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Abstract: Location-based applications and services are becoming widespread with the 
proliferation of smart mobile devices. They require position tracking which is still a 
challenge today in the indoor environment. Different wireless technologies and localization 
techniques can be used to obtain the position estimation. One possibility is deploying cheap 
ZigBee sensors as reference points and using triangulation to compute the position of the 
visiting node. This technique requires the reception of a wireless signal of at least three 
reference sensors with well-known positions everywhere within the covered area. In this 
paper, we propose OptiRef, our simulated annealing based method to find, in a given area, 
the optimal number and placement of the reference sensors to be used for indoor 
positioning. Our method has O(n) complexity and shows linear run-time behavior. We 
investigate the performance of OptiRef via simulations focusing on ZigBee technology, 
although our method is generic and can be used with any kind of wireless technologies. The 
resulted reference point setup(s) can be considered as a good starting point for real 
environment design. 
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1 Introduction 

Using some location-aware service is more and more common during our daily 
routines. Such services are based on location tracking. Collecting the location data 
is straightforward in open-air environments, e.g., via a GPS (Global Positioning 
System) receiver. However, indoor position tracking is a more challenging issue 
and still an actual research topic today. Several technologies and systems have 
been proposed and developed for indoor location sensing [1-3]. One possible 
approach is deploying cheap ZigBee (IEEE 802.15.4) sensors as reference points 
into the indoor area and using triangulation technics to derive the position of the 
visiting node. 
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Triangulation methods estimate the target location based on the geometric 
properties of triangles [1]. They have two variants, such as lateration and 
angulation. Lateration derives the position by measuring the object’s distances 
from multiple reference points. However, instead of measuring the distance 
directly some other characteristics are usually measured, such as received signal 
strengths (RSS), time of arrival (TOA) or time difference of arrival (TDOA). 
Then, the distance is derived by computing the attenuation of the emitted signal 
strength or by multiplying the radio signal velocity and the travel time. On the 
other hand, angulation locates an object by computing angles relative to multiple 
reference points. Regardless the applied variant of triangulation, the indispensable 
requirement for computing the location estimation is to receive the signal of at 
least three reference points everywhere within the given area. 

In this paper, we investigate how to place wireless reference points (ZigBee 
sensors) to perceive the signal with strong enough strength of at least three sensors 
everywhere within the given indoor territory, but keep the number of deployed 
sensors as low as possible. Hence, the overall cost of the indoor positioning 
system and its operation expenses can be kept low. We propose OptiRef, a 
simulated annealing based algorithm to find the optimal number and placement of 
the reference points in a given area. Our method has O(n) complexity and finds a 
solution, a good approximation of the global optimum, with linear run-time 
behavior. Furthermore, we have developed a simulation tool in the MATLAB [4] 
environment. We used this tool to implement OptiRef together with the ITU 
indoor wireless propagation model [5] simulating ZigBee signal propagation and 
to investigate the algorithm’s behavior. Note, that our method is generic and can 
be used with any other wireless technologies (eg., Wi-Fi, Bluetooth, UWB). 
However, in this paper we focus our investigations on ZigBee sensors. Moreover, 
the reference point setup(s) given back by OptiRef can be considered as a good 
starting point for real environment design. 

The rest of the paper is structured as follows. In Section 2, we briefly overview 
related approaches. OptiRef is proposed and described in Section 3, and we 
present its evaluation via simulations in Section 4. Finally, we give a short 
summary and sketch our future plans in Section 5. 

2 Related Work 

In the last years, several wireless technologies and systems have been proposed 
for indoor positioning [1-3]. One of them is the UWB (Ultra-Wide Band) 
technology which offers the highest accuracy, but it is quite an expensive solution 
still today. Cellular (mobile telephony) systems are also capable of providing 
positioning information, but their accuracy are low, and usually falls in the range 
of 50 m–100 m, which is appropriate only for cell based positioning. 
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On the other hand, most of the wireless positioning systems operate in the license 
free ISM (Industrial, Scientific and Medical) radio band and are based on Wi-Fi 
(eg., [6-8]), Bluetooth (eg., [9-11]) or ZigBee (eg., [12-14]) technologies. They 
use different methods for deriving the location information. For instance, location 
fingerprinting [1] is also a widely applied technique besides triangulation. In this 
case, signal fingerprints are collected in advance at a number of positions in the 
given area and later compared to the actual measurements. The location belonging 
to the best fit is selected as the position estimate. Unfortunately, none of these 
works investigate in a systematic way how to place the reference points optimally. 
Rather, they either use a pre-established infrastructure, or the placement is based 
on some heuristics or experimental results. 

Considering the problem of optimal reference point placement, only minimum 
literature has been published so far to the best of our knowledge. The location 
optimization of Wi-Fi access points (AP) for fingerprint based positioning is a 
similar issue which has been investigated in some recent works. Baala et al. in 
[15] showed via measurements that the number and placement of the APs can 
have substantial impact on the position accuracy. But the authors do not propose a 
systematic way for finding an optimal AP deployment, rather the results are based 
on experiments. Zhao et al. in [16] proposed an AP location optimization method 
based on the Differential Evolution algorithm. In this method, the Euclidean 
distance of the RSS array between all the sampling points is maximized, by which 
the positioning accuracy can be improved. Unfortunately, the model does not take 
into account the effect of walls, doors and other obstacles. He at al. in [17] 
proposed a rapid and optimal AP deployment scheme based on genetic algorithm, 
which maximizes the signal space Euclidean distance between the APs. The 
simulation results pointed out that “the more the better” rule does not necessarily 
hold, though the number of APs usually increases with the size of the target area. 
Similarly to the previous work, the authors used a simple signal propagation 
approach and did not consider the attenuation effects of the indoor environment. 
Fang and Lin in [18] presented a framework for linking the placement of APs and 
the positioning performance. Their algorithm aims at choosing a proper set of 
APs’ locations so that the signal is maximized and the noise is minimized 
simultaneously. The location system is developed in a real-world environment 
collecting realistic measurements. However, collecting and comparing the 
measurement results of the different AP setups can be a cumbersome task 
especially in a large area to be covered. 

OptiRef is a simulation based method and can complement the measurement 
based approaches by considerably reducing the reasonable reference point setups 
to be considered. In this sense, the outcome of OptiRef is a good starting point for 
further, real environment investigations. For example, one can deploy a setup 
resulted by OptiRef, create the signal map of the territory by measurements, and 
refine the placement of the reference points based on the measured signal map. 
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3 Reference Point Placement 

The triangulation method is a commonly used technique for positioning purposes 
in wireless environment. However, it demands the fulfillment of some basic 
requirements. Thus, the indispensable condition for triangulation is to receive the 
signal of at least three reference points everywhere within the given indoor area. 

3.1 Optimization of Reference Point Setup 

Finding the optimal number and positions of the reference points, which still 
satisfies the condition above, in real environment is a challenging task for 
analytical methods, because the propagation characteristics of wireless signals are 
too complex to be realistically modeled. Nevertheless, in order to find a setup with 
minimum number of reference sensors an obvious approach is to analyze and 
compare all the possible setups. Unfortunately, in real world this process is almost 
impossible to be accomplished, therefore simulations and optimization methods 
are to be used. 

Actually, the number of reference sensor position combinations is infinite because 
the territory, where the sensors can be deployed, is continuous and contains 
infinite number of points available for sensor deployment. To handle this problem, 
we assume that the reference sensors can be located only in discrete points of the 
territory map. If the density of these points is high enough the original situation 
can be approximated well. For example, if we consider a 106 m × 102 m indoor 
territory (eg., a parking garage) where the sensors can be placed into the junctions 
of a grid with 10 cm grid distance, then the number of possible reference point 
locations is 1,081,200. Figure 1 illustrates this scenario but showing a grid with 
around 12 m grid distance for better visibility (the thick blue lines on the map 
represent walls). Of course, in a real environment it can happen that not all the 
grid points are valid locations for sensor deployment, and these points can be 
eliminated from the investigations. 

Unfortunately, analyzing all the possible reference sensor setups with a brute force 
algorithm cannot be accomplished due to the huge number of location setup 
combinations. In the previous example, 21081200 different sensor location setups 
exist that cannot be processed in acceptable time. To solve this problem, 
alternative solutions are required. 
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Figure 1 

Territory map with a grid representing the possible reference sensor locations 

3.2 OptiRef Algorithm 

We propose OptiRef, our top-down reference point placement algorithm to find 
the optimal reference sensor location setup(s). 

We start with a simple method. The initial step is to place a reference sensor in 
every discrete grid junction point of the territory map and compute the coverage 
area of each sensor using a wireless signal propagation model. In real 
environment, this can be almost any point of the continuous space, but we 
consider only discrete points with high density, equals to the map resolution in our 
simulations, in order to make the calculations possible. The next step is to 
determine the number of perceived reference sensors, using the previously 
computed coverage maps, in each point of the territory where the visiting node can 
be located, and thus to verify the fulfillment of the criterion. If there is no point on 
the map where the number of perceived reference sensors is less than three, than 
one sensor can be removed randomly. The next step is to check the criterion again. 
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If the number of perceived sensors still fulfills it in each point of the territory, then 
another sensor can be removed randomly and so on, otherwise the algorithm stops. 
This simple method provides a solution, but in most of the cases not an optimal 
one. 

This method can be modeled in a tree graph, where the states represent by binary 
numbers all the possible reference point combinations. After serializing the grid 
(creating from the 2D grid a 1D sequence by writing down the rows of the grid 
one after the other) the binary number determines which sensor is part of the given 
setup. The root state (every digit is a 1) is the initial setup containing in every grid 
junction point a reference sensor. The states one level below represent the setups 
where a reference sensor is deployed in all but one grid junction point, or from a 
different viewpoint one sensor is removed compared to the parent state, and so on. 
For instance, 1011..1 means that the reference sensor in the second position is 
removed compared to the initial setup. Figure 2 illustrates this graph containing 
the possible reference point combinations. Note, that the Hamming distance 
between the neighboring levels is one, and the graph consists of n levels if the 
number of possible reference point locations (grid junction points) is n. 

 

Figure 2 

Graph representation of the possible reference sensor setups 

With the graph representation we can originate our task in a graph theory problem. 
Thus, our goal is to find the state with the longest distance from the root, in which 
state the three perceivable reference sensors criterion still holds. On each level of 
the tree, the number of removed reference points is the same, therefore the deeper 
we are in the tree the less reference points are needed to cover the served territory. 
However, this “longest path” task is an NP-complete problem in graph theory 
[19]. 

Numerous heuristic optimization algorithms were developed to find the global 
optimum for such NP-complete problems, like hill climbing, swarm intelligence, 
integer linear programming, simulated annealing, etc. For our case, we propose 
simulated annealing to approximate the optimal reference point setup. Simulated 
annealing is a generic probabilistic algorithm for global optimization [19]. It tries 
to locate a good approximation of a given function’s global optimum in a large 
search space even for NP-complete problems. 
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OptiRef extends the above-mentioned simple reference point placement method 
with the simulated annealing algorithm. Hence, a previously removed reference 
point can be put back again with some probability. This probability is given in 
Equation 1: 

  TE /exp  , (1) 

where ΔE stands for the cost function difference of the two neighboring reference 
sensor setups in question and parameter T is called temperature. The cost function, 
in our case, is the number of reference points in the given graph state. T is the sum 
of the number of perceived reference sensors for each position on the territory 
map. This number is decreasing as more and more sensors are removed (we are 
deeper in the graph), that can be interpreted as “cooling” in the context of 
simulated annealing. The possibility of putting a previously removed reference 
sensor back prevents the method from being stuck in a local minimum that is 
worse than the global one. Algorithm 1 shows the pseudo-code of the OptiRef 
algorithm’s main steps. 

 
Algorithm 1  OptiRef Algorithm
  1: initialization (add all ref. points, compute the coverage maps, set counter) 
  2: While counter > 0       # counter is the step limit, linearly dependent on n 
  3:     Choose neighbor state randomly (put back or remove a ref. point) 
  4:          Case putback 
  5:               putbackRef() with Pr (exp(ΔE/T)) 
  6:          Case remove 
  7:               removeRef() with Pr (1 ̶  exp(ΔE/T)) 
  8:               If perceivedRefs < 3 (check the criterion) 
  9:                     restoreRef() (restore the removed ref. point) 
10:     counter = counter  ̶  1 

 

The time required to get an appropriate reference point setup is an important issue 
that is affected by the complexity of the algorithm used. To find the global 
optimum with a brute force method all the possible reference point setups must be 
investigated. Thus, it has an O(2n) complexity, where n is the number of possible 
reference point locations. In case of the OptiRef algorithm, a step limit, linearly 
dependent on n, is used to determine how many times reference point can be 
removed or put back which limits the running time of the algorithm, too. Hence, 
our method, having O(n) complexity, is able to find a good approximation of the 
global optimum in real time showing linear run-time behavior. 
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4 Evaluation 

The proposed OptiRef algorithm was evaluated via simulations. The simulation 
environment, the obtained results and some concluding remarks are presented in 
the following. 

4.1 Simulation Environment 

We have used the MATLAB [4] environment to develop our simulation tool. In 
this tool, we implemented first the ITU indoor wireless signal propagation model 
[5] that we applied in our simulations. The site-general ITU indoor model predicts 
the propagation path loss according to Equation 2: 

 ,28)()log()log(20 dBkLfdNfL   (2) 

where L is the total path loss (dB), f is the frequency (MHz), N is the distance 
power loss coefficient, d is the distance between the transmitter and the receiver 
(m), Lf(k) is the floor penetration loss factor and k is the number of floors between 
the transmitter and the receiver. 

In our investigations, we used only a single floor environment, a sector on one 
level of a parking garage. However, the ITU indoor signal propagation model is 
applicable also in a multi floor environment setting the Lf(k) parameter 
accordingly, that can be useful for the investigation of other indoor positioning 
based applications, too. 

We selected the model and the simulation parameters according to the 
recommendations in [5] taking into account the properties of the simulated 
scenario (a parking garage). These parameters are: frequency, N, Lf(k), transmitter 
antenna gain, receiver antenna gain and transmitted power. We set the default 
values of these parameters to 2.4 GHz, 27, 10, 5 dB, 2 dB, and 30 mW, 
respectively. 

In wireless positioning systems, the RSS determines the range within the 
positioning service can be provided. If the signal is weak and the RSS is too low, 
the reference sensor is not perceived by the visiting terminal and cannot be used 
for positioning purposes. Thus, in order to determine the reference point coverage 
area we have introduced the terminal sensitivity parameter (-80 dB). If the 
received signal strength is lower than the terminal sensitivity, the terminal is out of 
the reference point’s range. 

In the simulator, we implemented not just our simulated annealing based OptiRef 
algorithm, but also a brute force method. In cases, when the number of possible 
reference point positions is not too high the brute force method is a better choice 
providing always the global optimal solution. However, due to the NP-
completeness of the problem finding the optimal reference sensor topology with 
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the brute force method in real scenarios is usually not possible. In OptiRef, we set 
the step limit counter value as 10 times the number of the possible reference point 
positions giving the possibility to the algorithm not to get stuck in a local 
optimum. Table 1 summarizes the parameter settings we used in our simulations. 

Table 1 

Simulation parameter settings 

Wireless signal propagation model 
ITU indoor 

 

Frequency N Lf(k) 
2.4 GHz 27 10 

 

Tx antenna gain Rx antenna gain Tx power 
5 dB 2 dB 30 mW 

 

Terminal sensitivity 
-80 dB 

Step limit of OptiRef (counter) 
10 × no. of the possible reference point positions 

Moreover, the simulated area (map) has to be loaded at the beginning of the 
simulation process into our simulation tool. A .bmp image file can be used to 
determine the simulated environment by defining the rooms, walls, pillars, etc. 

We ran the simulations on a Dell Inspiron 14z laptop equipped with Intel Core i5 
2430M CPU@2.4 GHz, 4 GB RAM and MS Windows7 (64bit) operating system. 

4.2 Simulation Results 

In order to analyze the performance of our method we ran a number of 
simulations. Hence, we compared the simulation running times of OptiRef and the 
brute force algorithm first. Then we investigated the outcomes of OptiRef after 
several runs in case of a given scenario to see how close the resulted reference 
point numbers are to each other and how the simulation run-times vary. Next, we 
took a closer look at one simulation outcome and examined the coverage map of 
the resulted reference point setup. And finally, we investigated how the resulted 
reference point numbers change if the initial criterion is modified. 

4.2.1 OptiRef vs. Brute Force 

In the first simulation round, we compared our OptiRef algorithm to the brute 
force method and investigated their limitations. We used a simple indoor map with 
no walls and obstacles. 
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In Figure 3, the average simulation run-times are shown, which were measured in 
function of the number of possible reference point positions and iterated 10 times 
for each setup, together with their 95% confidence intervals. We increased the 
number of possible reference point locations to see the scalability of OptiRef. In 
case of the brute force algorithm, we could not complete all of these simulations 
because they would have required too much time. Thus, we could investigate the 
required run-time of the brute force method only up to 20 possible reference point 
positions. 

 

Figure 3 

Simulation time vs. number of possible reference point positions in case of OptiRef and the brute force 

algorithm 

The obtained results support that OptiRef scales well with the number of possible 
reference point positions showing a linear run-time increase. On the contrary, in 
case of the brute force algorithm the simulation run-time increases exponentially, 
as expected. Thus, in bigger scenarios with hundreds or thousands possible 
reference sensor locations the brute force method is practically unusable. 

4.2.2 Performance of OptiRef 

In the second round, we investigated further our OptiRef algorithm in a 106 m × 
102 m territory, where the grid distance was around 12 m. The used territory map 
is illustrated in Figure 1. In our case, the number of possible reference point 
locations was 78 meaning 278 different sensor topology setups. Of course, the grid 
density can be increased for the price of increased simulation run-time. 

We repeated the simulation 10 times investigating the simulation run-time, 
consisting of the coverage map computation and the simulated annealing 
algorithm, and the resulted number of required reference points. The results are 
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collected in Table 2. The mean simulation run-time was 457.46 seconds, from 
which the time needed for the coverage map calculations is notable (456.87 sec), 
while only 0.59 seconds were required for the simulated annealing algorithm. This 
result is in line with our expectations. The coverage map calculation is time 
consuming especially when we have a huge number of reference sensors. On the 
other hand, the simulated annealing algorithm requires only some comparisons 
and a more or less random decision which can be carried out quickly. 

Table 2 
Mean run-time of 10 OptiRef simulations using the same scenario 

 Total sim. 
time [sec] 

Coverage map 
calc. time [sec] 

Sim. annealing 
alg. time [sec] 

No. of required 
ref. points 

Mean & 
std. 

457.46 ± 5.22 456.87 ± 5.15 0.59 ± 0.09 30.2 ± 1.8 

Note, that simulated annealing randomly chooses the neighbor states in the graph, 
therefore in case of several optimal solutions the resulted reference sensor setup 
can be different in consecutive simulation runs, even if the input parameters are 
the same. An output of the simulation is presented in Figure 4 where the selected 
reference point locations and RSS values are illustrated. The colors represent the 
highest RSS value in the given point of the territory which usually, but not 
necessarily, belongs to the closest reference sensor in the vicinity of the 
measurement. 

 

Figure 4 

Selected reference point locations and RSS values using OptiRef 
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29 reference points were the minimum still enough to cover the territory by 
satisfying the perceivability criterion. However, we can never be sure that we 
found a global optimal solution (or reached only a local optimum), but repeating 
the simulation increases its probability. In normal scenarios, a simulation running 
time takes some hundred (see Table 2) or probably some thousand seconds 
(depending on the grid density) on a usual computer, so iterating the simulation a 
couple of hundred times should not cause any problem today. 

Analyzing several simulation outcomes we can notice that the algorithm locates 
the reference points in the border areas in most of the cases and only few sensors 
are placed in the center. The reason is that the perceivability criterion is censorious 
at the boundaries of the map; hence more sensors must be deployed at the edges of 
the territory. 

4.2.3 Coverage Map 

In the third round, we examined the reference sensor coverage density achieved by 
our OptiRef algorithm. The developed simulation tool makes it possible to analyze 
the number of perceived reference points in the served territory. If the RSS is 
higher than the terminal sensitivity (-80 dB), the reference point is assumed to be 
available for positioning purposes. Figure 5 summarizes the number of available 
reference sensors considering all the measurement points. Figure 6 illustrates the 
same on the territory map (the different numbers are represented by different 
colors) in case of a given reference sensor setup. 

We can see, that some parts of the territory, mainly the center areas, are covered 
by 10-12 reference sensors, while the terminals visiting the border areas can 
receive the signal of only few sensors. Nevertheless, our perceivability criterion 
still holds everywhere in the territory. 

 

Figure 5 

Number of reference points available for positioning 
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Figure 6 

Map representation of the number of reference points available for positioning 

4.2.4 Impact of the Criterion Change 

In the forth round, we investigated the impact of changing the perceivability 
criterion. The perceivability of at least three reference sensors is a strict minimum 
requirement. However, by increasing the number of available reference sensors in 
a given point of the map the position estimation accuracy can be improved. We 
have analyzed the total number of required reference points if the minimum 
criterion of perceivable sensors is increased. The simulations were iterated 20 
times and the results are shown in Figure 7 using the same territory map with the 
same 78 possible reference point locations, as in the previous experiments. 

As it is expected, the number of required reference points for the positioning 
system is increasing if more than three sensors must be perceived in any point of 
the territory. As we noted before, the location and the number of reference points 
returned by OptiRef may vary due to the randomness of the simulated annealing 
algorithm. In Figure 7 the average, the minimum and the maximum number of 
required reference points are depicted using the same simulation setup. Although 
the differences are not significant, it is recommended to iterate the algorithm in 
order to find a sensor topology close to the global optimum. 
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Figure 7 

Number of reference points required to fulfill the perceivability criterion 

4.2.5 Discussion 

From the evaluation results we can see that OptiRef provides a solution for a given 
scenario within an acceptable time, if the number of possible reference point 
locations (grid density) is not too big (falls in the range of some hundreds). 
However, there is no guarantee that the resulted solution is a global optimal one. 
Hence, it is recommended to iterate the simulation to increase the probability of 
finding a global optimum. OptiRef is scalable, the simulation running time is 
linearly dependent on n, the number of grid points (potential reference sensors) in 
the given area. Moreover, OptiRef is flexible and can easily handle if the 
perceivability criterion changes. The simulation run-time does not increase in this 
case either because the time consuming part (coverage map calculations) does not 
change and it is performed only once in the initial phase. 

An interesting issue is to think about how close to reality the simulation results 
are. In our case, it depends on the used wireless signal propagation model to a 
great extent. We ran also some simulations using a modified version of the free-
space propagation model [5] and we introduced some wall attenuation (4dB) in 
computing the path loss. With this model we got slightly different results, the 
minimal reference point setup contained 25 sensors in case of the same scenario. 
Nevertheless, the signal propagation model can be easily replaced and using more 
realistic model results in solution closer to the real environment optimum. 

Conclusions 

In this paper, we investigated the issue of ZigBee reference sensor placement 
optimization for indoor positioning. Hence, we examined how to place the 
reference points to perceive the signal of at least three reference sensors 
everywhere within the given indoor territory, but keep the number of deployed 
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sensors as low as possible. We proposed OptiRef, a simulated annealing based 
method to find a good approximation of the optimal solution. OptiRef has O(n) 
complexity and shows linear run-time behavior. Furthermore, we have developed 
a simulation tool in MATLAB environment for the given problem. We used this 
tool to implement OptiRef together with the ITU indoor wireless signal 
propagation model and to investigate the algorithm’s behavior. 

By minimizing the amount of required reference points the cost of deployment and 
operation expenses can be reduced, while at the same time still providing an 
efficient positioning system. OptiRef and the developed simulation tool are 
generic and they can be useful in planning radio-based positioning systems not 
just focusing on ZigBee technology. The simulator is adaptable to different 
wireless technologies by adjusting the signal propagation parameters or even by 
replacing the propagation model. The reference point setup(s) resulted by OptiRef 
can be considered as a good starting point for real environment design. 

As future work, we plan to further investigate the performance and limitations of 
OptiRef. We will collect real measurements and compare them with our 
simulation results. Moreover, in some scenarios it can be desirable to deploy such 
a reference point setup in which the sensors form a connected wireless sensor 
network. We plan to extend our algorithm to satisfy this condition, too. 
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