
Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 117 –

Global Dynamic Slicing for the C Language

Árpád Beszédes

University of Szeged, Department of Software Engineering

Árpád tér 2, H-6720 Szeged, Hungary

beszedes@inf.u-szeged.hu

Abstract: In dynamic program slicing, program subsets are computed that represent the set

of dependences that occur for specific program executions and can be associated with a

program point of interest called the slicing criterion. Traditionally, dynamic dependence

graphs are used as a preprocessing step before the actual slices are computed, but this

approach is not scalable. We follow the approach of processing the execution trace and,

using local definition-use information, follow the dependence chains “on the fly” without

actually building the dynamic dependence graph, but we retain specialized data structures.

Here, we present in detail the practical modifications of our global dynamic slicing

algorithm, which are needed to apply it to programs written in the C language.

Keywords: program slicing; dynamic slicing; program analysis; program dependence; C

1 Introduction

Program slicing [1, 2] is a program analysis technique that is used to help solve

various software engineering problems. A slice of a program is the program’s

subset which consists of only those statements that directly or indirectly affect the

value of a variable occurrence (known as the slicing criterion). This form of

slicing is referred to as backward slicing. In contrast, forward slicing involves

looking for forward dependences; those statements that may be affected by a

specific program point. If the dependence set is determined in such a way that it

reflects the dependences for all possible executions, we call it a static slice.

However, if only a specific program execution is investigated, it is called a

dynamic slice. In our study we will focus on backward dynamic slicing.

Dynamic program slicing [3] has a certain advantage in some applications;

namely, the dynamic slices are significantly smaller than their static counterparts.

For instance, when debugging we seek the possible cause(s) of an error that was

observed at a specific program point and for a specific run. The more precisely

this set of causes is defined, the more effective the debugging should be.

Á. Beszédes Global Dynamic Slicing for the C Language

 – 118 –

A common approach to dynamic slicing is based on computing the dynamic

dependences among the program elements. The method by Agrawal and Horgan

[3] uses a graph representation called the Dynamic Dependence Graph (DDG),

which includes a distinct vertex for each occurrence of a statement in the

execution history (the list of statements executed), and the edges correspond to the

dynamically occurring dependences among them. Based on this graph, the

computation of a dynamic slice means finding all the reachable vertices starting

from the slicing criterion. The DDG-based method can be used to compute

dynamic slices in a general way, since it performs a full preprocessing [4] before

the actual slicing. When building the graph in advance, the user has the possibility

of computing different slices starting from different program points (the criteria)

and going in different directions (forwards or backwards). Since the computation

and storage for such a graph is expensive more specialized approaches that take

into account the desired slicing scenario should be considered.

In previous studies [5, 6, 7], we devised new efficient dynamic slicing methods

that were based on dynamic dependences, but did not require full preprocessing

and the building of huge representations like the DDG graph. We also process the

execution history and some elements of the complexity of our approach are related

to the length of the execution as well; but other, more specialized data structures

and algorithms are applied in order to improve the overall efficiency. One of the

results is a backward slicing algorithm [6, 7] that computes all the possible

dynamic slices globally, with only one pass through the execution history. This

method significantly differs from the previously published slicing algorithms, and

it is believed to be applicable for real-size programs and executions. We presented

some details of the algorithm in different contexts; for C [6, 8] and for Java [9]

programs, and for different applications [7, 10].

In this paper, we provide details on the implementation of the global algorithm for

backward slicing for C programs. This makes its implementation possible in

virtually any context and platform for C.

2 Previous Results and Related Work

Program slicing has a large literature and many different approaches have been

devised. Surveys can be found at various places, e.g. [2, 11]. While the practical

static slicing methods are mostly based on the PDG-based algorithm by Horwitz et

al. [12], there are several, quite different approaches to dynamic slicing. One usual

categorization of the dynamic slicing methods comes from asking whether the

program subset produced (the slice) is an executable program or not. Executable

slices are needed for certain applications, but they are less accurate.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 119 –

Actual implementations of dynamic slicing algorithms were mentioned in very

few publications, such as in [13, 14]. However, these implementations did not

prove to be suitable for real-life applications. In a study, Venkatesh experimented

with different algorithms and provided experimental data [14]. In this experiment,

four kinds of slicing algorithms were implemented for the C language, including

the dependence-based approach by Agrawal and Horgan [3] and the executable

slicing method by Korel and Laski [15]. Unfortunately, no details were given on

the design and functionality or the special features of the implementation for C.

In the DDG-based method by Agrawal and Horgan [3], the size of the DDGs may

be huge. In fact, it is not bounded by the program dimensions, but it correlates

with the execution length. In their study, Agrawal and Horgan therefore proposed

a reduced DDG method, where the size of the reduced graphs was bounded by the

number of different dynamic slices. Alas, even this reduced DDG may be very

large for some programs. In [16], Zhang et al. elaborate on the problems of

existing dynamic slicing algorithms concerning their computation and space

complexity. They claim that most accurate (they use the term “precise”)

algorithms are significantly less efficient than the approximate methods, which in

turn produce inaccurate dynamic slices. This inefficiency may be attributed to two

factors: either the execution trace is completely processed before the actual slicing

algorithm is performed (referred to as full preprocessing) or the slicing algorithm

is invoked on demand, processing the trace from the start for each slicing request

(referred to as no preprocessing). Our global and demand-driven algorithms [5]

correspond to the first and second cases, respectively. In both approaches the

authors gave their own implementations based on dependence graphs. To reduce

the overheads of each approach they proposed a combined algorithm called

limited preprocessing, where the execution trace is augmented with summary

information to allow a faster traversal when the slice is computed.

2.1 Our Global Dynamic Slicing Algorithm

In a previous study [5], we investigated practical ways of computing the dynamic

slices based on dynamic dependences, but without requiring costly global

preprocessing. We proposed alternative methods based on the same dynamic

dependences, but instead of DDG graphs specific data structures were used for

each algorithm. These structures are different depending on the slicing scenario,

and – having specific applications – some of the algorithms are more efficient in

terms of storage, while others have improved runtime efficiency. The different

slicing scenarios that we investigated are global vs. demand-driven slicing and

computing backward vs. forward slices. One favorable property of these

algorithms is that they are able to compute the same dynamic slices as the original

DDG-based method. It turns out that the slices can be produced by traversing the

execution history either in a forward or in a backward way, and that some

processing directions fit better in one slicing scenario than in another. This gives

Á. Beszédes Global Dynamic Slicing for the C Language

 – 120 –

eight possibilities, some of which give useful algorithms, while others prove

unfeasible. In our paper, we elaborate the topic by providing details on handling

real C language constructs for the global algorithm.

Our approach for computing dynamic slices differs significantly from the previous

methods. We designed the slicing algorithms so that they can be effectively

implemented and used in practice. Hence, we tried to minimize the amount of

information that must be computed and stored during the computations [5, 6, 7].

In our algorithms, we track the data and control dependences among the program

instructions that arise dynamically during execution. The algorithm works on the

trace of the execution, which is produced using a statically instrumented version

of the program. The trace includes all the necessary information about the runtime

behaviour of the program.
1
 For producing the required slicing results, the

algorithm relies on statically computed information from the code as well. The

global algorithm (also referred to as the forward algorithm) starts at the beginning

of the trace with the first executed instruction and propagates the dynamic

dependences in parallel with the execution, and eventually provides the required

slices for all the possible dynamic criteria (for all the variables). Evidently, this

approach has its benefits and drawbacks, but the other algorithms presented in [5]

provide feasible alternatives. For details of the conceptual algorithm with

examples, please see the articles cited above.

3 Global Dynamic Slicing for C Programs

In other studies [5, 6, 7], we presented conceptual algorithms for dynamic slicing.

The concepts were introduced for programs in which only scalar variables were

used and without interprocedurality. The application of the conceptual algorithm

to C programs gives rise to several problems. In our study, the handling of various

language constructs were addressed in the following way:

1) All computations are performed on memory locations instead of handling

scalar variables, pointers and other more complex objects differently. This

approach enables an easy and uniform handling of pointers, pointer

dereferences, arrays and structures by transforming them to the actual

memory locations. In our approach, the dependences for a pointer

dereference will include the dependences of the pointer itself and the

dereferenced memory location as well. Also, accesses to union members

and C bitfields are treated as dependences for the whole data structure

(struct and array members are handled individually). Slicing on memory

1
 Execution tracing is used in other areas of software engineering as well; it has

recently been proposed to extend software product quality frameworks [18].

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 121 –

locations is a feasible approach since all the dynamic information on the

actual storage of objects is available.

2) Since each C statement (and expression with side-effects) may imply the

definition of more than one object, a definition-use list is defined for each

executable instruction, rather than a single definition-use pair as we have

with the conceptual algorithm [5, 6, 7] (a definition-use pair or def-use pair

consists of a variable name that is defined at the instruction and a set of

variables that is used in the instruction for computing the value of the

defined variable). This list is essentially a sequence of def-use pairs that all

occur in an instruction (see below for a complete definition).

3) All slicing criteria and slicing results are given for line numbers in the

original source file. However, since the computations are made on memory

locations and for (possibly multiple) objects defined for one statement, the

necessary mappings must be made.

4) Interprocedural dependences that arise across function calls can be handled

relatively easily by adopting the memory slicing approach, since each

memory address can be viewed as a “global variable.” The execution

history will contain each realized function call, and the order of the

instructions executed will also be known. We only have to handle the

actual arguments as special local variables and the return value as a special

variable defined at the call site.

5) Local variables are also handled by using their addresses on the actual call

stack frame. We only need to track the block scopes dynamically for

lookup purposes. The handling of globals is also simple due to using their

addresses for computation (which are fixed for the whole execution of the

program).

6) The unstructured control transfers (goto and other jump statements) are

handled by adding all the possible control dependences to the def-use

representation (for a block-based language as in our conceptual description,

the control dependences are determined by the syntax). As this way some

statements may be dependent on multiple predicates, the handling of

predicate variables in the presence of jumps needs to be slightly extended

(the details are given below). Currently, C “long jump” constructs are not

handled, but they could be treated in the same way.

7) The conceptual algorithm uses the concept of execution history to record

the instruction numbers executed. To be able to slice a C program,

however, some other information is also needed that is generated upon

executing the program, and which is used by the slicing algorithms. This

includes the addresses of variables, function calls and block scope

information. We will call this extended execution history the trace.

Á. Beszédes Global Dynamic Slicing for the C Language

 – 122 –

8) Declaration lines will be added to the slices whenever the definition of the

declared variable is added to the slices. Also, the eventual initializations

will be added to the def-use representation.

9) Since programs generally rely on standard library code as well, we must

handle interprocedural dependences arising from the parameters, side

effects and return values of calls to library code. Since the source code of

library functions is often unavailable, we will rely on the semantics of such

functions and prepare, in advance, a def-use representation of each

standard library function based on the specifications.

10) Real programs usually consist of multiple source files composed of header

files (.h) and implementation files (.c), which produce translation units

after preprocessing. Our slicing algorithm works on preprocessed units,

which makes it possible to compute slices for the whole program. What is

needed to achieve this is a global numbering of statements over all the

source files of the program, and solving name identification for definitions

coming from common header files and placed into multiple translation

units, as we do with a linker.

Based on these considerations, the implementation of our dynamic slicing

approach consists of four phases. During a static analysis, the def-use

representation of the program is produced and stored on the disk, and the source

code is instrumented.
2
 Next, the instrumented code is built to produce an

executable program, which is executed in the next phase. During this operation a

trace of the program is produced with the help of the instrumentation code. Lastly,

the slicing algorithm is executed, where the trace is used to drive the propagation

of the dependences, in the global algorithm starting from the beginning of the

trace. The slicing algorithm relies on the def-use representation produced in the

first phase. Below, we will describe these phases and specific features of the

implementation for C.

3.1 Static Analysis

Static analysis has two goals: to produce the def-use representation (Section 3.2)

and to instrument the code (Section 3.3). Another task here is to create a mapping

between the physical source code lines and the internal identifiers given to

program elements by the analyzer. Our static analysis front end works on the

preprocessed code, and it performs lexical and syntactic analysis, producing an

annotated Abstract Syntax Tree as the result for each unit. The AST contains

2
 In this study, we used source code-level instrumentation, but other ways exist as well

such as binary-level and virtual machine-level solutions. It should be added that

source code-level instrumentation has the highest risk of changing program behavior,

but when experimenting with our prototype we did not encounter any such problems.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 123 –

sufficient information to compute the def-use representation and perform code

instrumentation.

3.2 Def-Use Representation for C

In our implementation for the C language, an extended def-use representation is

created and stored in a file, which will be used later by the algorithms. In the

conceptual algorithm [5, 6, 7], the def-use representation was defined as i. d: U

for each program instruction number i. For real C programs, this representation

(also called the D/U representation below) will be extended so that it contains a

sequence of d: U items for each instruction i in the program:

. We will use the notation DU
C
(i) for the

D/U sequence of the i-th instruction.

This extension is needed because in a C instruction (i.e. an executable expression

with side-effects), several l-values may be assigned new values. Note that the

sequence order is important, since the d values of a previous D/U item can be used

by the subsequent U sets. This sequence order is determined by the “execution-

order” (evaluation) of the corresponding subexpressions. The order of the

evaluation of subexpressions in C is not always defined by the language, hence

there might be complications arising from the use of different compilers and

compilation options. In our current implementation, we will rely on the parsing

sequence determined by the context-free grammar of C, which proved to be

sufficient in our prototype. In a production tool, however, care should be taken to

handle the various possibilities.

The other modification needed for the D/U representation for C is that the

variables (including artificially created ones) in it are not only simple scalar or

predicate variables, but they can also take several different meanings as follows:

1) Scalar variables. These are the “regular” global or local variables (with

static storage, they have a constant address for the actual call stack frame).

The formal parameters of functions are also represented as if they were

local variables in the function’s scope. Note that dynamic variables used

with dynamically allocated memory on the heap do not need special

treatment as they will be treated as pointers and the corresponding allocator

functions as library code (see above).

2) Predicate variables. Denoted by pn, where n is the serial number of the

predicate instruction, the predicate variables are artificial variables with the

same semantics as those described in the conceptual algorithm. In the case

of the C language, all iteration and selection statements will induce

predicate variables. An additional, special form of predicate variables will

be introduced, one for each function and will be denoted by entry(f), to

generalize the representation of control dependences. Such an “entry-

Á. Beszédes Global Dynamic Slicing for the C Language

 – 124 –

predicate” is defined upon entering the function f and is used by all

statements outside any other predicates in the function.

3) Output variables. Denoted by on, the output variables are artificial

variables that are generated at the places where a set U is used, but no other

variable takes any value from U. These include function calls with their

return values ignored, single expression-statements with no side-effects,

jump statements, and some output statements in C such as printf.

4) Dereference variables. The notion of the (artificial) dereference variables

is employed where a memory address is used in any possible way or where

it gets a value through a pointer (or an array or structure member). They are

denoted by dn, where n is a global counter for each dereference occurrence.

Dereference variables will be created for the following code constructs:

*expr, object.member, ptr->member and array[index]. Note

that in an implementation, some of these could be handled uniformly as a

base pointer+offset, but source code instrumentation requires a different

treatment. Dereference variables will be used in such a way that their

dependences will be noted in the D/U representation only symbolically,

while the actual dependences will be computed for the associated addresses

written to the trace. Note that the order in which the dereference variables

are stored in the use sets must be the same as the order in which they will

be evaluated.

5) Function call argument variables. These are artificial variables denoted by

arg(f,n), where f is a function name and n is the function argument

(parameter) number. An argument variable is defined at the function call

site and used at the entry point of the function (by defining the formal

parameter).

6) Function call return variables. Denoted by ret(f), where f is a function

name, the artificial return variables are defined at the exit point of the

function and used at the function caller after returning.

In the extended D/U representation, regardless of the type of variable, all

dependences are treated equally. For instance, a pointer dereference may be

dependent on a predicate variable if the dereference subexpression is control-

dependent on a predicate. This uniform handling allows a very concise capturing

of the interdependences of the program, and a straightforward implementation of

the algorithms. In the following, we will describe how the dependences in the D/U

representation are built up and relate to special features of the C language.

Computation of the data dependences. Generally speaking, the structure of the

D/U representation is such that it captures the definition-use relationships locally

for each statement. This means that we do not need to deal with the classical

problems of computing data dependences in the static case, as is required with the

dependence graphs [12]; in our case only the names of the dependent variables

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 125 –

(and not the corresponding definition) need be stored. Thus, our representation for

C can be constructed in a simple syntax-directed manner following the semantics

of each C expression construct.

Function calls. Function calls and parameter passing are handled in the D/U

representation using the artificial variables arg and ret (see above). Whenever a

function call expression is found in a C instruction, a corresponding D/U item is

created with the arg variable as the defined one and the appropriate use set. Next,

in each function a D/U item is constructed for all its formal parameters in which

the parameter is the defined variable (the parameter is later treated as a local

variable) and the corresponding arg variable constitutes the use set. Furthermore,

for each return statement in the functions a D/U item is created with the ret

variable defined and the corresponding use sets. Lastly, at the call site these ret

variables are used in the corresponding use sets for the expressions containing the

function call. The order of elements in the D/U lists is important as this is required

for the synchronization with the trace.

Structured control dependences. The predicate variables will be used in the D/U

representation to capture the control dependences among the program instructions.

In the case of structured control transfers (the if selection and the three types of C

loops), for each predicate corresponding to the respective decision statement a

predicate variable will be created and the dependences will be based on the

nesting structure of the program; the directly nested statements of if branches or a

loop will be dependent on the corresponding container predicate. To make the

algorithm more general, for each function an additional predicate called the entry-

predicate will be defined as well. The instructions that are not nested within

another predicate statement will be dependent on the entry-predicate. (The entry-

predicates are implicitly defined at the function beginning and their use sets are

empty.) Note that shortcut logical expressions do not influence this operation.

Handling of goto and other unstructured jumps. While the direct control

dependences can be readily determined for structured programs, goto-s and other

arbitrary control transfers (switch, continue and break) must be handled in a more

elaborate way. We will compute control dependences in the static analysis phase

based on the traditional approach using postdominance relations [17], and then

build the extended D/U representation based on this information. Namely, if an

instruction i is found to be control dependent on some other instruction (which is

then a predicate), we extend the use set of i with the corresponding predicate

variable. Since in a program with arbitrary control flow an instruction may be

control dependent on more than one instruction, our use sets may also contain

several predicate variables. In one specific execution only one of them will be

responsible for the actually realized control dependence, which we will call the

active predicate. When propagating the dependences through the current

instruction’s use set, we must select just one predicate variable to continue with. If

there are more predicate variables in the use set, our approach is to choose the one

that has been defined most recently. In other words, for i
j
. d: U, we will choose

Á. Beszédes Global Dynamic Slicing for the C Language

 – 126 –

predicate p for which LD(p) = max{LD(r) | r ∈ U and r is a predicate variable},

where LD(v) is the last definition of variable v, i.e. the execution step at which v

was defined just before the j-th step where i was executed. (In the following, we

will refer to execution history elements as actions with the notation i
j
, where i is

the serial number of the instruction executed at the j-th step or position.)

Complex l-values. A side effect of certain C expressions is that the sub-expression

on the left hand side of the operator takes the value of the right hand side (this

includes the assignment operators as the most common ones). These operators

require that their left hand side be an l-value (meaning that it is modifiable). Quite

frequently, the l-value is a simple variable occurrence, but these sub-expressions

can be arbitrarily complex. In such cases, the D/U representation needs to be

constructed carefully to include all the defined and used variables appropriately.

One important issue is the handling of pointer dereference expressions of the form

*p. Strictly speaking, the data pointed to by a pointer is not dependent on the

address itself. However, we will apply a conservative approach and include such

pointers as well (this approach is also used by some other algorithms). In Figure 1,

we list some other cases and the way we treat them in our representation

(following the principles for dereference variables introduced above).

a[i] = r; // d1:{r,i,a}

*(p+x) = r; // d2:{r,p,x}

m.a = r; // d3:{r}

p->a = r; // d4:{r,p}

Figure 1

Handling of field accesses

Clearly, this is a conservative approach as, for example, the array name a and the

index variable i both appear in the use-set of the first statement; however from a

computational point of view only the data at the address pointed to depends on r.

Although debatable, here we shall choose this approach to be able to compute a

conservative-type of dependence which can be used, for instance, to assist impact

analysis.

Pointers, pointer dereferences, address-of and arrays. Our algorithm computes

the dependences on memory locations, which makes the handling of pointers and

related structures straightforward, but there are several special features worth

mentioning. As we said previously, in the case of pointer dereferences both the

pointer and the dereferenced object will be included. Using the address-of

operator does not induce a new dependence because the address itself can be

viewed as a constant value. All the other operations with pointers are treated in

the same way as in the case of regular variables. Arrays can be handled in a

similar way as pointers since they can be interpreted as pointers with appropriate

offsets corresponding to the index. The only extension is that the variable(s) used

in the index operators are also treated as used variables. Multiple pointers and

indirections can be handled in the same way as well.

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 127 –

The handling of function pointers does not require major modifications to the

presented algorithms, but we omitted these details from the formal algorithm (in

the next section) to aid readability, and we describe them more fully here.

Statically, we cannot determine the called function, so in the D/U representation

we cannot use arg(f,n) and ret(f) variables either. Instead, we use their special

form in which the actual names are not given, just some symbolic names of the

form arg(?,n) and ret(?). These temporary variables will be resolved upon the

execution of the slicing algorithms as soon as the called functions become known.

Structs and unions. C language unions and bitfields can be handled in a

conservative way. Namely, we will treat unions and bitfields as scalar variables

because when we define a field we virtually define all the others as well. Bitfields

can introduce multiple dependences due to overlaps in memory regions, which

will be handled in a similar way to that with type-casts, described later on. In the

case of structs, however, we want to preserve the individual tracking of the

dependences of the fields as in the case with arrays. For this, we follow a similar

approach to the handling of arrays because the structs can also be interpreted as

memory regions with a fixed base address and offsets corresponding to the fields.

That is, for each field access we create a distinct dereference variable, which we

can use separately in the D/U sets.

The handling of the individual struct variables as parts of expressions is more

complicated because the expression operations in this case will correspond to all

the fields together (struct copying). In this case, we model the dependences for

each field access combination (which may be recursive). The struct variable itself

will not be part of the D/U sets, but all the references to it will be transformed to

the actual field accesses for all the fields. Figure 2 provides examples for handling

structs, members and dereferences (in the commented lines below line 2, we can

see how the fields are modelled).

 struct S s,t,*p,*q;

 t.a = ...

 t.b = ...

1. q = &t; // q : {}

2. s = *q; // : {}

// s.a = q->a; // d2:{q,d1}

// s.b = q->b; // d4:{q,d3}

// ...

3. x = s.a; // x : {d5}

4. p = &s; // p : {}

5. y = p->b; // y : {p,d6}

Figure 2

Handling of struct variables

For instance, during a slice computation, the runtime addresses of d5 and d2 will

be the same, which will result in correct dependences between s.a and t.a.

Á. Beszédes Global Dynamic Slicing for the C Language

 – 128 –

Type casts. Type casts can cause a problem for our slicing algorithms in cases

where the sizes of the original type and the new type are different. The basic

methods discussed above will lose any dependences among overlapping memory

regions of the objects (e.g. structure members). The problems related to type casts

can be handled only by maintaining the length of the referenced memory

addresses as well as their starting address. We did not include this in the formal

description of the algorithms for the sake of clarity, but we will overview the basic

method here. The D/U representation does not include any specific extensions, but

in the execution trace we will output the dereference addresses and the sizes of the

variables in question, which will form regions instead of single addresses

(sizeof can be used in the instrumented code for this purpose). The slicing

algorithm will then take into account each byte of the referenced memory region,

which will result in not losing any dependences; and this will be suitable for all

kinds of type casts, including casts between scalars and pointers.

3.3 Instrumentation and the Trace File

The purpose of code instrumentation is to produce a semantically equivalent code

that, upon execution, produces a trace of the execution. The trace records the

executed i
j
 actions and other information required by the slicing algorithm. It is a

linear sequence of elements with various meanings, which is, upon execution,

stored in a file for later processing. The sequence can be described with a context

free grammar shown in Figure 3.

Figure 3

Formal description of the trace

The order of elements in the trace is determined by the execution of the

instrumented program. First the data for all of the global variables are dumped

(mark G with the variable name and its actual address). Then the execution is

traced starting with the main function. On entering a function, a function-begin

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 129 –

mark with the function name (FB) is generated, and on exiting it a function-end

mark (FE) is generated. During the execution of a function body, three kinds of

events can occur: the data for a local variable (D) is generated in a similar way to

that for the globals, or a nested block (corresponding to a syntactic block in a C

program) is generated with the delimiting marks (BB with a unique block serial

number and BE with the identifier of an outer block), or an executable instruction

(action) is traced. The delimiting marks are not generated only for the blocks

according to the syntax with { and }, but for each jump instruction into or out of

some blocks and single statement sub-instructions as well. The block identifier

that comes with BE is the number of the block in which the next executable

instruction is located. Usually, it is the block containing the current one, but in the

case of unstructured jumps it may be any block in the current function.

An action is generated for each C instruction (expression) and it consists of two

parts. The main part (E) designates the executed instruction number i and the

execution step j. In addition, an optional list of information (the action suffix)

related to the current instruction may be generated. Here, there are two types of

action suffixes. If a function call is a part of the expression of the current action,

the trace for the whole function will be dumped as a suffix for the current action.

This can clearly result in a large amount of recursive data structures being

generated, which may be similar at different instances if the invocation is similar.

This could be optimized in an implementation by applying some kind of a

compression; however, here we do not implement such a feature. The other kind

of action suffixes will be generated whenever a pointer dereference is encountered

in the expression of the current action. The accessed memory address is dumped

into the trace using P. For each action, the additional dereferences will correspond

to the relevant dereference variables in the D/U. Note that the order in which the P

marks will be generated is the same as the way they are executed, and this order

must also be the same as the corresponding dereference variables are listed in the

D/U representation. This property will be exploited by the slicing algorithm.

To get the required contents of the trace file, the source code needs to be

instrumented at several locations. At each relevant point, a call to an

instrumenting function is generated, which will place the necessary marks into the

trace file. We chose the instrumented code to be C++ rather than C for practical

reasons.
3
 For example, some instrumentor functions are easier to implement as

template functions, and we can also put the calls to the instrumentor functions

before the variable declarations. The instrumentor functions are provided in

additional source and header files, which need to be included in the linking phase

when the program is built. To implement the instrumentation for each trace

element, several practical solutions had to be elaborated, for instance: block and

function delimiting marks had to be placed at various places due to possible

3
 Note, that this solution might be problematic when certain language features are used

in the original C program that are incompatible with the selected C++ compiler.

Á. Beszédes Global Dynamic Slicing for the C Language

 – 130 –

jumps; local and global variables are dumped using the address-of operator; action

marks are generated for each expression using the comma-operator; dereference

marks are generated by a C++ template function that returns the pointer to a type

passed in the template parameter, etc. Figure 4 shows an excerpt from the C

program bzip, its instrumented version and a part from the generated trace file.

Since the instruction numbers are generated incrementally, we need to maintain a

data structure to map the instruction numbers to the physical file line numbers

(line numbers will be essential in presenting the actual results of slicing). The

method of mapping line numbers to instruction numbers depends on the actual

implementation of the static phase. In our toolset, we used the information taken

from our static analyzer for this purpose, which takes into account both the fully

qualified file names and the absolute line numbers. Here, we can use line

information got from both the preprocessed file and the original file locations.

Int32 nb, na, mid;

nb = 0;

na = 256;

do {

 mid = (nb + na) >> 1;

 if (indx >= cftab[mid]) nb = mid; else na = mid;

}

D_VA(&nb,"nb");

D_VA(&na,"na");

D_VA(&mid,"mid");

D_EH(1259,D__ec++); D_EB() ,(nb = 0);

D_EH(1260,D__ec++); D_EB() ,(na = 256);

do

{ /*BlockGuard*/

{

D_SB(243);

D_EH(1262,D__ec++); D_EB() ,(mid = (nb+na)>>1);

D_EH(1263,D__ec++); if (D_EB() ,(indx>=(*D_P(&cftab[(mid)]))))

{ /*BlockGuard*/

D_EH(1264,D__ec++); D_EB() ,(nb = mid)

;} /*BlockGuard*/

else

{ /*BlockGuard*/

D_EH(1265,D__ec++); D_EB() ,(na = mid)

;} /*BlockGuard*/

;

D_SC(242);

}

;} /*BlockGuard*/

D nb 0x0012F018

D na 0x0012F010

D mid 0x0012F014

E 1259 9578

EB

E 1260 9579

EB

SB 243

E 1262 9580

EB

E 1263 9581

EB

P 0x0012F3C0

E 1265 9582

EB

SC 242

Figure 4

Instrumentation and trace file example

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 131 –

3.4 Global Algorithm for C

The extended global algorithm for slicing C programs with the solutions to the

problems elaborated on earlier can be seen in Figures 5 and 6. Here, the notation

TR >> tr is used to denote the reading of the next trace element tr from the trace

TR, which is viewed as a stream of elements, as described in Section 3.3. Other

formalisms are self-explanatory. Note that for the sake of clarity we omitted such

supporting activities as error handling and synchronization support between the

trace and the algorithm.

The algorithm begins with the program GlobalAlgorithmForC, which has two

input parameters; namely, program P that is to be sliced and input x for which the

dynamic slices will be computed globally. First the trace is produced (in a file),

which is read sequentially (lines 1-2). The algorithm is driven by the elements

found in the trace, but its structure must be in sync with the static D/U

representation (see, for example, function calls and dereference marks). The

function calls are captured in the trace recursively, so they are also handled by the

algorithm by recursively calling the function ProcessFunction when such a call is

found. The main program of the algorithm (after storing the addresses of global

variables on the scope stack written in lines 3-6) starts by processing the main

function in line 7.

During processing, a helping structure is maintained for the local and global scalar

variables. This structure (sc) is a stack of scopes that are entered dynamically

upon execution. The scope stack is maintained in the function ProcessFunction, as

dictated by the trace. Namely, a new function scope is created on the top when

entering a function (FB) in lines 12-13. As we saw earlier, the block beginning

(BB) and ending marks (BE) are found in the trace in the case of structured control

flow and for unstructured jumps as well (lines 14-17). Therefore, a new scope for

a block is created only if it has not already been created for the current function.

Otherwise, the current scope pointer is simply set to this block. Since jumps into

blocks are possible, they cannot be deleted upon exiting (only the current scope

pointer is set), but the whole function scope is deleted when exiting (FE).

The other two activities performed in ProcessFunction are the storing of the

addresses of local variables in the stack (D, lines 10-11) and the processing of the

execution actions (E, lines 18-19) by the function ProcessAction. ProcessAction

takes an action i
j
, computes the corresponding dynamic dependence sets of the

defined memory addresses and variables and outputs the corresponding slices. The

DU
C
 items are processed for the statement i starting with the first one and the so-

called dynamic D/U item i. d’k: U’k is computed for each step (for loop in lines 24-

39). Then, the usual operations for computing the dynamic dependence sets are

performed [5, 6, 7] (here, DynDep stores the actual dependences, while LS and LD

denote the last defining statement number and execution step, respectively). First

the used variables are processed (lines 26-33), then the dependence set for the

defined variable is computed and output in lines 34-39.

Á. Beszédes Global Dynamic Slicing for the C Language

 – 132 –

Figure 5

Global algorithm for C

Each static D/U variable is resolved with the help of the Resolve function (lines

30, 34). Resolving means finding the memory addresses which the scalar and

dereference variables point to at the j-th step. Addresses of scalars are looked up

in the scope stack by using the usual lookup rules for the function at the top of the

stack (lines 41-42 of the Resolve function). The actual addresses of memory

dereferences are taken from the trace (P), taking into account the fact that the

order in which the addresses are dumped into the trace must be the same as the

order the static D/U lists the dereference artificial variables (lines 43-45). All other

variables (e.g. predicates) will be the same after resolution (lines 46-47).

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 133 –

Figure 6

Global algorithm for C (continued)

The other modification for processing one action is that the control dependences

are handled in the way described in Section 3.2. Namely, we determine the active

predicate by choosing the one from the set Uk that was the most recently defined

in line 33 (PR contains all static predicate dependences, from which the one with

maximal LD is taken. ProcessAction also implements the handling of function

calls by invoking ProcessFunction recursively, if a function call return variable

(ret) is found in the D/U. In this case, the trace is processed until the function

returns (lines 27-29).

Á. Beszédes Global Dynamic Slicing for the C Language

 – 134 –

3.5 Implementation and Measurements

We implemented the presented algorithm in a prototype tool and performed

experiments about the feasibility of the approach on real-world programs. We

used five small to medium size C programs from the open source domain, whose

main parameters can be observed in Table 1.

Program Lines of

Code

Statements Static

variables

Scalar

variables

Predicate

variables

Dereference

variables

bcdd 442 78 179 31% 24% 2%

unzoo 2,900 932 1,896 26% 34% 5%

bzip 4,495 2,270 4,184 25% 30% 5%

bc 11,554 3,441 6,898 19% 34% 6%

less 21,488 5,373 10,605 18% 41% 4%

Table 1

Basic program properties

The number of variables found in the program and their types are relevant to the

performance of the algorithm. The last four columns of the table overview the

total number of static variables in the programs and how their types are

distributed. However, the actual computation complexity of the slicing algorithm

is mostly determined by the dynamic properties of program elements, which we

present in Table 2. The first two columns show the number of test cases we used

in our experiments and the average length of the corresponding execution

histories, respectively. The next two columns show the average number of

dynamic variables (such as memory locations used) and the sizes of the use sets

occuring in each step during execution. These two properties are primarily

responsible for the actual dependence set sizes and ultimately the space and time

costs of the algorithm. The resulting dependence set sizes (the dynamic slices) are

shown in the last column in percentage relative to the program size.

Program Test

cases

Avg.

actions

Avg. dynamic

variables

Avg. use

set size

Avg. dependence set

size (wrt. program size)

bcdd 5 623.4 34 5.4 18.27%

unzoo 13 169,557.3 1,173 8.9 5.17%

bzip 18 14,245.7 985 8.1 4.35%

bc 49 5,807.3 634 12.6 3.37%

less 14 101,178.5 2,117 6.9 4.80%

Table 2

Dynamic properties of the programs and the slicing algorithm

Acta Polytechnica Hungarica Vol. 12, No. 1, 2015

 – 135 –

The length of the execution naturally influences the expected number of dynamic

variables. However, the use set sizes and dependence set sizes typically do not

depend on this property, but on the logical structure of the program and its

computations. Hence, we may conclude that the performance of the algorithm in

each step will not be dependent on the length of the execution, which is one of the

primary benefits of the method compared to previous approaches.

Conclusions

The dynamic slicing approach presented above does not require a complete

dependence graph to be built as a preprocessing step, but instead our algorithm

makes use of customized data structures. This has obvious advantages in practical

situations and will presumably make the approach scalable and feasible as well.

However, other technical issues remain to be solved (for instance, handling the C

“long jump” construct) and an optimized version should be developed before

making the algorithm available as a prototype tool to other researchers.

Other possible ways of improving the basic algorithms include the idea of trace

block summaries [16]. This could be exploited in the implementation for

debugging applications; and this is what we plan to investigate in the near future.

References

[1] Weiser, Mark. Program Slicing. IEEE Transactions on Software

Engineering, SE-10(4):352–357, 1984

[2] Xu, Baowen, Qian, Ju, Zhang, Xiaofang, Wu, Zhongqiang, and Chen, Lin.

A Brief Survey of Program Slicing. ACM SIGSOFT Softw. Eng. Notes,

30(2):1-36, 2005

[3] Agrawal, Hiralal and Horgan, Joseph R. Dynamic Program Slicing. In

Proceedings of the ACM SIGPLAN’90 Conference on Programming

Language Design and Implementation, number 6 in SIGPLAN Notices, pp.

246-256, White Plains, New York, June 1990

[4] Zhang, Xiangyu, Gupta, Rajiv, and Zhang, Youtao. Cost and Precision

Trade-offs of Dynamic Data Slicing Algorithms. ACM Transactions on

Programming Languages and Systems, 27(4):631-661, July 2005

[5] Beszédes, Árpád, Gergely, Tamás, and Gyimóthy, Tibor. Graph-less

Dynamic Dependence-based Dynamic Slicing Algorithms. In Proceedings

of the Sixth IEEE International Workshop on Source Code Analysis and

Manipulation (SCAM’06), pp. 21-30, September 2006

[6] Beszédes, Árpád, Gergely, Tamás, Szabó, Zsolt Mihály, Csirik, János, and

Gyimóthy, Tibor. Dynamic Slicing Method for Maintenance of Large C

Programs. In Proceedings of the 5
th

 IEEE European Conference on

Software Maintenance and Reengineering, pp. 105-113, March 2001

Á. Beszédes Global Dynamic Slicing for the C Language

 – 136 –

[7] Gyimóthy, Tibor, Beszédes, Árpád, and Forgács, István. An Efficient

Relevant Slicing Method for Debugging. In Proceedings of ESEC/FSE’99,

number 1687 in Lecture Notes in Computer Science, pp. 303-321,

Springer-Verlag, September 1999

[8] Beszédes, Árpád, Gyimóthy, Tibor, Lóki, Gábor, Diós, Gergely, and

Kovács, Ferenc. Using Backward Dynamic Program Slicing to Isolate

Influencing Statements in GDB. In Proceedings of the 2007 GCC

Developers’ Summit, pp. 21-30, July 2007

[9] Szegedi, Attila and Gyimóthy, Tibor. Dynamic Slicing of Java Bytecode

Programs. In Proceedings of the Fifth IEEE International Workshop on

Source Code Analysis and Manipulation (SCAM’05), pp. 35-44, IEEE

Computer Society, September 2005

[10] Beszédes, Árpád, Faragó, Csaba, Szabó, Zsolt Mihály, Csirik, János, and

Gyimóthy, Tibor. Union Slices for Program Maintenance. In Proceedings

of the IEEE International Conference on Software Maintenance (ICSM

2002), pp. 12-21, IEEE Computer Society, October 2002

[11] Tip, Frank. A Survey of Program Slicing Techniques. Journal of

Programming Languages, 3(3):121-189, September 1995

[12] Horwitz, Susan, Reps, Thomas, and Binkley, David. Interprocedural Slicing

using Dependence Graphs. ACM Transactions on Programming Languages

and Systems, 12(1):26-61, 1990

[13] Agrawal, Hiralal. Towards Automatic Debugging of Computer Programs.

PhD thesis, Purdue University, 1992

[14] Venkatesh, G. A. Experimental results from dynamic slicing of C

programs. ACM Transactions on Programming Languages and Systems,

17(2):197-216, March 1995

[15] Korel, Bogdan and Laski, Janusz W. Dynamic Program Slicing.

Information Processing Letters, 29(3):155-163, October 1988

[16] Zhang, Xiangyu, Gupta, Rajiv, and Zhang, Youtao. Precise Dynamic

Slicing Algorithms. In Proceedings of the 25
th

 International Conference on

Software Engineering, pp. 319-329, May 2003

[17] Muchnick, Steven S. Advanced Compiler Design and Implementation.

Morgan Kaufmann, 1997

[18] Galli, Tamás, Chiclana, Francisco, Carter, Jenny, and Janicke, Helge.

Towards Introducing Execution Tracing to Software Product Quality

Frameworks. Acta Polytechnica Hungarica, 11(3):5-24, 2014

