and  three leaves (total 10) out of ten 

inner nodes and nine  leaves  (total 19) are explored and evaluated to get the final result in the root. 

The proposed process for pruning is shown in Algorithm 7. The same MULPrune 

function that proposed previously in Algorithm 6 is used here with MAXPrune 

and MINPrune functions. (They can easily be modified having other order of 

layers in the expression tree.) 

Algorithm 7 (MUL, MIN and MAX PRUNING) 

1. function MAXPrune(N, α, β)  

2. begin 

3. if N is leaf then 

4.       return the value of this leaf 

5. else 

6.      let v = -∞ 

7.      for every successor Ni of N do 

8.            while v <+1  do 

9.                let v=  max{v,  MINPrune(Ni, α, β)} 

10.            let α = max{α,v} 

11. return v 

12. end MAXPrune 
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1. function MINPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.      return the value of this leaf 

5. else 

6.     let v = +∞ 

7.     for every successor Ni of N do 

8.         while v > -1  do 

9.              let v=  min{v,  MULPrune(Ni, α, β)} 

10.         if v ≤ α then return v 

11.         let β = max{β,v} 

12.     return v 

13. end MINPrune 

1. function MULPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.     let v = 1 

7.     for every successor Ni of N do 

8.          while v ≠ 0 do 

9.              let v = v * MAXPRUNE(Ni, α, β) 

10.     return v 

11. end MULPrune 

3.4 Minimax-Sum Pruning Algorithm 

In expression trees with three layers (max, min and sum), we use the idea of sum 

short circuit evaluation initiated in Subsection 3.2. 

As mentioned before, the sum function has three output values (-1, 0, +1). When 

the absolute value of the sum of the visited successors is more than the number of 

remaining successors, then the cut can be done and if the sum is positive, then +1 

is returned; if the sum is negative, then -1 is returned. 

Furthermore, similar alpha and beta pruning for min and max functions can be 

done as in the previous algorithms to cut and quicken the evaluation of the tree 

(see Algorithm 8). In Figure 8, in the minimum layer a pruning is applied when 

the minimum value (-1) has been found, and after that in maximum layer again, 

when the maximum value (+1) has been found. The sum short circuit is applied 

too; since the absolute value of the sum function (+2) is greater than the remaining 

nodes to evaluate (we have one node remain to evaluate, which is less than 2). 
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Algorithm 8 (ADD, MIN and MAX PRUNING) 

1. function MAXPrune(N, α, β)  

2. begin 

3. if N is leaf then 

4.      return the value of this leaf 

5. else 

6.     let v = -∞ 

7.     for every successor Ni of N do 

8.          while v < +1  do 

9.              let v=  max{v,  MINPrune(Ni, α, β)} 

10.          let α = max{α,v} 

11. return v 

12. end MAXPrune 

1. function MINPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.      return the value of this leaf 

5. else 

6.      let v = +∞ 

7.      for every successor Ni of N do 

8.           while v > -1  do 

9.               let v=  min{v,  ADDPrune(Ni, α, β)} 

10.           if v ≤ α then return v 

11.           let β = max{β,v} 

12. return v 

13. end MINPrune 

1. function ADDPrune(N, α, β) 

2. begin 

3. if N is a leaf then 

4.     return the value of this leaf 

5. else 

6.    let v = 0 

7.    for every successor Ni of N do 

8.       while |v|  (the number of remaining nodes to visit do) 

9.             let v= v + MAXPRUNE(Ni, α, β) 

10.       if v > 0 then 

11.               return 1 

12.       if v< 0 then  

13.               return -1 

14.       else 

15.               return 0 

16. end ADDPrune 
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Figure 8 

A minimax and sum pruning example. Only four inner nodes and four leaves (total 8) out of nine inner 

nodes and nine  leaves  (total 18) are explored and evaluated to get the final result in the root. 

4 Reordering the Branches of the Trees 

Notice that each of the used operations are commutative, and thus, the result of the 

operand does not depend on the order of the children branches. Therefore, in 

addition to the above proposed algorithms to quicken the evaluation of the tree 

networks with the presented logical and mathematical operations, a reordering 

technique can be applied on these kinds of trees before starting the evaluation. 

The intuitive idea behind the reordering is that shorter branches can be computed 

faster. Therefore, the aim is to move the node that is the root of a subtree having 

least depth to the left side to be evaluated first. The process of reordering must be 

started from the lowest layers and goes up to the root. Then, after the reordering is 

done, the evaluation process can be started where the previously mentioned 

pruning techniques can be applied to quicken the evaluation. 

4.1 Reordering the Branches of Boolean Expressions 

In this subsection we show how the evaluation of a Boolean 

expression/CogInfoCom tree-network with two modalities can be done in a more 

efficient way. Figure 9, shows how the evaluation of the tree in Figure 4, is done 

after reordering its branches. After applying the reordering process, only two inner 

nodes (operators) out of six evaluated to get the final result in the root. While, 

only two of the leaves are used instead of the total eight during the evaluation 

process using the operators/modalities (AND and OR). The process of reordering 

the tree branches described in Algorithm 9. The same idea can be applied if we 

have different types of operators/modalities (e.g., SUM). 
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Algorithm 9 (AND, and OR Tree Reordering) 

1. function ORReorder(N)  

2. begin 

3. if N is leaf then 

4.       move the leaf to the left  side 

5. else 

6.      for every successor Ni of N do 

7.            ANDReorder(Ni) 

8.            Count the number of connected leaves and nodes 

9.  move the node Ni with less leaves and nodes to the left side. 

10. end ORReorder 

1. function ANDReorder(N)  

2. begin 

3. if N is leaf then 

4.       move the leaf to the left  side 

5. else 

6.      for every successor Ni of N do 

7.            ORReorder(Ni) 

8.            Count the number of connected leaves and nodes 

9.      move the node Ni with less leaves and nodes to the left side. 

10. end ANDReorder 

 

Figure 9 

An example of reordering and pruning algorithm. Only 2 inner nodes and 2 leaves out of 4 inner nodes 

and 6 leaves were evaluated after the reordering and pruning process. 

4.2 Reordering and Pruning Complex Trees 

In this subsection we use the reordering technique for tree networks with more 

than two modalities and show that it can be used very efficiently in these cases as 

well. 
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In the first example of this subsection an expression tree is shown (see Figure 10 

below). This tree includes four different operators (SUM, MULTIPLICATION, 

MAX, and MIN) in such a way that in the same level only the same operator is 

used. Since, in this case, the order of the operators are fixed (as at game trees), the 

evaluation functions call each other in a predefined order. To evaluate the tree of 

that example, without applying the reordering technique and pruning algorithms 

mentioned and detailed in this paper, 23 inner nodes and 26 leaves must be 

explored and evaluated. Figure 11 shows the same tree evaluated after applying 

the proposed pruning algorithms without reordering the branches. The same result 

of evaluation returned back to the root, but this was by exploring and evaluating 

only 19 inner nodes and 19 leaves (total 38) out of 23 inner nodes and 26 leaves 

(total 49). 

 

Figure 10 

An example of an expression tree with SUM, MULTIPLICATION, MAX, and MIN operators. The 

tree contains 23 inner nodes and 26 leaves (total 49 nodes). 

Figure 12 shows the same tree evaluated after reordering the branches and then 

applying the proposed pruning algorithms. The same result of evaluation returned 

back to the root, but this was by exploring and evaluating only 12 inner nodes and 

7 leaves (total 19) out of 23 inner nodes and 26 leaves (total 49).  This result 

shows how fast the evaluation process can be after applying the proposed 

technique to evaluate an expression trees that include various modalities (logical 

and mathematical operators, here). 

In our other example, shown in Figure 13, the operators have no fixed order in the 

expression, which maybe much closer to real word applications in some cases. 

Also, leaves can be found in various levels (i.e., various depths) of the tree. To 

evaluate the tree without applying the reordering technique and pruning 

algorithms mentioned above, 11 inner nodes and 13 leaves must be explored and 

evaluated (total 24). Using various pruning strategies the number of inner nodes 
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that must be evaluated is 9, while the number of leaves that must be explored is 7 

(total 16 nodes, see Figure 14). The proposed reordering technique together with 

the pruning algorithms evaluates the expression tree of this example by exploring 

and evaluating only 5 inner nodes and 4 leaves (total 9 nodes are visited for the 

evaluation) as it can be seen in Figure 15. 

 

Figure 11 

The expression tree of the example of Figure 10 is evaluated by pruning techniques. After applying the 

pruning algorithms without reordering the branches, 19 inner nodes and 19 leaves remained (total 38) 

out of 23 inner nodes and 26 leaves (total 49 nodes). 

 

Figure 12 

The expression tree of Figures 10 and 11 is evaluated by reordering and pruning. After applying the 

reordering and then the pruning algorithms, only 9 inner nodes and 7 leaves remained (total 16) out of 

23 inner nodes and 26 leaves (total 49 nodes). 
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Figure 13 

An example of an expression tree with SUM, MULTIPLICATION, MAX, and MIN operators in 

various order. The tree contains 11 inner nodes and 13 leaves (total 24 nodes). 

 

Figure 14 

The example of Figure 13 is evaluated applying the pruning algorithms without reordering the 

branches: 9 inner nodes and 7 leaves evaluated and explored (total 16) out of 11 inner nodes and 13 

leaves (total 24). 
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Figure 15 

The expression tree of Figure 13 is evaluated by applying both the reordering and then the pruning 

algorithms: only 5 inner nodes and 4 leaves (total 9 nodes) are needed for the evaluation. 

Conclusions 

We have considered simple network models, in which there are only finite 

communication channels. In our tree networks children nodes send their 

data/results to their parents and thus, the whole process is finite and can be 

modelled by evaluation techniques. There are well-known techniques to quicken 

the evaluation of Boolean expressions and similar techniques are used at game 

trees in alpha-beta pruning algorithms. In this paper, we have shown other pruning 

strategies: techniques for expressions where sum, product, minimum and 

maximum modeling various modalities in CogInfoCom networks. Similar 

optimization techniques could help in fast evaluations of various expressions 

(other types of trees and networks). Reordering the branches, by evaluating first, 

the shorter ones, may also help a lot to save time and energy, especially, when the 

evaluation costs of the leaves (or other nodes) consumes a large amount of energy 

or other limited source. 

Considering a kind of parallel approach in which various agents can work together 

on the evaluation, these types of techniques can easily reduce the number of 

required agents and also to reduce their communication costs. Therefore, the 

presented algorithms can reduce algorithmic costs (time, space, number of 

agents/processors) in decision making systems and in various extensions of two-

player zero-sum games. Artificial cognitive systems, CogInfoCom systems and 

other systems based on artificial/computational intelligence can be used in a more 

efficient way. 
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