
Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 83 –

Application Security through Sandbox

Virtualization

Liberios Vokorokos, Anton Baláž, Branislav Madoš

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

liberios.vokorokos@tuke.sk, anton.balaz@tuke.sk, branislav.mados@tuke.sk

Abstract: This article is aimed at the creation of a secure, virtualized system sandbox

environment at the level of the respective applications. The proposed sandbox model allows

us to generate a secure environment for various untrusted applications and resolve

potential security incidents, such as zero day vulnerabilities. The resulting work is a

functional sandbox within the MS Windows operating system, which protects the system

against potentially hazardous applications. The sandbox has a minimal impact on the

semantics and the time of the executed program and provides an efficient sandbox

configuration interface.

Keywords: system sandbox; operating system security; virtualization; security policy

1 Introduction

Security threats are closely related to the overall level of software security in

computer systems. When writing applications, various errors occur; these are then

eliminated by testing and real-life usage. Insufficiently tested applications cause a

number of problems, especially operating system infections, caused by various

kinds of malware. These errors are often found only post-mortem. The attacker

managed to abuse the fault. Subsequently, the system vendor creates a patch and

updates the application. However, the attack has already happened and the system

may have remained infected. Another problem is that the end user must react

immediately to the various security measures, since (s)he has a direct interest in

the operating system security policy or the application itself. There is a significant

amount of malware on the Internet – claiming to be useful and necessary, but

containing adware, viruses or other malicious code. Antivirus solutions are not

capable of detecting these programs on time and reliably at all times.

The method of using system sandboxes is based on the idea of preferring

prevention instead of detection in case of security. In general, there are multiple

categories of sandboxes and system containers – each of these has its own specific

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 84 –

use. The most widely used are virtual systems isolating the individual

applications, including the operating system itself. This type of – full –

virtualization degrades the system in terms of performance and it has a significant

administration overhead too. In this article, we describe a lightweight application

container, which would resolve the above security threats and have minimal

impact on the system.

2 Sandboxes and Virtualization

The system sandbox comprises a number of programs. The specific definition

depends on the solution type. Hoopes defined the sandbox universally as software

providing a monitored and controlled environment, in which no unknown program

may cause any damage to the system it is running in [1].

A more specific definition states that a sandbox allows applications to be executed

so that these applications are not allowed to read or write the data beyond the

specified path, i.e. beyond the sandbox. In a broader sense, one has to add the

control and allocation of operating system resources to this definition, such as

network services, hardware management, low-level access, etc.

The concept of controlled execution was first time introduced by R. Wahbe et al.

in the context of software bug protection [2]. The term coined for this technique –

sandboxing – stands for a method of isolating untrusted modules executed in the

same address space as the trusted modules, with a minimal impact on execution

time.

Security in general, system security and the field of system sandboxes are all

closely related to virtualization. Virtualization is a set of procedures and

techniques, which allow the separation of the available system resources into

multiple environments. The virtualized environment may be tailored to the needs

of the users, it is easier to use or to hide the details (such as the physical location

of the hardware resources) from the users. Virtualization is performed by a virtual

machine (VM). A virtual machine represents an independent environment and/or a

software implementation of a machine executing programs, similarly to a physical

computer [3].

Virtualization is possible at various levels: from the whole computer down to its

individual hardware components, or even a certain specific software environment.

The various virtualization types may differ in the level of isolation, the resource

requirements, the execution costs, scalability and flexibility. In general, the

“closer” the virtualization level is to hardware, the more the virtual machines are

isolated and separated from the host computer; however, those require also more

resources and are less flexible. The "farther" the virtualization level is from the

hardware, the more powerful and scalable these virtual machines are.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 85 –

When used correctly, virtualization has a number of advantages – Hoopes

summarized these as follows: consolidation, reliability and security [1].

Consolidation includes a more efficient use of computers, simplifies migration to

newer versions of various systems, significantly shortens time needed for

development and testing and allows a single physical platform to host various

operating systems. Reliability has become a priority of many IT companies, more

than ever. A system error in the virtual machine does not affect the other parts of

the system on the same hardware platform – this ensures the reliability and the

consistency of the system as a whole. Technology providing protection against

application faults provides isolation from security faults. If the security of a

specific part of the virtual machine is compromised, it may be terminated at any

time.

In accordance with the characteristics of the respective virtualization methods, the

system sandbox is a specific virtual machine. Similarly to virtualization excluding

consolidation, reliability and security are the basic motives of the creation of

system sandboxes. A sandbox and/or its virtualization layer may be created at

various levels. Isolation of multiple virtual machines or the virtual machine and

the host environment makes virtual machines an efficient platform to execute

potentially error-prone and untrusted applications. While using virtual machine

technology, it is a common requirement to execute potentially dangerous

operations in the created VM, which is an instance of the operating system (OS)

host environment. This can be achieved by using a virtual machine at hardware

level. However – as it was stated above – this is not too efficient, because virtual

machines are fully isolated from each other and each of these has a separate OS

running in it. The initialization of such a machine has a high overhead in terms of

resources and has a start-up delay too. Considering the distance of the

virtualization layer from hardware, in most cases software designated as a sandbox

is implemented as a layer between the operating system and the individual

processes. In this solution, we focus on the isolated environments implemented at

operating system level, depending on the OS virtualization model, in accordance

with the scheme depicted in Figure 1.

Figure 1

The position of the sandbox virtualization layer within the OS

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 86 –

3 Implementing the Security Policy using a System

Sandbox

Access to the individual system resources is implemented by means of a unified

interface provided by the operating system. Therefore, the system sandbox must

provide access control of the individual OS components within this security

implementation. The most important OS components are:

 files

 the registry

 network interfaces

 the CPU

 I/O

 locks

 processes

 other

Seen from the aspect of the proposed solution of secure sandboxes in MS

Windows, determined by the architecture of the OS itself, the key system

resources are the following:

 Files: files contain all user and operating system data. Changes in the file

system without the knowledge of the user could be fatal. Removed or

modified system files would directly compromise OS security. Therefore,

controlling file access is a must in case of any application container.

 The registry: the registry contains the configuration data of the operating

system and the respective applications. Malware should never access or

alter the important data stored in the registry. In spite of the registry

being stored in files, access to it occurs by means of a separate interface.

Therefore the registry, as a specific component of the OS must be

adequately secured.

 Network interface: computer worms often contact remote servers, which

coordinate their activities within the system. They try to steal confidential

data and infect further computers. Controlling network access is therefore

an equally significant factor in these cases.

 System resources: The ability to strictly limit the number of active

processes, the usage of operating memory or the processor load may fully

eliminate malware execution, or, eventually, minimize the damages and

prevent the OS from being inaccessible. Controlled access to these

system resources shall thus increase the isolation of processes in the

sandbox.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 87 –

3.1 File Access

The architecture used as a starting point of the proposed solution is the sandbox

core created as a layer between the MS Windows operating system and the

respective applications. Our concept of supporting virtualization at OS level is

based on file virtualization and/or redirecting and constraining file access requests

from the virtual machine to the local, root partition of the host OS. E.g. if a

process in the V1 virtual machine tries to access a file with the path C:\foo\bar, the

virtualization level may redirect the request to the file C:\V1\foo\bar. If a process

in another environment (e.g. V2) wants to access C:\foo\bar, the path may be

diverted to the file C:\V2\foo\bar, different from file \foo\bar in V1. This mapping

is done transparently in the virtualization layer. The process accessing the file

C:\foo\bar cannot tell it is in fact accessing a different file.

The targets of the file system access requests may be mapped to the directory

containing the file system root, which will contain an equivalent tree structure, or

a file container. This container will appear to the host system as a single file. A

sandbox knowing the specification of the container may access all elements within

the container and control the file access requests for the virtualized process

transparently. As to the implementation, the file container may be a simple archive

(e.g. a ZIP file), or it may contain a full and separate file system and make use of

the existing file formats as VHD, VMDK, etc. specifications [17].

A relevant aspect of file virtualization is whether the application in the virtual

machine "sees" the other files and disk volumes in the host environment. There are

two different access types in this aspect:

 the process does not know the content of the host file system;

 the process may read arbitrary files in the host system, as part of the

specified security policy.

In the first case the root directory changes fully, similarly to the chroot tool of

Unix systems. This approach has advantages: absolute file isolation and a

decreased performance overhead. On the other hand, all libraries and files required

for the problem-free execution of the applications in the sandbox must be present

in the virtual root directory. This may be a problem in the MS Windows systems,

because it is not easy to find out and resolve all DLL dependencies. A further

problem is loading duplicates of DLL libraries into the operating memory and

wasting disk space. The other solution allows the virtualized process to read

arbitrary processes in the host system. The redirected requests result in the

following: each file accessed by the process is copied into the redirected directory.

However, resource duplication has a cost in terms of performance, it requires

space in the primary memory and also increases the overhead related to the

initialization and removal of the sandbox. Therefore, the virtual machine shares

the majority of its resources with the host and creates private copies of files in the

virtualized directory only if it is necessary – upon file write or modification

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 88 –

operations. This approach is known as the copy-on-write mechanism [18]. When

using the copy-on-write approach, we have to pay attention to an important fact.

Files will be located at two places: in the host environment and in the sandbox

environment. When a process running in the VM requests to read the content of a

specific directory, the resulting data should contain the unification of the two

locations, omitting the duplicate entries in the host directory.

Removing or renaming files initiated by the process running in the sandbox should

not affect the host environment. Thus, if the sandboxed application tries to

remove/rename a file located beyond the sandbox, the virtualization layer shall not

remove the file. The process running in the sandbox shall not know that the file

was not really removed. Upon a request of the same process of the specific

sandbox to access the removed file, the virtualization layer shall report to the

process that the file doesn't exist.

In the proposed solution we copy the file upon opening it with the write flag set.

Unlike the copy-on-write approach, the process accessing the existing file is not

diverted to a private directory until the first request to open a file with the write

flag set appears. This approach has advantages: the virtualization layer overhead is

low, which means also a simpler implementation. The disadvantage is wasting

storage space and time required to perform a copy when opening the file. The

request target does not use a file container but rather a separate directory, the

content of which shall mirror the tree structure of the file system.

3.2 Registry Access

Malware, except for modifying files, usually accesses the Windows system

registry too [19]. The registry is a hierarchic database containing system

information and program settings. In addition to other things, the registry contains

the configuration data of the operating system, including the keys required for

automatic program execution [20]. Most programs write to the registry at least

during installation. Due to all of these reasons, the registry is a critical part of the

system, accesses to it must be controlled. Therefore, the sandbox catches the

system calls to the registry and modifies the requested keys and values. The

principle is the same as with file access, slightly altered, with a lower overhead,

when the whole key and value tree is moved to the sandbox [9].

In the proposed solution, registry filtering is based on copying keys on write

operations and/or when altering the values. It is analogous to the copy-on-write

method. The key or value is created in the sandbox only upon creating the keys

and their values or upon their change. The scheme of accessing files is depicted in

Figure 2.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 89 –

Figure 2

File and registry access

3.3 Network Isolation

Network isolation – in a broader sense – is the creation of an independent

environment for an arbitrary process communicating on the local network and the

Internet [21]. Any such process gets a unique virtual IP address within the system.

The support for this kind of isolation is not widely used in system sandboxes.

Most often it appears in solutions providing full virtualization implementations at

OS-level, where it is not desirable to have the virtual machines appear under the

same IP address and interfere with the network operation of each other. Another

approach, emulating a separate network subsystem in the operating system for

each process is a very good way to analyze malware behavior. The

implementation of such a mechanism is a complex and tedious job, therefore it

appears primarily in hardware virtualization, when a separate operating system is

running in the virtual machine.

Network isolation – in the more specific sense – means controlling and limiting

access during communication on the local network and the Internet. The sandbox

should block Internet access and prevent sending out confidential information,

especially when the program has access to the host files. The proposed solution

blocks network access by means of the firewall integrated into the Windows

operating system.

3.4 Controlling System Resources

The control of system resources provides a means of protection from overloading

and losing access to the system resources. The sandbox may control the use of the

file system, the registry, the operating memory and the CPU load. Depending on

the settings it then applies the limitations.

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 90 –

Moreover, in addition to resource management and as part of the privilege system,

the sandbox may also contain a policy to modify the system settings (icons, fonts,

screen settings, power management, etc.), logging out, system restart and

shutdown. The sandbox contains an implementation of controlling resources and

system settings by means of Windows Job objects. This technology allows the

individual processes to be assigned to the respective containers and apply the

requested properties. Job objects allow the processes to be handled as uniform

units. The set of constraints may be specified within a single object, which forces

the use of the constraint on each process in the process file. An overview of the

methods used in network isolation and system resource and setting control is

depicted in Figure 3.

Figure 3

Network isolation, system resource and setting control

4 Sandbox Architecture

The proposed sandbox consists of three independent parts. The core of the

sandbox is executed at the OS kernel level. The main module consists of a

software driver. It filters file, registry and process operations. A Windows service

loads the driver into the system and implements network isolation. The

communication with the user occurs using a third, separate program. The user

controls the sandbox by means of a graphical interface, which communicates with

the driver and the service. The basic architecture of the sandbox is depicted in

Figure 4.

The article contains a detailed description of the sandbox driver architecture. This

component is the core of the sandbox.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 91 –

Figure 4

Basic sandbox architecture

4.1 Minifilters

With the advent of Windows XP SP2, Microsoft created a model to ease the

creation of file system filters as an alternative to the previously used legacy filter

model. In this the drivers – minifilters – are managed by the filter manager (FM).

Most system calls issued by the applications, sent to the drivers are in I/O request

packet (IRP) format. In the minifilters, the IRP requests are first processed by the

FM. The minifilter registers the callbacks of the requested operations, which are

then called by the FM. The FM encapsulates the IRP into a structure called

CallbackData and sends the structure gradually to the individual minifilter

instances, just as it was in the case of the legacy filters. A minifilter instance is an

abstraction of the minifilter at the specific disk partition.

An important part of the filter architecture is context support. The context is a

structure defined by the minifilter to store arbitrary data associated with the filter

manager objects. The context may be associated to minifilter instances, files, file

objects, open file streams, disk partitions and transactions.

4.2 Files

The elementary mechanism providing the file name modification is based on

setting the reparse status flag (STATUS_REPARSE) of the corresponding IRP

operation in the pre-operation. This indicates that the I/O manager discards the

current IRP and initiates a new IRP with the file object containing the file location

in the sandbox domain. In addition to altering the path and the state of the IRP

operation the kernel must finish the current operation to make sure that the IRP

structure does not access the file system. This is achieved by returning the

appropriate state from the pre-operation to the filter manager. An important

problem arises with this redirection operation: How does the filter know, which

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 92 –

request has been redirected and which has not. With the advent of Windows Vista,

each creation operation may contain a reference to an ECP (Extra Create

Parameter) context. This context is retained even after finishing the IRP, when the

I/O manager adds a reference to the context to the new IRP structure. The kernel

uses the ECP context to mark the redirected operation in the pre-operation phase

and to mark the creation operation initiated by the sandbox in the redirection

between disk partitions in the whole driver. The ECP context is only available in

the creation pre-operation and post-operation phases. For a simple identification of

the request and further required data, the ECP context is transformed to a context

associated with an open file stream (SHC) in the creation post-operation phase,

where the file object already exists (unlike the pre-operation phase), therefore this

context may be associated with it. The kernel associates the SHC only with the file

object representing a file in the sandbox and it is available only to our minifilter,

unlike the ECP context available for all drivers taking part in the creation

operation.

4.2.1 Opening Files

When opening/creating a file, each application tells the OS how to behave if the

file exists/does not exist. Windows knows six different dispositions, as stated in

Table 1.

Table 1

File opening dispositions

Disposition The file exists The file doesn't exist

CREATE failure created

OPEN_IF open created

OPEN open failure

OVERWRITE open and overwritten failure

SUPERSEDE replaced created

OVERWRITE_IF open and overwritten created

The program also specifies the requested file access: read, write, erasable, etc..

The disposition and access specifications are the main elements in selecting when

the kernel should redirect the request, copy the file to the sandbox domain or

ignore the request. The situations, which may arise in conjunction with the

specified disposition and the selected flag are depicted in Figure 5.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 93 –

Figure 5

Request flow upon opening a file

4.2.2 Removed Files

The sandbox core registers the information setting operation

(IRP_MJ_SET_INFORMATION) and selects the disposition structure. Then, the

whole path to the file is stored in the table of removed files. If the file comes from

the sandbox, further execution is left over to the I/O manager. If the file comes

from the host environment, the core initiates its own information setting operation

with the file removal disposition flag unset. Depending on the result of the

initiated operation, the kernel will apply the final state and finish the original

information setting operation.

The kernel manages a separate table with the list of removed files for each logical

sandbox. To keep the state of the sandbox even after operating system shutdown

and restart, the table contents are stored in a file and read into the memory upon

the creation of the logical sandbox.

The table implementation influenced the decision process in the redirection

specified above. If the file is being opened, the first step is to check the existence

of the file path in the table. If the file is in the table, the request is denied, the

operation is finished. Otherwise, the above process is executed.

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 94 –

4.2.3 Renamed Files and Hard Links

The sandbox controls file renaming and hard link creation. The kernel is primarily

interested in the first three phases of these operations. Opening a file to rename;

opening the target file with the new name; and catching the IRP called

IRP_MJ_SET_INFORMATION associated with the file object of the first

operation. The first phase is executed in the sandbox kernel in accordance with the

file opening algorithm. The second phase is a little different from the standard

opening algorithm, because the target file does not exist. Actually, the request

contains the flag indicating that the calling process tries to open the target of the

renaming operation or to create a hard link. The sandbox kernel receives the flag

and forwards the target to the sandbox domain without further analyzing the

request. The third phase is different, depending on whether the operation is aimed

at renaming a file or creating a hard link.

When renaming a file, the filter retrieves source file information in the third phase.

If the source file comes from the sandbox domain, the kernel is sure that the host

cannot be modified and the rest of the operation is left over the I/O manager. If the

source file is with the host, the kernel retrieves information of the target file,

copies the source file from the host to the sandbox domain under a new name,

adds the source file to the table of removed files, stops further execution and

indicates success. Renaming within disk partitions is not possible due to the

principle of file system independence; such operations are performed internally as

copy and deletion operations.

4.2.4 Directory Enumeration

The result of the enumeration is a set of files and directories from the queried

directory. Since the proposed sandbox uses the copy-on-write technique, the files

may be at two locations. If the isolated process requests information on the items

residing in a specific directory, the result must contain a unification of both

locations, omitting the duplicate entries and the entries listed in the table of

deleted files. Duplicate entries represent files and directories located both in the

sandbox domain and the host domain. The result shall not contain the entries from

the host domain in these cases.

4.3 Registry

The registry filter is a driver filtering the registry calls. The configuration manager

(CM) implementing the registry allows filtering any process call related to the

registers. Similarly to files, the register filter receives pre-notifications and post-

notifications. The driver catches all notifications. If the given notification is

irrelevant to the manager, it must at least return the execution to the configuration

manager. If the operation is filtered during the pre-notification phase, the

requested processing may be done and one of the three status types is returned:

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 95 –

• success (STATUS_SUCCESS) – the CM processes the registry operation

and then initiates a post-notification containing the required data and the

resulting status of the operation;

• failure – the operation is rejected and the process error status is returned

immediately, without calling the post notification and the assistance of

the CM;

• bypass (STATUS_CALLBACK_BYPASS) – all processing must be done

by the driver and the registry operation terminates with success and

without initiating post-notification and CM assistance.

As with minifilters, registry filters have contexts too. The context may be

associated with registry filters, registry notifications and registry objects

representing open keys. Figure 6 shows the principle of filtering pre-notifications

in the registry filter, including specific notification types.

Figure 6

The principle of filtering pre-notifications of registers in the sandbox

4.4 Processes

The driver, the minifilter, the registry filter or other components catch all system

calls by default. The aim of the solution is to filter specific programs. The sandbox

kernel must determine the context of the currently executed thread for all

callbacks and associate them with the processes. Each process in the operating

system has a unique numerical identifier, the PID. Windows allows each driver to

register a callback initiated upon process creation and termination. The client part

of process execution sends the PID to the sandbox, which stores it in the global

process table. The callback contains not only the PID of the process being created,

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 96 –

but also the PID of the parent process, which created the process. If the isolated

process creates another process, the sandbox core identifies the new process using

the parent PID and adds it to the process table.

5 Evaluation of the Solution

To evaluate the solution, we have performed a functionality test of the proposed

secure sandbox. For creating snapshots of the file system and the registry database

we used System Explorer and OS Forensics software. The sandbox was tested in a

virtual machine with an updated 32-bit Windows 7 OS without antivirus software.

The tests could be performed on the MS Windows XP and MS Windows Vista

too. We have purposefully downloaded and executed 11 malicious applications in

the proposed sandbox using Internet Explorer. We have selected malware

according to its current popularity. According to the statistics of the company G

Data Software AG, the most widespread are various forms of adware. Trojans,

spyware and worms are the largest threats, therefore we have included them in the

test, in spite of the fact that these are less widespread globally.

We have tested the following threats (the names come from the virus database of

the company ESET):

1. ZeroAccess (called Trojan-Dropper.Win32.Smiscer.hf in the Kaspersky

database) is one of the most widespread and most dangerous rootkits.

This malware is part of various key generators and cracks. When

executed in a 32-bit OS, ZeroAccess overwrites the existing driver and

loads itself into kernel space. The rootkit usually hides in a hidden

partition. In a 64-bit OS, ZeroAccess does not contain code executed in

kernel space. In this case it hides in the Global Assembly Cache (GAC)

of the .NET framework.

Result: The rootkit could not be executed in the proposed sandbox. The

system was not infected.

2. Win32/Injector.AAKO – carrier of various kinds of malware, trojans

catching passwords and other confidential information from the infected

computer. This specific variant named AAKO does also copy the payload

to the C:\Windows\InstallDir directory and creates a value in the registry

database, in the HKLM\Software\Microsoft

\Windows\CurrentVersion\Run\HKLM key.

Result: The program was executed in the sandbox. The registry and file

sandbox caught all executed changes. After terminating the sandbox, all

malicious processes were terminated. The system was not infected.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 97 –

3. Win32/TrojanDropper.VB.OJG – changes the Internet connection

settings in the registry and attempts to switch off the firewall. Further, it

also copies an executable with a random name to the TEMP directory,

executes it and writes malicious data in the GDIPFONTCACHEV1.DAT

file, normally used as a font cache. In addition to this, it copies an

svchost.exe executable file into the C:\ProgramData directory, pretending

to be a service of the operating system.

Result: The sandbox successfully caught all executed changes and processes,

without infecting the OS.

4. MSIL/Injector.CUXtrojan – behaves similarly to the previous program,

but pretends to be a Java update in the registry.

Result: The sandbox successfully caught the executed changes and processes.

5. Adware.Relevant.CC – currently the most widespread adware currently,

part of many freeware programs. It analyzes user activity on the

computer (including Internet surfing), it adds an exception to the firewall

and from time to time it opens a window to fill in the user data.

Result: unsuccessful installation in the sandbox.

6. Win32/Spy.Zbot.YW – a trojan stealing passwords and other confidential

information. It also serves as a backdoor, it may be controlled remotely.

Result: This trojan was not execute in the sandbox. Upon start, the program

terminated with an error, so the system was not infected.

7. Win32/Kryptik.BFCO – Ransomware, encrypting the file system and

offering unencryption for money. In addition to this, it switches off

Windows Firewall, Windows updates, Windows Defender and other

antivirus software. It is automatically started by means of registry values

and it was copies itself to various places.

Result: This malware was successfully executed and started encrypting the

files. However, the original files remained untouched; all changes remained

limited in the sandbox. The sandbox contained a number of encrypted files.

The host system (files and the registry) remained uninfected and the OS

settings remained unchanged. During the test it was not possible to execute

the task manager and terminate the processes manually. After terminating the

sandbox, the file encryption processes were terminated and the task manager

could be switched on again.

8. Win32/Spy.Hesperbot – the known banking trojan spreading by email as

an attachment named zasilka.pdf.exe, most active in Turkey and the

Czech Republic. Win32/Spy.Hesperbot records keystrokes, creates

screenshots, records video using the web camera of the computer and

creates a remote proxy.

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 98 –

Result: This malware started successfully, it stored system information in an

encrypted file and copied its code into the newly created attrib.exe and

explorer.exe files, then terminated. The active network isolation prevented it

from communicating with the server. The host system was not modified.

After terminating the sandbox, both infected processes were terminated.

9. Win32/Dorkbot.B – a very widespread computer worm spreading

through Skype, Facebook Chat, Twitter messages, etc. This worm steals

passwords and contains a backdoor.

Result: None of the tested variants of this worm could be started in the

sandbox.

10. Win32/LockScreen.ALY – another example of ransomware.

Result: Without administrator privileges it was not possible to execute the

malware in the sandbox. With administrator privileges and active limitations

the sandbox caught the changes.

The chart in Figure 7 shows the results. The chart shows a total of 11 experiments,

since the behavior of malware no. 10 was significantly dependent on the method

of testing.

Figure 7

Security test results

Malicious code did not manage to infect the host system in any of the cases. Some

code did not even start in the sandbox. If the malware started, in some cases it was

capable of performing its malicious activities; however, after terminating the

sandbox, it was terminated successfully. Network access constraints and mainly

the restrictions in the number of active processes and system settings play a

significant role in sandbox efficiency.

To evaluate the additional computing costs of the solution, we have measured both

the initial and repeated program start-ups. We have tested the start-up of the

Firefox 28 Internet browser, WinRAR 5 compression software, Foxit Reader 6

PDF reader and Emule 0.5 file transfer software. When measuring the initial start-

up, we have restarted the OS after each attempt. The measurement results are in

Figure 8. The average initial start-up overhead was 8%, subsequent start-up

overhead amounted to 17%. The smaller percentage of the initial startup is related

to the increased time of loading the libraries from the hard drive.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 99 –

Figure 8

Initial and subsequent startup times of the programs in the sandbox

Standard usage of programs degrades the execution time of programs minimally.

Increased time costs are presented in case of programs which are heavy on I/O

operations. All other system calls are executed natively, which is an advantage in

comparison with hardware-level virtual machines. The whole performance penalty

depends on the application in use; it may range from 5% to 20%.

Conclusion

The goal of this work was to design a system sandbox in the MS Windows

system, providing security in case of the executed applications. The proposed

architecture was implemented using standard methods offered by the Windows

operating system. The behavior of the sandbox was primarily based on the copy-

on-write model, which creates a redundant isolated OS environment. This article

presents the design of the sandbox and the main parts of the implementation in the

MS Windows OS. The execution of the respective applications is not functionally

limited in the sandbox. The applied copy-on-write approach at the level of OS

virtualization has a smaller performance penalty than full virtualization; therefore

the applications are executed without greater latency in the sandbox. The

performed security test showed the functionality of the proposed sandbox model

in solving current security problems, where the user is forced to react to various

security issues. A drawback of the solution is the possible waste of storage space.

In future, the virtualization of inter-process communication should be improved

and the network isolation with deeper integration.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under

the contract No. APVV-0008-10 and project KEGA 008TUKE-4/2013:

Microlearning environment for education of information security specialists.

L. Vokorokos et al. Application Security through Sandbox Virtualization

 – 100

–

References

[1] Hoopes John: Virtualization for Security including Sandboxing, Disaster

Recovery, High Availability, Forensic Analysis, and Honeypotting,

Burlington 2009

[2] Wahbe Robert et al: Efficient Software-based Fault Isolation, ACM

SIGOPS Operating Systems Review, Vol. 27, No. 5, New York 1993, pp.

203-216

[3] Smith James Edward, Nair Ravi: Virtual Machines: Versatile Platforms for

Systems and Processes (The Morgan Kaufmann Series in Computer

Architecture and Design), San Francisco 2005

[4] Barrett Diane, Kipper Gregory: Virtualization and Forensics: A Digital

Forensic Investigator’s Guide to Virtual Environments, New York 2010

[5] Moya del Barrio Victor: Study of the Techniques for Emulation

Programming [online], Barcelona School of Informatics, Barcelona 2001,

Available on: http://personals.ac.upc.edu/vmoya/docs/emuprog.pdf [quoted

on April 12, 2013]

[6] Calzolari Federico: High Availability using Virtualization: Doctor's thesis,

University of Pisa, Pisa 2009, p. 83

[7] Nakajima Jun, Mallick Asit: Hybrid-Virtualization – Enhanced

Virtualization for Linux, Proceedings of the Ottawa Linux Symposium,

Vol. 2, Ottawa 2007, pp. 87-96

[8] Chaudhary Vipin et al: A Comparison of Virtualization Technologies for

HPC, Proceedings of 22
nd

 International Conference on Advanced

Information Networking and Applications, IEEE Computer Society,

Buffalo 2008, pp. 861-868

[9] Yu Yang: Os-Level Virtualization and its Applications: Doctor's thesis,

State University of New York at Stony Brook, Stony Brook 2007, p. 120

[10] Shan Zhiyong et al: Facilitating Inter-Application Interactions for OS-Level

Virtualization, ACM SIGPLAN Notices – VEE, Vol. 47, No. 7, New York

2012, pp. 75-86

[11] Laadan Oren, Nieh Jason: Operating System Virtualization: Practice and

Experience, ACM Proceedings of the 3
rd

 Annual Haifa Experimental

Systems Conference, New York 2010, pp. 1-12

[12] Mihályi Daniel, Novitzká Valerie: Towards the Knowledge in Coalgebraic

Model of IDS, Computing and Informatics, Vol. 33, No. 1, Bratislava 2014,

pp. 61-78

[13] Kampert Paulus: Taxonomy of Virtualization Technologies: Thesis, Delft

University of Technology, Faculty of Systems Engineering Policy Analysis

& Management, Delft 2010, p. 93

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 101 –

[14] Jakubčo Peter, Šimoňák Slavomír, Ádám Norbert: Communication Model

of emuStudio Emulation Platform, Acta Universitatis Sapientiae:

Informatica, Vol. 2, No. 2, Cluj-Napoca 2010, pp. 117-134

[15] Kamp Poul-Henning, Watson Robert: Jails: Confining the Omnipotent

Root, Proceedings of the 2
nd

 International SANE Conference, Maastricht

2000, pp. 116-127

[16] Ma Kun, Yang Bo, Abraham Ajith: A Template-based Model

Transformation Approach for deriving multi-tenant SaaS applications, Acta

Polytechnica Hungarica, Vol. 9, No. 2, Budapest 2012, pp. 25-41

[17] Singh Jasmet. et al: An Application Sandbox Model based on Partial

Virtualization of Hard-Disk and a Possible Windows Implementation,

International Journal of Computer Applications, Vol. 7, No. 57, New York

2012, pp. 16-21

[18] Kasampalis Sakis: Copy On Write Based File Systems Performance

Analysis And Implementation: Thesis, Technical University of Denmark,

Department of Informatics, Lyngby 2010, p. 83

[19] Apap Frank et al: Detecting Malicious Software by Monitoring Anomalous

Windows Registry Accesses, Recent Advances in Intrusion Detection:

Lecture Notes in Computer Science, Berlin 2002, pp. 36-53

[20] Honeycutt Jerry: Microsoft Windows Registry Guide, Redmond 2005, p.

1327

[21] Vokorokos Liberios, Pekár Adrián, Ádám Norbert, Darányi, Peter: Yet

Another Attempt in User Authentication, Acta Polytechnica Hungarica,

Vol. 10, No. 3, Budapest 2013, pp. 37-50

[22] Vokorokos Liberios, Baláž Anton, Trelová Jana: Distributed Intrusion

Detection System using Self Organizing Map, Proceedings of 16
th

 IEEE

International Conference on Intelligent Engineering Systems, Lisbon 2012,

pp. 131-134

