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Abstract: As an extension of the robust    theory, the time domain design based on linear 

matrix inequalities (LMI) is a conceptually simple and efficient framework to obtain qLPV 

controllers. However, the constructed scheduling variables are not always suitable for an 

efficient implementation. This paper investigates the possibility of constructing the 

scheduling block of a qLPV controller explicitly, i.e., in the form of a linear fractional 

transformation (LFT). It is shown here that if both the primary and dual multiplier LMI 

equations lead to maximal indefinite subspaces and a coupling condition holds, the problem 

can be solved and a constructive algorithm results to build the desired scheduling variables. 
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1 Introduction and Motivation 

In modern control design a quasi-linear parameter varying (qLPV) description is 

frequently used [1]. The approach is based on the possibility of rewriting the plant 

in a form in which nonlinear terms can be hidden by using suitably defined 

scheduling variables by maintaining the linear structure of the model. An 

advantage is that in the entire operational interval nonlinear systems can be 

defined and a well-developed linear system theory, to analyze and design 

nonlinear control systems, can be used. 

The models are augmented with performance specifications and uncertainties. 

Weighting functions are applied to the performance signals to meet performance 

specifications and guarantee a good tradeoff between performance results. The 

uncertainties are modeled by both un-modeled dynamics and parametric 

uncertainties. As a result of this construction a linear fractional transformation 

(LFT) interconnection structure, which is the basis of control design, is achieved. 

In this particular structure, also known as a     configuration, where the 
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parameter-varying terms (scheduling variables) are located in the diagonal of the 

  operator and the time invariant part is described by the linear operator  . 

In the design of robust linear parameter varying controllers, the LMI-based linear 

time invariant (LTI) robust control design framework has a central role, [2], [7], 

[8], [9], [10], [16], [17]. As opposed to the gain scheduling technique these 

approaches provide a design algorithm that starts from an analysis equation that 

guarantees a certain (quadratic) performance level and the designed controller is 

supposed to fulfill the robust stability and performance requirements. Therefore, 

qLPV models with linear matrix inequalities (LMI), as the main design tool, seem 

to be the most efficient approach to achieve robust and non-conservative results. 

While the main steps of the quadratic robust design are well-known, there are still 

a lot of questions concerning the practical construction. Many of the methods, in 

order to keep the design linear, restrict the multipliers of the scheduling variables 

to a predefined set, which makes these methods conservative in general. 

In this paper, the control design problem is set in the framework presented in [9], 

[10], [11], that strongly exploits the available LMI techniques. As opposed to the 

gain scheduling technique these approaches provide a design algorithm that starts 

from an analysis equation that guarantees a certain (quadratic) performance level 

and the designed controller is supposed to fulfill the robust stability and 

performance requirements. The method has a certain level of conservatism due to 

the use of constant multipliers; however it can be the starting point of more 

elaborate designs [12]. 

Our interest in this method is motivated by both theoretical and practical issues. 

On a theoretical level this method is a direct extension of the    design theory 

to an LPV context. The LTI part of the controller and the scheduling block of the 

controller are obtained through a similar extension process as the controller itself 

in the original    setting. However, the extension related to the scheduling 

block is related to indefinite matrices that makes the process more challenging. 

On the practical side the problem concerns the scheduling variables of the 

controller. In the general setting, i.e., when there are no restrictions imposed on 

certain blocks of the multipliers, the construction of the scheduling block involves 

an on-line computation of a spectral subspace of a time-varying matrix, which is a 

computationally demanding task for the implementation. It is preferred to obtain 

this block in an explicit form, e.g., as an LFT of the original scheduling variables. 

Thus, a post-processing method, like the tensor product transformation method 

[13] is needed. 

The aim of the paper is to investigate the possibility of constructing the scheduling 

block of a LPV controller explicitly. It is shown that if both the primary and dual 

multiplier LMI equations leads to maximal indefinite subspaces and admits a 

common "loop-shifting", then the problem can be solved. Once this common 

"loop-shifting" exists, the proposed approach is constructive and an algorithm is 

also provided to build the desired block of scheduling variables. 
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For the sake of completeness, Section 2 provides a short overview of the classical 

LPV controller construction presented in [9] and [10]. The analysis and the 

development of the proposed method are contained in Section 3. The main idea 

exploited in the paper resembles the idea of the loop-shift in the classical control 

design; this motivates the title of the section. The analysis also contains 

clarifications and additions concerning the original problem setting treated in [9] 

and [10] that might help the deeper understanding of the different conditions 

involved in these algorithms. 

2 Problem Setup 

In this section we summarize the basic setup according to [10] and to ease the 

understanding we barrow the notations from that paper. Accordingly, the open 

loop generalized plant is defined as: 
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while the output--feedback LPV controller for (1) is described as 
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where the on-line measured parameter satisfy       . As opposed to the 

original setting it is assumed that      and       admit the explicit description 

  (
 
   )  and   (

  

   ) , respectively. Under the standing hypothesis of 

well-posedness and of continuity these assumptions do not restrict the generality. 

The controller should fulfill the quadratic    performance, where the 

performance index   is an indicator on the quality of the controller. 
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Theorem 1 (LPV analysis)  There exist a controller (2) such that closed-loop 

system is well-posed and stable if and only if there exist    , multipliers 
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where      (    
   

 ) and             . 

Usually conditions     and  ̃    are also imposed. These conditions follow 

if we require that    . In the original construction         is also supposed 

in order to get to the necessary inertia conditions, however, this requirement is not 

a natural one. 

Controller synthesis starts with the solution of the analysis LMIs of Theorem 1 

which usually involves a relaxation step, resulting in the matrices     and    ̃. 

Then the Lyapunov matrix    of the closed-loop system can be obtained as 

   (
               
                )  (6) 

where              . The multiplier  , corresponding to the scheduling 

variables, can be obtained from   and  ̃ as follows: 

    (
                       
              ̃        )  (7) 

  is an orthogonal matrix such that           ̃    and   is a suitable 

nonsingular matrix, for additional details see [10]. 
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The LTI part of the LPV controller can be obtained by solving the quadratic 

matrix inequality: 

(
        
     

)
 

 (
        
     

)     (8) 

where       ,       ,        are matrices that depend on the system 

matrices of the generalized plant  . The unknown is   (
    

    
)       

and the multiplier   is assembled from       and the performance multiplier 

   (
    
     

). A numerically reliable algorithm and a parametrization of the 

solutions of this inequality was given by the authors in [14]. 

2.1 Scheduling Variables 

The most delicate point of the algorithm is the construction of the scheduling 

variables. If we have for the blocks     and  ̃    the multipliers   and  ̃ 

of Theorem 1, then there is an explicit construction [9]. 

The key point is that the extended multiplier should inherit this property. This 

indeed is possible by setting 
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with       ̃      and           having the blocks            ̃, 
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These blocks are chosen to fulfill the conditions 
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By permuting the blocks of    one has the partitioning (
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and     . The scheduling block    of the controller can be obtained from the 

condition 
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                (
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for additional details see [9]. 

We remark here, that the condition       is not supposed and does not hold in 

general. Thus condition      is a simple choice that facilitates the design. 

Also, note the size of the scheduling block which is twice the original. This is not 

surprising if one recalls that in an LPV setting, both the state feedback and the 

observer gain, is parameter varying. Putting together the two blocks one can arrive 

to the size from (12). For the dynamics we do not meet this effect, since the state 

feedback has no dynamics. 

Since     and  ̃    is always imposed for the design the relevant 

conditions are     and  ̃    to use this scheme. For a convex relaxation 

scheme, i.e., when the relevant LMIs are imposed at the vertices of the polytope 

defined by the scheduling variables, these conditions should hold. For the role of 

the choice of the convex-hull and other related relaxations schemes that can also 

be applied [13]. The choice of a proper relaxation scheme is the corner-stone of a 

successful control design, thus to decrease conservatism one should use 

multipliers with an indefinite  . 

The procedure to construct the scheduling variables in the general case is 

described in [10], and unfortunately, is quite involved. Since it involves 

projections on an eigenspace of a parameter varying matrix, the scheduling 

variable is not in explicit form, that is actually a linear fractional transform (LFT), 

as in Eq. (12). Therefore it is a quest for extend the applicability of this simple 

design for a more general setting. In what follows a partial answer to this problem 

will be given. 

3 Loop Shifting 

The starting LMI for obtaining the scheduling variables is 
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i.e., ( ̅̅̅
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)    with  ̅̅̅  (
  
   

) having a block diagonal structure, 

and ( ̅̅̅
 

) being a maximal positive subspace. 

With a maximal negative subspace of    of the form (
 
 

), i.e., for which 
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)    one can apply a "loop shift" of the scheduling block defined 

by  ̂   ̅̅̅     ̅̅̅    according to the transformation 
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with  ̃   , as desired. 

In order to be able to exploit this fact the "loop shift" should be defined for all  ̅̅̅ 

and   should be block diagonal with the same pattern as  ̅̅̅, i.e.,   (
   

   
). 

If we can construct such a  , then the scheduling variable can be obtained by 

using the following potential algorithm: 

 build the transformed multiplier  ̃  with the transformed variables 

 ̃             and  ̃            
   

 with this  ̃  construct the shifted scheduling variable  ̃  according to 

(12) with    ̃ 

 transform back the scheduling variable, i.e.,     ̃       ̃  
   

Observe that  ̃  is an LFT and thus    is also an LFT using, in general, a 

repeated block (
  

  
 ). To obtain the matrices that define this LFT is a 

standard computation and it is omitted for brevity. 

3.1 A Maximal Condition 

First, we would like to describe when a block diagonal matrix   exists with the 

desired properties. Let us suppose that    is fixed and the question is whether 

exists a    such that 

(
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But this is exactly a problem of type (8), with 
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and variable     , whose solvability condition is given by the Elimination 
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lemma, see the Appendix. 

By applying the conditions of the lemma a short computation reveals that the 

equation is solvable if and only if 

(
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where   and  ̃ are the solution multipliers of the analysis equations. 

Remark 1  Observe that applying the same technique for the original problem 

(13) one can obtain as the solvability condition 
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i.e., exactly the design conditions, as expected. 

Actually, we obtain a slightly different result from that from [10]. This analysis 

ensures the existence of a scheduling variable       for any extension 

compatible with   and  ̃ and not only for those obtained with a diagonalizing 

  in (7) as in the original construction. Moreover,       (
     
     

), can always 

be assumed without restricting the generality. Since this is a constant Lyapunov 

function design, continuity of       does not play any role concerning stability 

and performance guarantee. 

By using a dimension count argument, from the obtained inequalities (15) and the 

design requirements for   and  ̃ it follows that: 

Lemma 1  For the loop shifting algorithm it is necessary that there exists a    

satisfying (15) and (
 
 
) and (

     
   ) be maximal positive (negative) subspaces of 

  and  ̃, respectively. 

Paper [10] gives an algorithm that constructs       (and not      ) if either 

one of the subspaces is maximal. That algorithm is also hard to implement. 

However, in order to apply our proposed method, it is necessary that both 

subspaces be maximal and to exist a    fulfilling (14). 

In what follows, it will be shown that this condition is also sufficient if    also 

satisfies (15): then it turns out a loop shift of   is sufficient and a slightly 

simplified algorithm can be obtained. 

The following lemma is a consequence of the Separation Theorems, see the 

Appendix. 

Lemma 2  Let                be a symmetric or Hermitian matrix with 

inertia               and let us consider the problem (
 
 
)

 

 (
 
 
)     

Then for any fixed solution    the matrix     
 
  is nonsingular for all 
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solutions  . 

This lemma ensures that if we find a    with the properties 
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then the choice       
 
 will define a loop shift which is well defined for all 

  of interest. 

In what follows it will be shown that under the maximality hypothesis such a    

always exists and it can be computed. 

3.2 Existence of    

In order to improve readability, some basic facts on maximal negative subspaces 

and some notations are placed in the Appendix. 

Lemma 3  There exists         which satisfies the inequalities 
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Proof: The matrix   can be written in the factorized form         , 

where   is a unitary matrix,                  
   

  and             . 

The second inequality is equivalent to (
 
  

)
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)     

Obviously        
  

  
  

  consequently,   , if exists, has the form 

                  
  

             
                             

              

This means that           . Since there exists arbitrary small contraction in 

the domain of    , we can choose a contraction            , such that 

          and             are also contractions. With the choice 

           inequalities (16) is satisfied. 

The question is, however, whether there exists a matrix    which satisfies both 

the inequalities (15) and (14). Unfortunately, this is a more complex question. 

As in the proof of Lemma 3 consider the factorization     
          and 

 ̃    ̃
   ̃  ̃  ̃  ̃ where    and   ̃ are unitary matrices. The existence of a 

   with the desired properties is guaranteed if there is a contraction      

       
   and also a contraction     ̃        

 ̃
   such that       

        

  
 ̃
      ̃   

This is fulfilled if         
   

 ̃
      ̃       

 ̃
      ̃ . 
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Corollary 1  There exists a    that fulfills both the inequalities (15) and (14) if 

and only if 

        
 ̃
     ̃

       ̃
           

       
          (17) 

where                . 

This means that if     
 ̃
  maps    far from the origin, where    ̃

    

   ̃
         then such a transformation does not exists. 

3.3 Construction Algorithm 

If condition of Corollary 1 is fulfilled there exists a    that makes possible the 

transform 

  (
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 ̃  
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 ̃  ̂
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)  

with  ̅    and  ̂   . 

With  ̅ and  ̂ one can build, using the extension process decribed in (10) and 

(11), a  ̃  that leads to a solution     ̃  by using (12). 

Note that    can be always put into an LFT form based on the single block 

(
  

  
 ). 

Thus we can conclude this paper with summarizing the main result: 

Proposition 1  For the loop shifting algorithm to be applicable it is necessary 

and sufficient that (
 
 
) and (

     
   ) be maximal positive (negative) subspaces of 

  and  ̃, respectively, and that there exists a matrix    which satisfies both the 

inequalities (15) and (14). 

If the conditions of the proposition are fulfilled then the scheduling variables of 

the controller can be obtained using the following algorithm: 

 Compute the transformed matrices 

 ̅  (
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 ̃  (
    

 

  
) 

 Build the transformed multiplier  ̃  by the method given in (10) and 

(11). 

 With this  ̃  construct the scheduling variable    according to the 

formula (12) with    ̃, where  ̃            . 
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4 Appendix 

For the sake of completeness in this section we summarize the basic results that 

are used in the separation framework, i.e., in the context of this paper, the LMI 

approach to the robust control design. These results are formulated in the finite 

dimensional case, i.e., for matrices. Nevertheless, such assertions can be 

formulated in a more general operator setting as well. 

4.1 Elimination Lemma 

A fundamental result of the LMI framework in the derivation of the design 

equations is the Elimination lemma. The conditions of the lemma lead directly to 

the analysis equations that are the starting point for any controller design. 

Lemma 4  Let      be a non-singular matrix with inertia       
        and let us consider the quadratic matrix inequality 
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This inequality has a solution if and only if 
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and 
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)   

     (20) 

Here    denotes a matrix with       and     
    while    denotes an 

arbitrary basis matrix such that       and that   
     . For a proof see, e.g., 

[5], [10]. 

4.2 Separation Lemma 

Theorem 2 Let        be a fixed matrix and        a compact set of 

matrices. Then the following are equivalent: 

    •                                       

    •                                       

    • There exists an indefinite matrix                

with               such that 

(
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 (
 
 
)          (

  
 
)
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)           

For a proof of this theorem see, e.g., [7]. 
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The duality lemma ensures the simultaneous inequalities 
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for any    , however, at the same time 

(
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   )     

does not hold in a general case. If it happens that there is a    that also fulfills 

this inequality, the Separation lemma guarantees the invertability of     
 
  

for all    . 

4.3 Indefinite Maximal Subspaces 

The following result describes the maximal negative graph subspaces of a 

symmetric matrix  , i.e., all the matrices   such that 

(
  
 

)
 

 (
  
 

)     (21) 

where                with inertia               . 

Theorem 3  Let   be a symmetric matrix such that there is a nonsingular 

matrix   for which          , where               . Then all 

solutions of (21) are given by 

        (22) 

for   is an arbitrary contraction (     ) in        . 

For a matrix   partitioned as 

  (
      

      
) (23) 

the Möbius transformation    is defined by the equation 

                             (24) 

for                             . 

Thus, the parametrization relies on describing         

An exhaustive description of the set         
                             

can be done by using the generalized singular value decomposition (GSVD), 

however, for our purposes it is sufficient the following result, based on the more 

familiar singular value decomposition (SVD). 

Consider the SVD of   as         
  with 

                    (
   
    

)                   (25) 
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and that of         
  with 

              (
   
    

)              (26) 

With these notations one has: 

Lemma 5  The matrices 

        (
      

    

        
)   

   (27) 

make          nonsingular for every    . 

Moreover, for    
 

     
 the matrix       is contraction for all       . 

More details on the construction and the proofs can be found in [14]. A general 

overview on indefinite matrix analysis can be found in [4]. 

Conclusions 

This paper investigates the possibility of constructing the scheduling block of a 

qLPV controller explicitly, i.e., in form of an LFT. It was shown that if both the 

primary and dual equations lead to maximal indefinite subspaces and a coupling 

condition holds, then the problem can be solved. In addition, a constructive 

algorithm was provided to build the needed scheduling variables. Currently, an 

efficient test of the coupling condition is under investigation. 

The efficient construction of the scheduling block, in a general case, i.e., under the 

nonrestrictive inertia conditions of the full-block S-procedure, is still an open 

problem and it is the subject to future research. 
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