
Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 187 –

Software Environment for Learning Continuous

System Simulation

Marijana Despotović-Zrakić
1
, Dušan Barać

1
, Zorica

Bogdanović
1
, Branislav Jovanić

2
, Božidar Radenković

1

1
Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000

Belgrade, Serbia, maja@fon.bg.ac.rs, barac.dusan@fon.bg.ac.rs,

zoricab@fon.bg.ac.rs, boza@fon.bg.ac.rs

2
Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade,

Serbia, brana@ipb.ac.rs

Abstract: In this paper, we describe a new graphical environment for learning continuous

simulation. This open source software solution enables engineering students to learn and

understand various real system models in the CSMP (Continuous Simulation Modelling

Programme) language easily, and at the same time learn about the implementation aspects

of simulation languages. The software provides efficient tools for creating, storing, and

executing continuous system simulation models that are described with differential

equations. The graphical block-diagram interface allows students to drag-and-drop

predefined modelling blocks, connect them together and create different models of

continuous systems. Further, we present an example of using the developed application in

solving a typical continuous simulation problem. Finally, we present the results of the

evaluation performed on a testing sample of 160 students of undergraduate course

Simulation and simulation languages at the Faculty of Organizational Sciences, University

of Belgrade.

Keywords: Continuous system simulation; teaching simulation and simulation languages;

CSMP software

1 Introduction

In this study, the authors set out to develop a software tool that would effectively

support teaching and learning continuous simulation and simulation languages.

The focus is on creating an open source tool that would provide an environment

for learning continuous systems modelling and simulation as effectively as using

commercial software such as Matlab/Simulink, but, unlike commercial tools,

provide a testbed for learning simulation languages and the concepts of their

implementation.

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 188 –

Simulation is used to describe the behaviour of a dynamic system by means of a

model and using this validated model in a series of experiments designed to

provide an insight into the future behaviour of the system under specific

conditions [1]. The area of computer simulation has been successfully applied to

the study and modelling of processes, applications, and real-world objects.

Simulation tools provide an environment for the analysis of various features of the

system: feasibility, behaviour, stability, performance, etc. [2], [3], [4]. In addition

to its many practical applications in industry, commerce, research, and other areas,

computer simulation can also be used as a powerful teaching aid [5], [3].

Computer simulation gives the freedom and flexibility to adjust various

parameters of the system before design [6]. In some cases, simulation models can

substitute real systems that are too expensive or unsafe to install in teaching

laboratories [1]. In addition, using simulation is sometimes a requirement, e.g.

when designing a manufacturing prototype [7].

All physical systems exist in the time-space continuum. The type of model one

selects depends on the degree of aggregation of individual phenomena. One may

choose either a continuous or a discrete approach to model development.

Continuous models are useful when the behaviour of the system depends more on

the aggregate flow of events than upon the occurrence of individual events [5]. A

discrete system is one in which the state variables change only at a discrete set of

points in time, while in a continuous system the state variables change

continuously over time.

1.1 Continuous Simulation e-Learning Course

Simulations play a vital role in engineering education, especially in laboratory

exercises [8]. Computer simulation enables engineering students to perform the

analysis of various types of systems, investigate relations and interactions among

a system’s components, project design, and implementation of a system, verify

different solutions and environments, test capabilities and technical characteristics

[9]. The knowledge gained from simulation courses help students understand,

analyze and design systems, develop software components, test software

solutions, and solve different real life problems [10], [11].

There are lot of specialized languages for continuous simulation, such as: CSMP

(Continous Simulation Modelling Programme) [12], [13], ESL (European

Simulation Language) [14], ACSL (Advanced Continuous Simulation Language)

[15], CSSL4 (Continuous System Simulation Language 4) [16], Simulink [17],

[18], Matlab [19], Modelica [20] and others that have been developed to simplify

modelling, and to minimize problems related to programming continuous systems

[21]. In the past years, there has been much research dealing with developing

tools, languages, and methods for continuous simulation [6], [15], [22], [23], [24],

[25]. Using Matlab/SIMULINK for designing simulation models is one of the

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 189 –

most frequent scenarios [6]. Matlab is one of the most powerful simulation

platforms as it provides a plethora of features [26]. However, a majority of

simulation tools have limitations such as high costs, platform dependence,

maintenance difficulties, and limited reusability.

Computer simulation has been studied for many years at the Faculty of

Organizational Sciences, University of Belgrade, in the scope of the Simulation

and simulation languages course. The course is organized at the fourth year of

undergraduate studies in the area of information systems and Internet

technologies. Before attending this course, students are obliged to take several

exams in the field of programming and are familiar with programming concepts

and several programming languages (Java, C). The main goal of the course is to

introduce the basic concepts and applications of computer simulation and

simulation languages.

The course is realized using the combination of traditional classroom-based

teaching and e-learning technologies, i.e. blended learning [27]. As a support to

the teaching process, we use a learning management system Moodle [28]. The

course lasts for three months. The course syllabus is divided into three main

blocks: continuous simulation, discrete event simulation and 3D simulation. All

the topics are covered by practical exercises using an appropriate simulation

language: CSMP/FON (Faculty of Organizational Sciences - in the Serbian

language “Fakultet Organizacionih Nauka”), GPSS (General Purpose Simulation

System), X3D (XML-based file format for representing 3D objects), respectively.

Students are obliged to implement their own models and solutions to different

problems in the simulation of complex, real systems. In the part of the course that

deals with continuous simulation, students model systems from the area of:

motion dynamics, electrical engineering, mechanics, fluids, social phenomena.

Solving real cases by means of specialized software helps students to be highly

motivated and contributes to overcoming possible deficiencies in their

mathematical background. Many of the simulation programmes based on

mathematical models have to be used by experts. These programmes cannot be

used for providing basic knowledge or gaining experience to engineers or users

who are not experts in this subject. On the other hand, an important part of the

course curriculum is related to design and implementation of the simulation

languages.

Therefore, the main goal of this research was to develop an efficient software tool

for creating, storing, and executing continuous system simulation models. This

software tool will provide students with a cheap environment for practice,

particularly suited for students in the areas of information technologies and

software engineering. The idea was to use all the existing features of CSMP and

enrich it with interactive graphic environment. The main requirements in the

design and implementation of the software environment for learning continuous

system simulation were the following:

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 190 –

Create a testbed for learning and realization of continuous simulation languages

– the main idea behind the CSMP/FON is to provide students with an environment

for both using the simulation language features and learning how to implement

key continuous simulation concepts within a simulation language. These main

simulation concepts should include emulation of parallelism, solving problems

related to algebraic loops, blocks, implicit functions, etc. [4]. Using the

CSMP/FON students are enabled to learn more about the structure of the CSMP

language and how the CSMP implements all the above-mentioned concepts. As an

open source and free solution the CSMP/FON can be extended and modified

according to any kind of request. For instance, each student can implement an

integration method of their own choosing and perform simulation using the

implemented method.

Matlab/Simulink, as the most widely used solution on the market, provides

numerous features, but the source code is not open. For its users, blocks are

provided as “black boxes”, so users cannot change or adapt anything.

Accordingly, users can use advanced features related to simulation, but they

cannot learn anything about how the simulation language was realized. Therefore,

Matlab/Simulink is not entirely adequate for a course like this.

Support for scientific research – scientific research within our laboratory often

requires creating complex models that include both continuous and discrete event

simulation. In order to combine different simulation models effectively, we need

simulation environments that are interoperable, opened for modifications, and

easily adjustable for specific problems.

Saving costs - One of the main reasons for implementing our own version of the

CSMP was related to the cost of licenses for commercial CSMP and Simulink

implementations. Licenses would have to be provided for more than 100

computers at the Faculty of Organizational Sciences. Compared to

Matlab/SIMULINK, the CSMP/FON has almost the same features. However, we

made the CSMP/FON free and open source; therefore, the application of this

software in teaching and learning is cheap and every student can easily learn about

the simulation of complex systems on a personal computer.

Simple and rich user interface - In the CSMP/FON we implemented all the newest

concepts that are used in the modern software design: simplicity, clarity,

responsiveness, efficiency, richness of colours and images, etc. The user interface

of the CSMP/FON can be adapted and changed according to the users’ needs. In

addition, the architecture of the application is designed in order to enable an easy

integration of CSMP/FON functionalities in the web-based simulation solutions.

Although Matlab provides quite clear interface, it is much less user-friendly, its

design is old-fashioned and does not follow any of the abovementioned concepts.

Suitable and easy to use for educational purpose - while Matlab/Simulink

provides students with various features and possibilities, a research showed [26]

that it is not suitable for beginners in the area of simulation. Using

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 191 –

Matlab/Simulink requires good comprehension of numerical analysis, linear

algebra and many mathematical functions, which makes this solution quite

complex and inappropriate for our students. The CSMP/FON abstracts

mathematical issues and enables students to learn basic simulation concepts

without the need to have advanced knowledge in the area of mathematics.

Considering suitability of other solutions for learning simulation, for instance, in

[29] the authors introduce a comprehensive object-oriented, distributed, and

extendable research solution for business simulation, named DSOL. Numerous

features and simulation concepts are provided. Further, this software focuses on

linking simulations to business information systems, such as ERP systems and

databases. The main constraint of this solution is that it requires advanced

knowledge of the Java programming language. Further, GUI features are not rich

enough for learning basic simulation concepts. Accordingly, the DSOL is not

entirely suitable for teaching and learning simulation languages.

Minimize required hardware resources and improve speed of execution –

Matlab/Simulink provides a wide range of advanced features and services, but

consequently requires powerful hardware infrastructure. Further, our experience

with simulation in Matlab/Simulink showed that it could be time consuming. The

CSMP/FON is a lightweight software solution that minimizes hardware

consumption and optimizes the time of simulation execution.

2 CSMP/FON Application

The CSMP simulation language can be classified into the group of block-oriented

languages for solving systems of differential equations. Each block is specified by

a set of inputs and parameters and a graphic symbol. The graphic display of

elements in the general form is presented in Fig. 1. Each available element

specifies the relation of three input variables e1, e2, e3 and three parameters p1, p2,

p3. The output is a scalar whose value depends on the concrete relation f for that

element e0=f(e1, e2, e3, p1, p2, p3).

Figure 1

Graphic display of elements in the general form

The CSMP was developed by IBM in the early 1960s and it represented a real

analogue simulator [15]. The language development of the CSMP II and later the

CSMP III was followed by hardware development in IBM. These programmes

could not be used interactively nor simultaneously from different platforms. These

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 192 –

shortages were eliminated in an interactive implementation of simulation language

CSMP/FON. The CSMP/FON implements the simulation concepts introduced by

IBM’s CSMP, but all the libraries and classes in our solution were implemented

from the scratch. GUI elements are completely new and adapted for teaching and

learning simulation. In this implementation of the CSMP/FON a user-friendly

graphical user interface was developed, and the efficiency of the programme

improved. The CSMP/FON is an open source solution available to the students

and can be downloaded from the web site http://www.elab.rs/laboratorija-za-

simulaciju/. The CSMP/FON simulation tool allows users to develop complete,

interactive simulations in three steps: describing the mathematical model, building

the user interface using off-the-shelf graphical elements and connecting certain

properties of these elements to the variables of the model. Operating principle of

the CSMP/FON is shown in Fig. 2.

Figure 2

How CSMP/FON works

The programme's engine is based on an algorithm for sorting ordinal numeral of

blocks. It gives an order needed to calculate the output values from every block

and after each integration interval the output values for every block are known.

We use the Runge Kutta IV method for integration.

The CSMP/FON provides an integrated and user-friendly environment for

creating, testing, and analyzing continuous system models. It enables students to

configure simulation models, execute simulation, and analyze results. Particular

benefits from using the CSMP/FON include an improved performance of teaching

activities, integration of activities in teaching and learning processes, learning

simulation on a variety of real models, learning about the implementation of a

continuous simulation language. An interactive environment with resident editor,

processor and result analyzer, a fast and easy model debugging, different views

and analyses of simulation results are some of the most important features of the

application. Users are allowed to interact with a simulation, monitor values of

variables, change parameter values, and rerun the simulation, redefine output

requirements, etc.

http://www.elab.rs/laboratorija-za-simulaciju/
http://www.elab.rs/laboratorija-za-simulaciju/

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 193 –

2.1 CSMP/FON Architecture

The architecture and key components of the CSMP/FON application are presented

in Fig. 3. The components are explained in the following text.

Figure 3

Conceptual model of CSMP/FON software solution

The architecture of the CSMP/FON solution is based on the MVC pattern (Model

View Controller) [30]. Each component in the application logic layer in Figure 3

is implemented through appropriate MVC classes.

2.1.1 User Interface

A software application for learning simulation, in addition to the model, should

have an interface for displaying the simulation in a proper way, and a facility to

change the parameters while the model is running to provide dynamic control. The

assigning of values to parameters, the specification of initial conditions, and

control during the execution need to be achieved in ways that directly correspond

to the concepts or procedures that are to be learned [4]. The user interface shown

later in Fig. 5 is one of the key advantages of the CSMP/FON in comparison with

similar solutions. In essence, the user interface of the application is a collection of

graphical windows whose components are active, dynamic, and clickable.

Students can change any active element in the graphical interface, the

recalculation and dynamic presentation are immediate. In this way students

instantly perceive how their modifications affect the model.

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 194 –

The graphical interface contains three basic menus: File, Edit, Help; and a toolbox

with eight buttons for model manipulation. On the left side of the main screen

there is a list of available blocks. Blocks are categorized in groups: Mathematical

elements, Trigonometry, Generators, Limiters and Other. The user creates a model

by dragging and dropping blocks from the list to the workspace, and then connects

blocks using options from the toolbox. After the block is dropped, a form for input

parameters of the specific block is shown. Each block has a predefined number of

parameters (min 1, max 3). When the model is created, the user chooses the option

for starting the simulation from the toolbox, and sets simulation parameters: the

length of the simulation, the integration interval, and the interval for printing the

results. The simulation results are shown in the form of tables and graphs.

2.1.2 Application Logic

The source code of the application is grouped into logical parts: components for

control of user interface, components for modelling, and components for

simulation (Fig. 3).

Components for control of user interface implement functionalities of the

standard Windows forms buttons with some handy visual add-ons, functionalities

for visual split of controls and space saving. There is a container for any type of a

control that enables an easy hiding and showing of controls. A visual

representation of controls can be changed during the run time. “Workspace” is a

component that represents the canvas on which the model is drawn. This

component handles most of the work related to visual representation and editing

of the model. We use workspace as a canvas to draw CSMP blocks and

relationships.

Components for modelling implement functionalities for creating and saving

block diagrams. “Block” is the main component of this programme and it handles

the graphical representation of any element of the CSMP language. This

component is abstract and extensible, therefore programming new blocks with

new properties and parameters is as simple as changing the elements of an XML

file. The XML file Manifest.xml contains the properties of each block in the

model and keeps the information about the visual grouping of blocks. Using this

approach we achieved extensibility of the application. For each CSMP block in

the model an object (named TCSMPBlock) is instanced. This object holds the

properties and parameters of the block, information about all of the input and

output connections, as well as the values calculated during the simulation. We can

move blocks across the workspace to achieve a better representation of the model.

When moving blocks, the position of all input and output connections is

preserved. “Connections” is a component for managing the graphical display of

connections between blocks. To achieve a “breaking” of the line, we introduced

helper objects called “holders”. We pin the holder on a line and create a polyline.

These holders are also used to create junctions (a connection between a

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 195 –

relationship and a block). Junctions are used when there already is an output link

from a block and we want to create another one. The CSMPInspector is a

component for displaying and editing properties of the selected CSMP block.

Part of the application that handles the simulation resides in a component titled

“Simulation”. This part of the programme prepares the model for simulation,

checks the model for consistency, and represents the “brain” responsible for the

simulation itself. The program is implemented in Delphi on Win32 platform.

2.1.3 Data Layer

Models created using the CSMP/FON are stored in XML files. XML is widely

used and it is de facto a standard in modern software architectures. The structure

of this XML file (with the extension .CSMP) is shown in Fig. 4:

Figure 4

Structure of the CSMP file

Each CSMP model is described using the <block> XML tag. Each block is

described through the following tags: <block_id>, <name>, <parameters>,

<inputs>. Using the XML technology for storing models enables platform

independence, reading and editing the models in any software tool that supports

XML, providing compatibility of models developed using old or future versions of

the application. Further, XML notation enables an integration of simulation

models in web-based solutions.

3 Using CSMP/FON in Simulation of a Spacecraft

Landing

3.1 Problem Description

In this problem, we discuss a simplified model of vertical landing of a spacecraft

on the surface of the Moon. The total mass of the spacecraft is labelled as M and

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 196 –

consists of two elements: the fixed mass of spacecraft (ms) and the variable mass

of fuel in the spacecraft (mf). The acceleration of the spacecraft can be represented

with the well-known formula shown in Equation (1).

  f
g

p
g

rs

f
m

s
mg

aM *
2

1
















 (1)

where: g – gravitational acceleration on the Moon 1.62ms
-2

; r – Moon radius (1

738000 m); ms – fixed mass of the spacecraft (15000 kg); mf – variable mass of

fuel in the spacecraft (initial value 1000 kg); s – distance of the spacecraft from

the initial position; gp – fuel consumption (kg s
-1

); gf – factor for conversion of

fuel consumption in units of force (4 000 Ns kg
-1

).

The change in the mass of fuel in the spacecraft is equal to the negative value of

variable gp that depends on time t and can be calculated using the formula (2).

gp= 2 + 1,5t (2)

If the mass of the fuel drops to zero, fuel consumption must also be equal to zero.

The spacecraft stops when it lands on the Moon surface. In the beginning of the

simulation, the distance from the Moon surface is 5000 m.

3.2 Solution

The total mass of the spacecraft M is the sum of fixed mass of the spacecraft ms

and variable mass of the fuel in the spacecraft mf. Since the acceleration of the

spacecraft can be presented as the second derivative of the distance of the

spacecraft, we can transform (1) into (3). Equation (3) is suitable for creating a

block diagram.

  fs

fp

mm

gg

rs

g
s







*

1
2

 (3)

Using (3) we created a block diagram in CSMP/FON, shown in Fig. 5.

After creating the block diagram, we set up simulation parameters (integration

interval and time of simulation) and perform the simulation. The simulation

results are shown in graphical format (Fig. 6).

Fig. 6 shows how the distance of the spacecraft from the land changes in time. The

initial position of the spacecraft is set to 4000m above the ground. It takes about

38 time units to land. After 38 time units, the simulation is over, because the quit

block stops the simulation when the spacecraft touches the ground.

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 197 –

Figure 5

CSMP/FON block diagram

Figure 6

Simulation results showing the distance of the spacecraft

4 Evaluation

This study aims to investigate if the CSMP/FON application can be effectively

used to test students’ knowledge in the area of continuous simulation and

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 198 –

simulation languages. The experiment was conducted on a sample of 160

undergraduate students of the Faculty of Organizational Sciences, University of

Belgrade. Students who attended the Simulation and simulation languages course

were randomly divided into experimental (80 students) and control groups (80

students). All students, both experimental and control groups, had a block of

lectures presented in the traditional way. Then they attended lab classes where

they used the CSMP/FON application to simulate continuous systems. In order to

measure the research results, we used the knowledge test that students take at the

end of semester. In the knowledge test, students solve problems from the area of

continuous systems modelling and simulation. A typical task in the test includes

the following requirements: 1. Mathematical modelling of the continuous system

described through a verbal model; 2. Creating a block diagram; 3. Creating a table

of configuration; 4. Editing a simulation model and adjusting it to specific

requirements. The test we applied in the experiment was a standard test used for

testing students for more than five years. The students in the experimental group

took the final test using the CSMP/FON applications, while the control group

students took the final test in the standard form, i.e. on paper. A descriptive

comparative statistics of results achieved on the knowledge test is presented in

Table1.

Table 1

Descriptive comparative statistics of results achieved on knowledge test

 N Mean Std. Deviation

Experimental group 80 9.26 1.088

Control group 80 8.82 1.271

The distribution of grades in the Experimental and Control groups is shown in

Table 2. Grades range from 6 (equivalent to E in ECTS grading scale) to 10

(equivalent to A in ECTS grading scale). We can see that the number of students

who achieved high grades is higher in the experimental group. The results of

further statistical analysis show that a larger number of students from

experimental group that achieved high marks in comparison with the number of

students from the control group is statistically significant, F(1,159)=5.473

(p<0.05).

Table 2

Distribution of grades in Experimental and Control groups

 10 9 8 7 6

Experimental group 49 13 9 8 1

Control group 34 18 12 12 4

The described quantitative analysis shows that usage of CSMP/FON within the

exam contributed to students’ results. This may be explained by the fact that

students in the experimental group had a feedback during the exam, but on the

other hand, this confirms that this software needs to be included as an integral part

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 199 –

of the course. Also, a qualitative analysis is required in order to make better

conclusions.

Therefore, after the test, students in the experimental group were asked to fill in a

questionnaire and evaluate the CSMP/FON application. Table 3 shows the

students’ responses.

Table 3

Questionnaire about CSMP application quality results

(Strongly agree – 5; Agree – 4; Neutral – 3; Do not agree – 2; Strongly disagree - 1)

Question 5 4 3 2 1
Mean
score

Std.
dev

Using CSMP is simple and clear 70 27.5 1.25 1.25 0 4.66 0.57

User interface for developing

simulation model is well designed
45 41.25 10 2.5 1.25 4.26 0.84

User interface for simulation
results representation is well

designed

35 45 13.75 5 1.25 4.08 0.90

The application contains

appropriate information for
creating a simulation model

55 37.5 7.5 0 0 4.48 0.64

Information and dialogues during

testing and executing simulation
models are appropriate

38.75 46.25 12.5 1.25 0 4.24 0.72

Simulation executing speed is

satisfactory
70 25 2.50 1.25 1.25 4.61 0.72

I think that user interface suits me 48.75 40 7.5 1.25 1.25 4.35 0.79

The application has enhanced my

interest in the area studied within

the course

13.75 28.75 33.75 13.75 8.75 3.25 1.14

I have understood the course

contents better after using the

application

42.50 41.25 11.25 3.75 0 4.24 0.80

While using the application, I

have discussed with my

colleagues how to create a proper
simulation model

28.75 31.25 12.50 10 16.25 3.47 1.43

Mean scores are mainly over 4, so it can be concluded that students are generally

satisfied with the CSMP application. However, lower mean values indicate that

the application needs to be improved in several aspects: a) the user interface for

simulation results should be enhanced. This can be done by implementing better

methods for zooming across results, a function for searching results, and a better

design. b) The application does not enhance students’ interest in the area of

continuous simulation. In order to improve this aspect, we should implement some

features that support game-based learning and edutainment concepts. c) The

application does not encourage collaboration. In further improvements, new

features for collaboration need to be implemented.

One of the most important questions was related to the role of the CSMP/FON in

understanding the course contents. Since the mean score for this question was

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 200 –

4.24, we can conclude that the usage of this application contributes to students’

understanding of continuous systems simulation and simulation languages. This

can be explained by the openness and ease of use of the CSMP/FON.

One of the drawbacks of the evaluation presented in this paper is related to the

lack of comparison between the results that students achieve with the CSMP/FON

and the results achieved with Matlab/Simulink. Additional research is needed to

compare how these two software tools affect students’ knowledge. On the other

hand, the impact of Matlab/Simulink and CSMP/FON on students’ knowledge in

simulation languages is incomparable, since the former cannot be applied for this

purpose.

Conclusion

The main contribution of this work is the development of a new, efficient, and

open source environment for learning continuous simulation. The CSMP/FON is a

free simulation tool that improves students’ understanding of the theoretical

concepts of computer simulation and simulation languages. The proposed solution

keeps all the existing characteristics of the CSMP language and adds new

graphical user interface. The CSMP/FON supports creating interoperable

simulation models. This flexible and extensible solution enables developers to

implement new simulation algorithms or integration methods easily. The results of

the experiment realized in order to evaluate the developed application show that

the CSMP/FON application can be used effectively to learn the simulation and

simulation languages concepts. This is also in agreement with the fact that the

CSMP/FON has already been adopted by other faculties that have a computer

simulation in their curriculum, i.e. Faculty of Transport and Traffic Engineering,

University of Belgrade.

Finally, we acknowledge some limitations of this study. The CSMP/FON is a

desktop application not fully integrated in the e-learning process. Therefore, future

researches are directed towards the development of a web CSMP/FON application

with the same features and integration of the CSMP/FON into a learning

management system. A full coordination of all processes in e-learning will lead to

an improved quality of the e-learning system. In addition, we plan to create a

library of the most important models and sub models from the area of continuous

simulation that can be simply integrated as model’s components. Simulation

models created in the CSMP/FON should be fully interoperable with analogue

models created in other simulation languages.

Acknowledgement

This work was supported by the Ministry of Education, Science, and

Technological Development of the Republic of Serbia, grant number 174031.

References

[1] J. Banks: Handbook of Simulation: Principles, Methodology, Advances,

Applications, and Practice, John Wiley & Sons, New Jersey, 1998

Acta Polytechnica Hungarica Vol. 11, No. 2, 2014

 – 201 –

[2] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol: Discrete-Event System

Simulation, 5th Ed. Prentice Hall, New Jersey, 2010

[3] J. Calvo, M. Boada, V. Díaz, E. Olmeda: SIMPERF: SIMULINK-based

educational software for vehicle's performance estimation, Computer

Applications in Engineering Education, 17(2), pp. 139-147, 2009

[4] R. Granlund, E. Berglund, H. Eriksson: Designing web-based simulation for

learning, Future Generation Computer Systems, 17 (2), pp. 171-185, 2000

[5] C. François, K. Ernesto: Continuous System Simulation, Springer-Verlag, New

York, 2006

[6] M. Sadiku, M. Tofighi: A tutorial on simulation of queueing models,

International Journal of Electrical Engineering Education, 36 (2), pp.102-120,

1999

[7] F. Kentli, H. Çalik: Matlab-Simulink Modelling of 6/4 SRM with Static Data

Produced Using Finite Element Method, Acta Polytechnica Hungarica, 8(6),

pp. 23-42, 2011

[8] C. Blake, E. Scanlon: Reconsidering simulations in science education at a

distance: features of effective use, Journal of Computer Assisted Learning, 23

(6), pp. 491-502, 2007

[9] M. Despotović-Zrakić, D. Barać, Z. Bogdanović, B. Jovanić, B. Radenković:

Integration of web based environment for learning discrete simulation in e-

learning system, Simulation Modelling Practice and Theory, 27, pp. 17-30,

2012

[10] A. Rodić, G. Mester: The Modeling and Simulation of an Autonomous Quad-

Rotor Microcopter in a Virtual Outdoor Scenario, Acta Polytechnica

Hungarica, 8(4), pp. 107-122, 2011

[11] M. Badida, R. Králiková, E. Lumnitzer: Modeling and the Use of Simulation

Methods for the Design of Lighting Systems, Acta Polytechnica Hungarica,

8(2), pp. 91-102, 2011

[12] F.H. Speckhart, W. L. Green: A guide to using CSMP-the Continuous system

modeling program: a program for simulating physical systems, Prentice Hall,

New Jersey, 1976

[13] R. D. Brennan, M. Y. Silberberg: Two Continuous System Modeling Programs,

IBM Sysems Journal, 6(4), pp.242-266, 1967

[14] R. Nilsen, W. Karplus: Continuous-System Simulation Languages: A State-of-

the-Art Survey, Mathematics and Computers in Simulation, 16 (1), pp.17-25,

1974

[15] E. L. Edward, Mitchell: Using a Continuous Simulation Language (ACSL) to

Model and Control a Hybrid Simulation, Mathematics and Computers in

Simulation, 19 (2), pp.133-140, 1977

[16] J. Strauss, et al: The SCI Continuous System Simulation Language (CSSL),

Simulation, 9, pp. 281-303, 1967

http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0378475474X80011&_cid=271998&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=0d0587b4660ef1a211e343e77a199f54
http://www.sciencedirect.com/science/article/pii/0378475477900052?_alid=1861818160&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=515&_zone=rslt_list_item&md5=5cd43485abcfb904ad66f535e5336e6e
http://www.sciencedirect.com/science/article/pii/0378475477900052?_alid=1861818160&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=515&_zone=rslt_list_item&md5=5cd43485abcfb904ad66f535e5336e6e

M. Despotović-Zrakić et al. Software Environment for Learning Continuous System Simulation

 – 202 –

[17] A. Demiroren, H. L. Zeynelgil: Modelling and Simulation of Synchronous

Machine Transient Analysis using SIMULINK, International Journal of

Electrical Engineering Education, 39 (4), pp. 337-346, 2002

[18] The Mathworks Inc: Using SIMULINK, Dynamic System Simulation for

MATL AB, 5h Ed., Mathworks Inc, USA, 1997

[19] Z. Ghassemlooy, R. Saatchi: Software Simulation Techniques for Teaching

Communication Systems, International Journal o Electrical Engineering

Education, 36 (4), pp. 287-297, 1999

[20] S. E. Mattsson, H. Elmqvist, M. Otter: Physical System Modeling with

Modelica, Control Engineering Practice, 6, pp. 501-510, 1998

[21] D. Matko, R. Karba, B. Zupancic: Simulation and Modelling of Continuous

Systems - A Case Study Approach, Automatica, 30 (11), pp. 1808-1810, 1994

[22] G. Lipovszki, P. Aradi: Simulating Complex Systems and Processes in

LabVIEW, Journal of Mathematical Sciences, University of Tokyo, 132 (5), pp.

629-636, 2006

[23] H. Klee: Some Novel Applications of a Continuous System Simulation

Language, Computers and Industrial Engineering, 11 (1-4), pp. 385-389, 1986

[24] M. Alfonseca, J. Lara, E. Pulido: An Object-oriented Continuous Simulation

Language and Its Use for Training Purposes, Proceedings of 5th International

Workshop on Simulation for European Space Programs, Noordwijk,

Netherlands, pp. 49-54, 1998

[25] R. Thomas, A. Close, P. McAndrew: Tailoring Simulations for Teaching and

Learning: the Potential of the MultiVerse Environment, International Journal o

Electrical Engineering Education, 37 (1), pp.1-12, 2000

[26] A. Canizares, Z. Faur: Advantages and Disadvantages of Using Various

Computer Tools in Electrical Engineering Courses, IEEE Transactions on

Education, 40 (3), pp. 1-7, 1997

[27] M. Despotovic, A. Markovic, Z. Bogdanovic, D. Barac and S. Krco, Providing

Adaptivity in Moodle LMS Courses, Educatoional Technology and Society, 15

(1), pp. 326-338, 2012

[28] M. Trenas, J. Ramos, E. Gutierrez, S. Romero, F. Corbera: Use of a New

Moodle Module for Improving the Teaching of a Basic Course on Computer

Architecture', IEEE Transactions on Education, 54 (2), pp. 222-228, 2011

[29] P. Jacobs, N. Lang, A. Verbraeck: D-SOL; a Distributed Java-based Discrete

Event Simulation Architecture, Simulation Conference, 2005 Proceedings of

the Winter, Orlando, FL, USA 1, pp. 793-800, 2002

[30] P. Sauter, G. Vögler, G. Specht, T. Flor: A Model–View–Controller Extension

for Pervasive Multi-Client User Interfaces, Personal and Ubiquitous

Computing, 9 (2), pp 100-107, 2005

http://www.sciencedirect.com/science/journal/00051098
http://www.springerlink.com/content/?Author=P.+Aradi
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DKlee,%2520Harold%26authorID%3D26651635400%26md5%3Da110e7f3569116050f8ff6facb3ede08&_acct=C000053038&_version=1&_userid=1793854&md5=fb20937e407d6b507e4f6b0388d0d6cd
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jacobs,%20P.H.M..QT.&newsearch=partialPref
http://link.springer.com.proxy.kobson.nb.rs:2048/search?facet-author=%22Patrick+Sauter%22
http://link.springer.com.proxy.kobson.nb.rs:2048/search?facet-author=%22Gabriel+V%C3%B6gler%22
http://link.springer.com.proxy.kobson.nb.rs:2048/search?facet-author=%22G%C3%BCnther+Specht%22
http://link.springer.com.proxy.kobson.nb.rs:2048/search?facet-author=%22Thomas+Flor%22
http://link.springer.com.proxy.kobson.nb.rs:2048/journal/779
http://link.springer.com.proxy.kobson.nb.rs:2048/journal/779

